metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­chlorido­tetra­kis­(pyridine-κN)rhodium(III) chloride methanol tetra­solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Research Institute for Interdisciplinary Science, Okayama University, and bDepartment of Chemistry, Faculty of Science, Okayama University
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 October 2018; accepted 19 October 2018; online 26 October 2018)

In the solvated title salt, [RhCl2(C5H5N)4]Cl·4CH3OH, the RhIII atom lies on a special position of 2.22 site symmetry. Consequently, the cationic complex has mol­ecular D2 symmetry with a trans disposition for two equivalent Cl and four equivalent pyridine ligands. The Rh—Cl and Rh—N bond lengths are 2.3452 (7) and 2.064 (2) Å, respectively. The planes of the coordinating pyridine ligands are tilted synchronously, with a dihedral angle of 40.76 (9)° between the least-squares pyridine plane and the coordination plane defined by the RhIII and four pyridine N atoms. The chloride counter-anion is located on a crystallographic [\overline{4}].. site, and is surrounded by four methanol mol­ecules to which it is bound in a pseudo-tetra­hedral arrangement by O—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mixed-ligand rhodium(III) complexes with chlorido and pyridine ligands have been known since the 1880s (Jörgensen, 1883[Jörgensen, S. M. (1883). J. Prakt. Chem. 27, 433-489.]). Their composition, structures and properties were reexamined very carefully by Gillard & Wilkinson (1964[Gillard, R. D. & Wilkinson, G. (1964). J. Chem. Soc. pp. 1224-1228.]). They concluded that the highest stable species is the trans-di­chlorido­tetra­kis­(pyridine)­rhodium(III) cation. Up to now, several crystal structures of this complex with different counter-anions have been reported: hydrogen dinitrate (Dobinson et al., 1967[Dobinson, G. C., Mason, R. & Russell, D. R. (1967). Chem. Commun. (London), pp. 62-63.]), dinitratoargentate(I) (Gillard et al., 1990[Gillard, R. D., Hanton, L. R. & Mitchell, S. H. (1990). Polyhedron, 9, 2127-2133.]), perchlorate, perrhenate (Vasilchenko et al., 2009[Vasilchenko, D. B., Baidina, I. A., Filatov, E. Y. & Korenev, S. V. (2009). J. Struct. Chem. 50, 335-342.]), thio­cyanate and 2-hy­droxy­benzoate (Vasil'chenko et al., 2015[Vasil'chenko, D. B., Venediktov, A. B., Baidina, I. A. & Korenev, S. V. (2015). J. Struct. Chem. 56, 310-316.]). However, one of the most simple complex salts, the chloride, has not been reported so far.

The title complex salt, trans-[RhCl2(C5H5N)4]Cl, crystallizes with four mol­ecules of methanol in the space group P[\overline{4}]c2. The RhIII atom lies on a special position of 2.22 site symmetry (Wyckhoff position 2a), the chlorido ligand (Cl1) on a position with ..2 symmetry (4f), and the non-coordinating Cl anion (Cl2) is located on a [\overline{4}].. site (2d). In addition, the asymmetric unit contains a mol­ecule of pyridine (py) and a mol­ecule of methanol, both in general sites. Expanding the symmetry operations gives mol­ecular units of a cationic RhIII complex, trans-[RhCl2(py)4]+, and a tetra­(methanol) solvated Cl anion (Fig. 1[link]). The resulting cationic complex exhibits mol­ecular D2 symmetry. The Rh—Cl and Rh—N bond lengths are 2.3452 (7) and 2.064 (2) Å, respectively. The Cl—Rh—N and N—Rh—N bond angles are close, but not strictly equal, to 90°. Similar to previously reported structures (Dobinson et al., 1967[Dobinson, G. C., Mason, R. & Russell, D. R. (1967). Chem. Commun. (London), pp. 62-63.]; Gillard et al., 1990[Gillard, R. D., Hanton, L. R. & Mitchell, S. H. (1990). Polyhedron, 9, 2127-2133.]; Vasilchenko et al., 2009[Vasilchenko, D. B., Baidina, I. A., Filatov, E. Y. & Korenev, S. V. (2009). J. Struct. Chem. 50, 335-342.]; Vasil'chenko et al., 2015[Vasil'chenko, D. B., Venediktov, A. B., Baidina, I. A. & Korenev, S. V. (2015). J. Struct. Chem. 56, 310-316.]), the planes of the coordinating pyridine are tilted synchronously with respect to the RhN4 coordination plane. The dihedral angle between the least-squares pyridine plane and the coordination plane defined by the Rh and four N atoms is 40.76 (9)°. The hydrogen-bonded anionic [Cl(CH3OH)4] unit exhibits a pseudo-tetra­hedral arrangement (Fig. 1[link], Table 1[link]). The packing of the mol­ecular entities in the crystal structure is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2 0.84 2.32 3.110 (4) 156
[Figure 1]
Figure 1
View of the mol­ecular components of the solvated title salt, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as an ideal sphere with a radius of 0.15 Å. The striped bonds indicate hydrogen bonds between Cl and H atoms. [Symmetry codes: (i) −x, −y, z; (ii) −y, −x, −z + [{1\over 2}], (iii) y, x, −z + [{1\over 2}]; (iv) −x + 1, y + 1, z; (v) −y + 1, x, −z; (vi) y, x + 1, −z.]
[Figure 2]
Figure 2
A packing diagram of the solvated title salt, in a view along the b axis. Colour code: purple, Rh; green, Cl; red, O; blue, N; black, C; and white, H.

