metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(pyridine-κN)bis­­(thio­cyanato-κS)palladium(II)

CROSSMARK_Color_square_no_text.svg

aChonnam National University, School of Chemical Engineering, Research Institute of Catalysis, Gwangju, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 1 October 2018; accepted 4 October 2018; online 31 October 2018)

In the title complex, [Pd(SCN)2(C5H4N)2], the PdII ion has a trans-N2S2 square-planar coordination sphere defined by two pyridine ligands and two S-bound SCN anions. The PdII cation lies on an inversion centre, thus the asymmetric unit contains one half of the complex, the PdN2S2 moiety is exactly planar and the two pyridine rings are parallel. In the crystal, the complex mol­ecules are stacked in columns along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

With reference to the title complex, [Pd(SCN)2(py)2], the crystal structures of related trans-di­pyridine-PdII complexes [PdX2(py)2] (X = Cl, Br, I; py = pyridine) have been determined previously. The chlorido complex [PdCl2(py)2] has three polymorphic forms, crystallizing in space groups C2/c (Viossat et al., 1993[Viossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84-85.]), P[\overline{1}] (Liao & Lee, 2006[Liao, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, m680-m681.]) and P21/n (Lee & Liao, 2008[Lee, H. M. & Liao, C.-Y. (2008). Acta Cryst. E64, m1447.]). The bromido complex [PdBr2(py)2] has one polymorph in space group P[\overline{1}] (Ha, 2016[Ha, K. (2016). Z. Kristallogr. New Cryst. Struct. 231, 333-334.]), and the iodido complex [PdI2(py)2] has two polymorphs in space groups C2/m (Lord et al., 2001[Lord, P. A., Noll, B. C., Olmstead, M. M. & Balch, A. L. (2001). J. Am. Chem. Soc. 123, 10554-10559.]; Grushin & Marshall, 2009[Grushin, V. V. & Marshall, W. J. (2009). J. Am. Chem. Soc. 131, 918-919.]) and C2/c (Grushin & Marshall, 2009[Grushin, V. V. & Marshall, W. J. (2009). J. Am. Chem. Soc. 131, 918-919.]).

In the title complex, the central PdII ion has a trans-N2S2 square-planar coordination geometry defined by two N atoms from two pyridine ligands and two S atoms derived from two SCN anions (Fig. 1[link]). The complex crystallizes in the triclinic space group P[\overline{1}] and the asymmetric unit contains one half of the complex mol­ecule: the Pd atom is located on an inversion centre. Therefore, the PdN2S2 moiety is exactly planar and the two pyridine rings are parallel. The dihedral angle between the PdS2N2 plane and the pyridine ring [maximum deviation = 0.008 (1) Å] is 89.32 (5)°. The thio­cyanato ligand is almost linear displaying a S—C—N bond angle of 177.9 (2)°, and the S atoms are coordinated to the PdII cation with the nearly tetra­hedral Pd—S—C bond angle of 104.89 (7)°, characteristic of an S-bonded conformation (Ha, 2013[Ha, K. (2013). Z. Kristallogr. New Cryst. Struct. 228, 249-250.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex showing the atom labelling and with displacement ellipsoids drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) 2 − x, 2 − y, −z.]

In the crystal structure (Fig. 2[link]), the complex mol­ecules are stacked in columns along [100] with d(Pd⋯Pd) = 5.2931 (4) Å, corresponding to the length of the a axis. In the columns, inter­molecular ππ inter­actions between adjacent pyridine rings are present. For Cg1 (the centroid of ring N1–C5) and Cg1i [symmetry code: (i) 2 − x, 2 − y, 1 − z], the centroid–centroid distance is 5.116 (1) Å, the planes are parallel and shifted by 4.11 Å.

[Figure 2]
Figure 2
The packing in the crystal of the title complex, viewed approximately along the a axis.

Synthesis and crystallization

A reaction mixture of K2Pd(SCN)4 (0.1835 g, 0.440 mmol) and pyridine (2 ml) in ethyl acetate (30 ml) was stirred for 1 h at room temperature. After evaporation of the solvent, the residue was washed with water and acetone, and dried at 323 K, to give a yellow powder (0.1141 g). Yellow crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Pd(SCN)2(C5H5N)2]
Mr 380.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 5.2931 (4), 6.8101 (6), 10.5213 (9)
α, β, γ (°) 96.994 (3), 98.754 (3), 107.293 (3)
V3) 352.24 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.60
Crystal size (mm) 0.19 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.685, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 8943, 1397, 1383
Rint 0.019
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.040, 1.10
No. of reflections 1397
No. of parameters 88
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

trans-Bis(pyridine-κN)bis(thiocyanato-κS)palladium(II) top
Crystal data top
[Pd(SCN)2(C5H5N)2]Z = 1
Mr = 380.76F(000) = 188
Triclinic, P1Dx = 1.795 Mg m3
a = 5.2931 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.8101 (6) ÅCell parameters from 8652 reflections
c = 10.5213 (9) Åθ = 3.2–28.4°
α = 96.994 (3)°µ = 1.60 mm1
β = 98.754 (3)°T = 223 K
γ = 107.293 (3)°Block, yellow
V = 352.24 (5) Å30.19 × 0.15 × 0.09 mm
Data collection top
Bruker PHOTON 100 CMOS detector
diffractometer
1383 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.019
φ and ω scansθmax = 26.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 66
Tmin = 0.685, Tmax = 0.745k = 88
8943 measured reflectionsl = 1313
1397 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.040H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.1471P]
where P = (Fo2 + 2Fc2)/3
1397 reflections(Δ/σ)max < 0.001
88 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd11.00001.00000.00000.02642 (7)
S10.61794 (10)0.72043 (8)0.10502 (5)0.03935 (12)
N10.9587 (3)0.8677 (2)0.16016 (14)0.0278 (3)
N20.5443 (4)0.7580 (3)0.37129 (17)0.0466 (4)
C10.8137 (4)0.9263 (3)0.24251 (18)0.0347 (4)
H10.72761.02400.22190.042*
C20.7869 (4)0.8482 (3)0.35602 (18)0.0372 (4)
H20.68250.89080.41160.045*
C30.9145 (4)0.7075 (3)0.38689 (19)0.0401 (4)
H30.90140.65370.46470.048*
C41.0622 (4)0.6460 (3)0.3025 (2)0.0427 (5)
H41.15070.54920.32190.051*
C51.0794 (4)0.7273 (3)0.18928 (18)0.0344 (4)
H51.17820.68320.13120.041*
C60.5790 (4)0.7453 (3)0.26277 (18)0.0335 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03078 (11)0.03002 (11)0.02182 (10)0.01194 (8)0.00732 (7)0.00903 (7)
S10.0429 (3)0.0392 (3)0.0295 (2)0.0031 (2)0.0042 (2)0.01138 (19)
N10.0295 (7)0.0306 (7)0.0237 (7)0.0094 (6)0.0051 (6)0.0072 (6)
N20.0519 (10)0.0501 (10)0.0309 (9)0.0071 (8)0.0066 (8)0.0070 (8)
C10.0367 (9)0.0420 (10)0.0311 (9)0.0175 (8)0.0104 (7)0.0104 (8)
C20.0375 (10)0.0444 (11)0.0278 (9)0.0079 (8)0.0119 (8)0.0064 (8)
C30.0459 (11)0.0409 (10)0.0289 (9)0.0043 (9)0.0058 (8)0.0152 (8)
C40.0514 (12)0.0395 (10)0.0432 (11)0.0191 (9)0.0087 (9)0.0191 (9)
C50.0394 (10)0.0332 (9)0.0350 (10)0.0149 (8)0.0110 (8)0.0097 (7)
C60.0336 (9)0.0302 (9)0.0346 (10)0.0080 (7)0.0067 (7)0.0040 (7)
Geometric parameters (Å, º) top
Pd1—N1i2.0159 (14)C1—H10.9400
Pd1—N12.0159 (14)C2—C31.369 (3)
Pd1—S1i2.3353 (5)C2—H20.9400
Pd1—S12.3353 (5)C3—C41.375 (3)
S1—C61.6766 (19)C3—H30.9400
N1—C51.338 (2)C4—C51.377 (3)
N1—C11.341 (2)C4—H40.9400
N2—C61.147 (3)C5—H50.9400
C1—C21.375 (3)
N1i—Pd1—N1180.0C3—C2—C1118.98 (18)
N1i—Pd1—S1i85.36 (4)C3—C2—H2120.5
N1—Pd1—S1i94.64 (4)C1—C2—H2120.5
N1i—Pd1—S194.64 (4)C2—C3—C4119.03 (17)
N1—Pd1—S185.36 (4)C2—C3—H3120.5
S1i—Pd1—S1180.0C4—C3—H3120.5
C6—S1—Pd1104.89 (7)C3—C4—C5119.52 (18)
C5—N1—C1118.73 (15)C3—C4—H4120.2
C5—N1—Pd1121.84 (12)C5—C4—H4120.2
C1—N1—Pd1119.39 (12)N1—C5—C4121.49 (17)
N1—C1—C2122.23 (17)N1—C5—H5119.3
N1—C1—H1118.9C4—C5—H5119.3
C2—C1—H1118.9N2—C6—S1177.86 (18)
C5—N1—C1—C20.5 (3)C2—C3—C4—C50.2 (3)
Pd1—N1—C1—C2177.35 (14)C1—N1—C5—C41.3 (3)
N1—C1—C2—C30.7 (3)Pd1—N1—C5—C4176.46 (15)
C1—C2—C3—C41.0 (3)C3—C4—C5—N11.0 (3)
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The author thanks the KBSI, Seoul Center, for the X-ray data collection.

Funding information

This study was supported financially by Chonnam National University (grant No. 2017–2777).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrushin, V. V. & Marshall, W. J. (2009). J. Am. Chem. Soc. 131, 918–919.  CrossRef PubMed Google Scholar
First citationHa, K. (2013). Z. Kristallogr. New Cryst. Struct. 228, 249–250.  CrossRef Google Scholar
First citationHa, K. (2016). Z. Kristallogr. New Cryst. Struct. 231, 333–334.  Google Scholar
First citationLee, H. M. & Liao, C.-Y. (2008). Acta Cryst. E64, m1447.  CrossRef IUCr Journals Google Scholar
First citationLiao, C.-Y. & Lee, H. M. (2006). Acta Cryst. E62, m680–m681.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLord, P. A., Noll, B. C., Olmstead, M. M. & Balch, A. L. (2001). J. Am. Chem. Soc. 123, 10554–10559.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViossat, B., Dung, N.-H. & Robert, F. (1993). Acta Cryst. C49, 84–85.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds