organic compounds
1-Methyl-4-thiocarbamoylpyridin-1-ium iodide
aDepartment of Chemistry, Lagos State University, Ojo, Lagos, Nigeria, and bDepartment of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K3M4, Canada
*Correspondence e-mail: boere@uleth.ca
In the title compound, C7H9N2S+·I−, the thioamide moiety is twisted out of the aromatic plane by 38.98 (4)° and forms N—H⋯I hydrogen bonds. In the crystal, hydrogen-bonded centrosymmetric dimers [C7H9N2S+·I−]2 are linked via additional short contacts from an aromatic CH group to the iodide anion into ribbons parallel to the (010) plane.
Keywords: crystal structure; hydrogen bonds; heteroelements.
CCDC reference: 1874701
Structure description
Methylation at the pyridine nitrogen was used as a protecting group in synthetic attempts to prepare the corresponding 3,5-dipyridyl-1,2,4-dithiazolium salts. In the title compound (I), the cation and anion are linked pairwise in a centrosymmetric hydrogen-bonded dimer (N1, I1, N1i and I1i; see Table 1 for symmetry code, and Fig. 1). The pyridine ring is planar (r.m.s. deviation = 0.0054 Å), as is the thioamide (r.m.s. deviation = 0.0020 Å), and the two planes make a dihedral angle of 38.98 (4)°. The N1/I1/N1i/I1i plane makes a dihedral angle of 26.67 (2)° with the thioamide moiety, and the H1A and H1B hydrogen atoms deviate from this plane by −0.39 (2) and 0.12 (2) Å, respectively. The cation structure is closely related to that of the protonated analogue, C6H7N2S+·I− (Shotonwa & Boeré, 2014) and all comparable intramolecular distances are indistinguishable within standard uncertainties [Cambridge Structural Database (CSD) Version 5.39, with updates to November 2017 (Groom et al., 2016), refcode: TODDAT].
|
In the crystal (Fig. 2), the only significant intermolecular contacts are non-classical hydrogen bonds between H5 and I1ii, with a separation 0.22 Å shorter than the sum of van der Waals radii (Table 1, entry 3). These link the dimers of ion pairs into ribbons parallel to the (010) plane.
Synthesis and crystallization
The title salt was prepared by a modification of a literature method for related compounds (Kosower, 1955): methyl iodide (0.57 g, 4 mmol) was added dropwise to 4-pyridine-thioamide (0.50 g, 4 mmol) in 5.00 ml of dry CH3CN, with a colour change from yellow to deep orange. The mixture was stirred for 30 min. at room temperature, followed by reflux for 10 min., cooled, filtered and washed three times with cold CH3CN. Recrystallization from boiling 99% ethanol afforded 0.21 g (35% yield) of (I) [CAS registry 749784–54-1]. The crystals are hygroscopic and were stored in a well sealed flask. 1H NMR, (D2O, δ/p.p.m.): 8.84 (d, 2H Ar, J = 6.9 Hz), 8.23 (d, 2H Ar, J = 6.9 Hz), 4.38 (s, 3H, N—CH3). mp = 219.3–220.9°C (lit. 220°C; Christ et al., 1974).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1874701
https://doi.org/10.1107/S2414314618014918/bh4040sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618014918/bh4040Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618014918/bh4040Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314618014918/bh4040Isup4.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury CSD (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H9N2S+·I− | Dx = 1.858 Mg m−3 |
Mr = 280.12 | Melting point: 493 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 19.6249 (16) Å | Cell parameters from 13927 reflections |
b = 7.2198 (6) Å | θ = 2.2–27.5° |
c = 14.9117 (12) Å | µ = 3.35 mm−1 |
β = 108.592 (1)° | T = 173 K |
V = 2002.5 (3) Å3 | Prism, clear orange |
Z = 8 | 0.27 × 0.15 × 0.08 mm |
F(000) = 1072 |
Bruker APEXII CCD area-detector diffractometer | 2294 independent reflections |
Radiation source: sealed tube | 2121 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 8 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
ω and φ scans | h = −25→25 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −9→9 |
Tmin = 0.610, Tmax = 0.746 | l = −19→19 |
13927 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | Hydrogen site location: mixed |
wR(F2) = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0118P)2 + 2.1492P] where P = (Fo2 + 2Fc2)/3 |
2294 reflections | (Δ/σ)max = 0.001 |
107 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All N(H,H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C5(H5), C3(H3), C4(H4), C6(H6) 2.b Idealised Me refined as rotating group: C7(H7A,H7B,H7C) |
x | y | z | Uiso*/Ueq | ||
I1 | 0.11514 (2) | 0.17323 (2) | 0.42525 (2) | 0.02707 (4) | |
S1 | 0.14565 (2) | 0.31395 (7) | 0.75400 (3) | 0.03144 (10) | |
N1 | 0.23622 (9) | 0.2254 (2) | 0.66302 (11) | 0.0301 (3) | |
H1A | 0.2776 (12) | 0.196 (3) | 0.6589 (15) | 0.036* | |
H1B | 0.2037 (12) | 0.228 (3) | 0.6114 (16) | 0.036* | |
N2 | 0.40862 (7) | 0.20871 (19) | 0.98789 (10) | 0.0241 (3) | |
C5 | 0.41537 (9) | 0.2872 (2) | 0.90990 (12) | 0.0269 (4) | |
H5 | 0.461071 | 0.330808 | 0.910006 | 0.032* | |
C3 | 0.28424 (9) | 0.1655 (2) | 0.91256 (12) | 0.0235 (3) | |
H3 | 0.238945 | 0.124022 | 0.915043 | 0.028* | |
C4 | 0.34445 (9) | 0.1489 (2) | 0.99079 (12) | 0.0256 (3) | |
H4 | 0.340682 | 0.095014 | 1.047130 | 0.031* | |
C7 | 0.47204 (10) | 0.1918 (3) | 1.07418 (13) | 0.0333 (4) | |
H7A | 0.516062 | 0.208892 | 1.057507 | 0.050* | |
H7B | 0.472432 | 0.068642 | 1.102007 | 0.050* | |
H7C | 0.469549 | 0.286572 | 1.120068 | 0.050* | |
C6 | 0.35692 (9) | 0.3056 (2) | 0.82953 (12) | 0.0263 (4) | |
H6 | 0.362264 | 0.360346 | 0.774227 | 0.032* | |
C2 | 0.28980 (8) | 0.2431 (2) | 0.82991 (11) | 0.0207 (3) | |
C1 | 0.22502 (8) | 0.2579 (2) | 0.74402 (12) | 0.0227 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02370 (6) | 0.03292 (7) | 0.02592 (6) | −0.00189 (5) | 0.00981 (4) | −0.00090 (5) |
S1 | 0.01959 (19) | 0.0456 (3) | 0.0283 (2) | 0.00281 (19) | 0.00643 (16) | −0.0004 (2) |
N1 | 0.0238 (7) | 0.0447 (10) | 0.0210 (7) | 0.0019 (7) | 0.0058 (6) | 0.0001 (7) |
N2 | 0.0204 (7) | 0.0245 (8) | 0.0247 (7) | 0.0037 (6) | 0.0032 (5) | −0.0017 (6) |
C5 | 0.0213 (8) | 0.0293 (9) | 0.0301 (9) | −0.0016 (7) | 0.0081 (7) | −0.0004 (7) |
C3 | 0.0202 (7) | 0.0248 (9) | 0.0267 (8) | 0.0003 (7) | 0.0090 (6) | 0.0009 (7) |
C4 | 0.0254 (8) | 0.0273 (9) | 0.0250 (8) | 0.0028 (7) | 0.0094 (7) | 0.0025 (7) |
C7 | 0.0250 (9) | 0.0398 (11) | 0.0279 (9) | 0.0039 (8) | −0.0018 (7) | −0.0002 (8) |
C6 | 0.0243 (8) | 0.0307 (10) | 0.0249 (8) | −0.0020 (7) | 0.0093 (7) | 0.0014 (7) |
C2 | 0.0207 (8) | 0.0197 (8) | 0.0221 (8) | 0.0013 (6) | 0.0074 (6) | −0.0028 (6) |
C1 | 0.0219 (8) | 0.0205 (8) | 0.0251 (8) | −0.0021 (6) | 0.0068 (6) | 0.0012 (6) |
S1—C1 | 1.6615 (17) | C3—C2 | 1.389 (2) |
N1—C1 | 1.316 (2) | C3—H3 | 0.9500 |
N1—H1A | 0.86 (2) | C4—H4 | 0.9500 |
N1—H1B | 0.83 (2) | C7—H7A | 0.9800 |
N2—C5 | 1.338 (2) | C7—H7B | 0.9800 |
N2—C4 | 1.345 (2) | C7—H7C | 0.9800 |
N2—C7 | 1.483 (2) | C6—C2 | 1.394 (2) |
C5—C6 | 1.376 (2) | C6—H6 | 0.9500 |
C5—H5 | 0.9500 | C2—C1 | 1.493 (2) |
C3—C4 | 1.376 (2) | ||
C1—N1—H1A | 123.2 (14) | N2—C7—H7A | 109.5 |
C1—N1—H1B | 123.0 (15) | N2—C7—H7B | 109.5 |
H1A—N1—H1B | 114 (2) | H7A—C7—H7B | 109.5 |
C5—N2—C4 | 121.14 (14) | N2—C7—H7C | 109.5 |
C5—N2—C7 | 120.07 (15) | H7A—C7—H7C | 109.5 |
C4—N2—C7 | 118.76 (15) | H7B—C7—H7C | 109.5 |
N2—C5—C6 | 120.80 (16) | C5—C6—C2 | 119.45 (16) |
N2—C5—H5 | 119.6 | C5—C6—H6 | 120.3 |
C6—C5—H5 | 119.6 | C2—C6—H6 | 120.3 |
C4—C3—C2 | 119.89 (15) | C3—C2—C6 | 118.39 (15) |
C4—C3—H3 | 120.1 | C3—C2—C1 | 120.23 (14) |
C2—C3—H3 | 120.1 | C6—C2—C1 | 121.37 (15) |
N2—C4—C3 | 120.31 (15) | N1—C1—C2 | 115.41 (14) |
N2—C4—H4 | 119.8 | N1—C1—S1 | 124.14 (13) |
C3—C4—H4 | 119.8 | C2—C1—S1 | 120.44 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···I1 | 0.83 (2) | 2.79 (2) | 3.6037 (16) | 166 (2) |
N1—H1A···I1i | 0.86 (2) | 2.93 (2) | 3.6367 (16) | 141 (2) |
C5—H5···I1ii | 0.95 | 2.96 | 3.8642 (17) | 160 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
Funding information
The Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged for Discovery Grants (RTB). The APEXII diffractometer was purchased with the help of the NSERC and the University of Lethbridge.
References
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christ, W., Rakow, D. & Strauss, S. (1974). J. Heterocycl. Chem. 11, 397–399. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kosower, E. M. (1955). J. Am. Chem. Soc. 77, 3883–3885. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shotonwa, I. O. & Boeré, R. T. (2014). Acta Cryst. E70, o340–o341. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.