Synthesis and crystallization

The hydrated complex chloride, trans-[RhCl2(py)4]Cl·5H2O, was prepared from RhCl3·3H2O and pyridine in refluxing water, according to the method described in our previous paper (Suzuki et al., 1995[Suzuki, T., Isobe, K. & Kashiwabara, K. (1995). J. Chem. Soc. Dalton Trans. pp. 3609-3616.]). The product was recrystallized from methanol, affording yellow platelet methanol tetra­solvate crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [RhCl2(C5H5N)4]Cl·4CH4O
Mr 653.83
Crystal system, space group Tetragonal, P[\overline{4}]c2
Temperature (K) 163
a, c (Å) 7.6130 (7), 26.461 (3)
V3) 1533.7 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.70 × 0.60 × 0.30
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.611, 0.775
No. of measured, independent and observed [I > 2σ(I)] reflections 13753, 1749, 1605
Rint 0.038
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.047, 1.03
No. of reflections 1749
No. of parameters 85
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.48
Absolute structure Flack x determined using 652 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.043 (19)
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (Palmer et al., 2017[Palmer, D., Conley, M., Parsonson, L., Rimmer, L. & Stenson, I. (2017). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR2014 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer et al., 2017); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

trans-Dichloridotetrakis(pyridine-κN)rhodium(III) chloride methanol tetrasolvate top
Crystal data top
[RhCl2(C5H5N)4]Cl·4CH4ODx = 1.416 Mg m3
Mr = 653.83Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P4c2Cell parameters from 13381 reflections
a = 7.6130 (7) Åθ = 3.1–27.5°
c = 26.461 (3) ŵ = 0.85 mm1
V = 1533.7 (3) Å3T = 163 K
Z = 2Platelet, yellow
F(000) = 6720.70 × 0.60 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1605 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.038
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 99
Tmin = 0.611, Tmax = 0.775k = 89
13753 measured reflectionsl = 3434
1749 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.2836P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1749 reflectionsΔρmax = 0.22 e Å3
85 parametersΔρmin = 0.47 e Å3
0 restraintsAbsolute structure: Flack x determined using 652 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.043 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atom of the methanol hydroxy group was located from a difference Fourier map. Afterwards it was refined using a riding model, with O—H = 0.84 Å. For other H atoms, C—H = 0.95 (aromatic) or 0.98 (methyl) Å, with Uiso(H) = 1.2 Ueq(C, O) were applied.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.00000.00000.25000.02029 (9)
Cl10.21783 (6)0.21783 (6)0.25000.02777 (16)
Cl20.50000.50000.00000.0462 (3)
O10.7689 (6)0.2828 (5)0.06260 (15)0.0971 (16)
H10.72450.35300.04170.116*
N10.1360 (4)0.1368 (4)0.19521 (6)0.0238 (3)
C10.0516 (4)0.2088 (4)0.15529 (10)0.0285 (6)
H1A0.07240.19730.15290.034*
C20.1408 (4)0.2984 (4)0.11805 (11)0.0347 (6)
H20.07820.34570.09010.042*
C30.3185 (6)0.3196 (6)0.12101 (9)0.0406 (6)
H30.38020.38230.09560.049*
C40.4079 (4)0.2473 (4)0.16217 (12)0.0376 (7)
H40.53160.25980.16530.045*
C50.3125 (4)0.1571 (4)0.19829 (10)0.0296 (6)
H50.37300.10750.22630.035*
C60.7411 (7)0.1140 (7)0.0467 (2)0.0807 (15)
H6A0.72460.11270.01000.097*
H6B0.63590.06690.06320.097*
H6C0.84290.04150.05560.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02015 (11)0.02015 (11)0.02056 (14)0.00233 (13)0.0000.000
Cl10.0266 (2)0.0266 (2)0.0301 (3)0.0081 (3)0.0019 (6)0.0019 (6)
Cl20.0557 (4)0.0557 (4)0.0273 (5)0.0000.0000.000
O10.095 (3)0.082 (3)0.115 (3)0.028 (3)0.058 (3)0.027 (2)
N10.0238 (19)0.0239 (19)0.0236 (8)0.0016 (7)0.0009 (14)0.0002 (13)
C10.0256 (13)0.0294 (14)0.0305 (13)0.0026 (10)0.0050 (10)0.0010 (11)
C20.0383 (16)0.0362 (16)0.0297 (13)0.0023 (13)0.0047 (12)0.0102 (13)
C30.044 (3)0.039 (3)0.0387 (12)0.0061 (11)0.006 (2)0.014 (2)
C40.0258 (16)0.0442 (19)0.0428 (15)0.0060 (13)0.0012 (13)0.0104 (14)
C50.0243 (14)0.0344 (15)0.0300 (12)0.0014 (11)0.0031 (11)0.0063 (11)
C60.072 (3)0.059 (3)0.111 (4)0.013 (3)0.009 (3)0.002 (3)
Geometric parameters (Å, º) top
Rh1—N12.0638 (17)C1—H1A0.9500
Rh1—N1i2.0638 (17)C2—C31.365 (5)
Rh1—N1ii2.0638 (17)C2—H20.9500
Rh1—N1iii2.0638 (17)C3—C41.397 (5)
Rh1—Cl12.3452 (7)C3—H30.9500
Rh1—Cl1ii2.3452 (7)C4—C51.383 (4)
O1—C61.368 (6)C4—H40.9500
O1—H10.8400C5—H50.9500
N1—C51.355 (4)C6—H6A0.9800
N1—C11.352 (4)C6—H6B0.9800
C1—C21.377 (4)C6—H6C0.9800
N1—Rh1—N1i89.26 (10)N1—C1—H1A119.2
N1—Rh1—N1ii90.74 (10)C2—C1—H1A119.2
N1i—Rh1—N1ii179.7 (2)C3—C2—C1120.4 (3)
N1—Rh1—N1iii179.7 (2)C3—C2—H2119.8
N1i—Rh1—N1iii90.74 (10)C1—C2—H2119.8
N1ii—Rh1—N1iii89.26 (10)C2—C3—C4118.8 (2)
N1—Rh1—Cl190.13 (12)C2—C3—H3120.6
N1i—Rh1—Cl189.87 (12)C4—C3—H3120.6
N1ii—Rh1—Cl189.87 (12)C5—C4—C3118.6 (3)
N1iii—Rh1—Cl190.13 (12)C5—C4—H4120.7
N1—Rh1—Cl1ii89.87 (12)C3—C4—H4120.7
N1i—Rh1—Cl1ii90.13 (12)N1—C5—C4122.4 (3)
N1ii—Rh1—Cl1ii90.13 (12)N1—C5—H5118.8
N1iii—Rh1—Cl1ii89.87 (12)C4—C5—H5118.8
Cl1—Rh1—Cl1ii180.0O1—C6—H6A109.5
C6—O1—H1109.5O1—C6—H6B109.5
C5—N1—C1118.2 (2)H6A—C6—H6B109.5
C5—N1—Rh1120.8 (2)O1—C6—H6C109.5
C1—N1—Rh1121.0 (2)H6A—C6—H6C109.5
N1—C1—C2121.7 (3)H6B—C6—H6C109.5
C5—N1—C1—C21.0 (5)C2—C3—C4—C50.0 (6)
Rh1—N1—C1—C2179.1 (2)C1—N1—C5—C40.3 (5)
N1—C1—C2—C31.2 (6)Rh1—N1—C5—C4179.7 (2)
C1—C2—C3—C40.7 (6)C3—C4—C5—N10.2 (5)
Symmetry codes: (i) y, x, z+1/2; (ii) x, y, z; (iii) y, x, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl20.842.323.110 (4)156
 

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research No. 18K05146 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDobinson, G. C., Mason, R. & Russell, D. R. (1967). Chem. Commun. (London), pp. 62–63.  Google Scholar
First citationGillard, R. D., Hanton, L. R. & Mitchell, S. H. (1990). Polyhedron, 9, 2127–2133.  CrossRef Web of Science Google Scholar
First citationGillard, R. D. & Wilkinson, G. (1964). J. Chem. Soc. pp. 1224–1228.  CrossRef Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJörgensen, S. M. (1883). J. Prakt. Chem. 27, 433–489.  Google Scholar
First citationPalmer, D., Conley, M., Parsonson, L., Rimmer, L. & Stenson, I. (2017). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, T., Isobe, K. & Kashiwabara, K. (1995). J. Chem. Soc. Dalton Trans. pp. 3609–3616.  CrossRef Web of Science Google Scholar
First citationVasilchenko, D. B., Baidina, I. A., Filatov, E. Y. & Korenev, S. V. (2009). J. Struct. Chem. 50, 335–342.  Web of Science CrossRef Google Scholar
First citationVasil'chenko, D. B., Venediktov, A. B., Baidina, I. A. & Korenev, S. V. (2015). J. Struct. Chem. 56, 310–316.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds