organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4-(4-chloro-2-propyl-1H-imidazol-5-yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Shree Devi Institute of Technology, Kenjar, Mangalore, Karnataka, 574142 , India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara Institute of Technology, Ujire, Karnataka, 574240 , India, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: y.ramli@um5s.net.ma

Edited by J. Simpson, University of Otago, New Zealand (Received 12 October 2018; accepted 17 October 2018; online 19 October 2018)

In the title hydrate, C19H26ClN3O4·H2O, the imidazole ring is nearly perpendicular [dihedral angle = 89.5 (1)°] to the di­hydro­pyridine moiety. The propyl and one of the ethyl groups are disordered over two resolved sets of sites [occupancy factors 0.524 (8):0.476 (8) and 0.640 (16):0.360 (16), respectively]. In the crystal, a three-dimensional network is constructed by O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds involving both the main mol­ecule and the water mol­ecule of crystallization, as well as C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hantzsch 1,4-di­hydro­pyridine derivatives are important components of several commonly used drugs (Sharma & Singh, 2017[Sharma, V. K. & Singh, S. K. (2017). RSC Adv. 7, 2682-2732.]). The broad bioactivities shown by imidazole derivatives may result from the fact that they are electron-rich due to the presence of two nitrogen atoms (Zhang et al., 2014[Zhang, L., Peng, X. M., Damu, G. L. V., Geng, R. X. & Zhou, C. H. (2014). Med. Res. Rev. 34, 340-437.]). The crystal structures of several 1,4-di­hydro­pyridine derivatives have been reported (Jasinski et al., 2013[Jasinski, J. P., Guild, C. J., Pek, A. E., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 429-442.]). As part of our studies in this area, a new imidazole-di­hydro­pyridine derivative has been synthesized and its crystal structure is reported here, Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric unit with the atom-labelling scheme and 50% probability ellipsoids. Only the major disorder components are shown. The N—H⋯O hydrogen bond to the water mol­ecule of crystallization (Table 1[link]) is shown as a dashed line.

A Cremer–Pople puckering analysis of the conformation of the di­hydro­pyridine ring yielded the parameters Q = 0.274 (4) Å, θ = 103.4 (8)° and φ = 359.1 (9)°. The ring adopts a shallow boat conformation with N1 and C3 deviating by 0.155 (5) and 0.315 (6) Å, respectively, from the C1/C2/C4/C5 plane towards the imidazole group. The imidazole and di­hydro­pyridine rings are almost perpendicular to one another, as indicated by the dihedral angle of 89.5 (1)° between the C1/C2/C4/C5 and C14/C15/N3/C16/N2 planes. The propyl group (C17–C19) and the C12/C13 ethyl group are disordered over two resolved sets of sites with occupancy factors 0.524 (8):0.476 (8) and 0.640 (16):0.360 (16), respectively.

In the crystal, N1—H1⋯N3 hydrogen bonds (Table 1[link]) form chains, extending alternately along the a- and b-axis directions. Each chain is surrounded by three rows of water mol­ecules of crystallization anchored by N3—H3A⋯O5, O5—H5A⋯O1 and O5—H5B⋯O3 hydrogen bonds (Table 2[link] and Fig. 2[link]). The water mol­ecules form O—H⋯O bridges between adjacent chains and bind them together into a three-dimensional network, which is further reinforced by C13—H13BCg1 inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2/N3/C14–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.91 2.00 2.906 (4) 173
N2—H2⋯O5 0.91 1.94 2.827 (4) 165
O5—H5A⋯O3ii 0.87 2.07 2.853 (4) 149
O5—H5B⋯O1iii 0.87 1.98 2.823 (5) 163
C13—H13BCg1iv 0.98 2.78 3.518 (14) 133
Symmetry codes: (i) x+1, y, z; (ii) [-y+1, x-1, z-{\script{1\over 4}}]; (iii) x, y-1, z; (iv) [y, -x+1, z+{\script{1\over 4}}].

Table 2
Experimental details

Crystal data
Chemical formula C19H26ClN3O4·H2O
Mr 413.89
Crystal system, space group Tetragonal, P43
Temperature (K) 200
a, c (Å) 8.5308 (11), 31.893 (4)
V3) 2321.0 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.34 × 0.29 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.48, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 21675, 5536, 4641
Rint 0.069
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.182, 1.06
No. of reflections 5536
No. of parameters 277
No. of restraints 43
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.82, −0.22
Absolute structure Flack x determined using 1897 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.01 (4)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.] and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
Detail of the chain formed by N—H⋯N hydrogen bonds (light-blue dashed lines) and the surrounding sets of O—H⋯O bonded (red dashed lines) water mol­ecules [Symmetry codes: (i) x, 1 + y, z; (ii) 1 + y, 1 − x, [{1\over 4}] + z] viewed towards (0[\overline{1}]1) (the a axis extends horizontally to the right).
[Figure 3]
Figure 3
Packing viewed along the a-axis direction. O—H⋯O hydrogen bonds are shown as red dashed lines while the N—H⋯O and N—H⋯N hydrogen bonds are depicted by dark- and light-blue dashed lines, respectively. The C—H⋯π(ring) inter­actions are depicted by green dashed lines.

Synthesis and crystallization

A mixture of 4-chloro-2-propyl-1H-imidazole-5-carbaldehyde (1.72 g, 0.01 mol), ethyl aceto­acetate (0.02 mol) and ammonium acetate (5 g) was refluxed for 8 h in 30 ml of ethanol. The reaction mixture was cooled to room temperature and the solid product obtained was filtered and recrystallized by slow evaporation from ethanol solution in 78% yield (m.p. 498 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the ethyl ester groups and the n-propyl group are disordered over two resolved orientations. The occupancies for the C12 and C13 atoms of the ethyl group refined to 0.640 (16) and 0.360 (16), while those for the C17–C19 propyl group are 0.524 (8) and 0.476 (8). In each case, two disorder components were refined with restraints so that their geometries are comparable.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012; software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 4-(4-chloro-2-propyl-1H-imidazol-5-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate monohydrate top
Crystal data top
C19H26ClN3O4·H2ODx = 1.184 Mg m3
Mr = 413.89Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 7831 reflections
a = 8.5308 (11) Åθ = 2.4–25.3°
c = 31.893 (4) ŵ = 0.20 mm1
V = 2321.0 (7) Å3T = 200 K
Z = 4Block, colourless
F(000) = 8800.34 × 0.29 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5536 independent reflections
Radiation source: fine-focus sealed tube4641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.3333 pixels mm-1θmax = 28.0°, θmin = 2.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.48, Tmax = 0.96l = 4141
21675 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1247P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5536 reflectionsΔρmax = 0.82 e Å3
277 parametersΔρmin = 0.22 e Å3
43 restraintsAbsolute structure: Flack x determined using 1897 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 %A and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The propyl substituent and the ethyl group of one of the ester substituents are each disordered over two sites. The components of the disorder were refined with restraints that the geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.46749 (12)0.49418 (16)0.54263 (4)0.0528 (3)
O10.9755 (5)0.8067 (4)0.47266 (13)0.0582 (9)
O20.7765 (4)0.7394 (4)0.51427 (12)0.0486 (8)
O30.9671 (5)0.1161 (4)0.59772 (11)0.0586 (10)
O40.7708 (4)0.2888 (4)0.59462 (11)0.0540 (9)
N11.1423 (4)0.3440 (4)0.48885 (11)0.0357 (7)
H11.2451970.3278940.4827130.033 (11)*
N20.7297 (4)0.2751 (4)0.46475 (10)0.0305 (6)
H20.8172740.2321660.4531950.041 (13)*
N30.4772 (4)0.3110 (4)0.47461 (11)0.0386 (7)
C11.0894 (4)0.4920 (5)0.47960 (12)0.0350 (8)
C20.9557 (4)0.5435 (4)0.49772 (12)0.0320 (7)
C30.8546 (4)0.4339 (4)0.52409 (11)0.0286 (7)
H30.8120650.4953780.5482430.034*
C40.9551 (4)0.3013 (4)0.54169 (12)0.0306 (7)
C51.0896 (4)0.2586 (5)0.52216 (13)0.0336 (8)
C61.1934 (6)0.5810 (7)0.44948 (18)0.0532 (12)
H6A1.2623910.5072430.4348150.080*
H6B1.2570650.6567390.4650940.080*
H6C1.1282770.6366020.4290090.080*
C71.1910 (5)0.1220 (6)0.53262 (17)0.0494 (11)
H7A1.2707990.1089500.5107960.074*
H7B1.1266030.0270330.5342510.074*
H7C1.2422480.1400610.5596870.074*
C80.9068 (5)0.7067 (5)0.49327 (13)0.0380 (8)
C90.7276 (8)0.9030 (6)0.5138 (2)0.0655 (15)
H9A0.8154360.9711310.5227110.079*
H9B0.6960830.9339000.4850680.079*
C100.5964 (10)0.9206 (9)0.5423 (4)0.108 (3)
H10A0.5727991.0321640.5459590.162*
H10B0.6232390.8743750.5695070.162*
H10C0.5044240.8670170.5307260.162*
C110.9040 (5)0.2247 (5)0.57994 (12)0.0365 (8)
C120.7170 (16)0.2420 (14)0.6360 (3)0.061 (3)0.640 (16)
H12A0.6555820.1439160.6336960.073*0.640 (16)
H12B0.8087790.2209460.6541620.073*0.640 (16)
C130.6218 (18)0.3615 (18)0.6548 (4)0.093 (4)0.640 (16)
H13A0.6834520.4577250.6579610.139*0.640 (16)
H13B0.5860700.3261480.6824710.139*0.640 (16)
H13C0.5307250.3822970.6369390.139*0.640 (16)
C12A0.705 (3)0.201 (3)0.6295 (6)0.061 (3)0.360 (16)
H12C0.6944990.0886920.6219440.073*0.360 (16)
H12D0.7744950.2088790.6543680.073*0.360 (16)
C13A0.555 (3)0.268 (4)0.6382 (7)0.093 (4)0.360 (16)
H13D0.5687320.3701810.6518120.139*0.360 (16)
H13E0.4960110.1983040.6569020.139*0.360 (16)
H13F0.4968920.2817040.6119560.139*0.360 (16)
C140.7186 (4)0.3699 (4)0.49976 (11)0.0290 (7)
C150.5620 (4)0.3880 (5)0.50448 (12)0.0343 (8)
C160.5849 (5)0.2426 (5)0.45107 (13)0.0376 (8)
C170.5464 (12)0.144 (5)0.4135 (9)0.0525 (14)0.524 (8)
H17A0.5429240.0327520.4220550.063*0.524 (8)
H17B0.6311230.1558900.3925170.063*0.524 (8)
C180.3896 (12)0.1877 (13)0.3930 (3)0.0576 (18)0.524 (8)
H18A0.3965080.2996320.3849650.069*0.524 (8)
H18B0.3083510.1801720.4150380.069*0.524 (8)
C190.3234 (14)0.0935 (19)0.3523 (4)0.088 (3)0.524 (8)
H19A0.2224410.1382000.3438330.132*0.524 (8)
H19B0.3983600.1030070.3291690.132*0.524 (8)
H19C0.3095580.0173270.3594610.132*0.524 (8)
C17A0.5500 (13)0.149 (6)0.4125 (10)0.0525 (14)0.476 (8)
H17C0.6365100.0733610.4077460.063*0.476 (8)
H17D0.5458510.2200290.3880490.063*0.476 (8)
C18A0.3948 (12)0.0580 (14)0.4153 (3)0.0576 (18)0.476 (8)
H18C0.3125680.1342580.4233520.069*0.476 (8)
H18D0.4048060.0169400.4388780.069*0.476 (8)
C19A0.3291 (16)0.040 (2)0.3751 (4)0.088 (3)0.476 (8)
H19D0.2295190.0898970.3825120.132*0.476 (8)
H19E0.3127350.0320660.3515580.132*0.476 (8)
H19F0.4055730.1201170.3671860.132*0.476 (8)
O50.9682 (3)0.0915 (4)0.42764 (10)0.0414 (7)
H5A0.9163160.0827390.4042790.062*
H5B0.9491740.0041800.4407550.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0337 (5)0.0708 (8)0.0539 (6)0.0073 (5)0.0067 (5)0.0214 (5)
O10.068 (2)0.0387 (17)0.068 (2)0.0017 (15)0.0072 (18)0.0179 (16)
O20.0483 (17)0.0336 (15)0.064 (2)0.0106 (13)0.0019 (15)0.0027 (14)
O30.073 (2)0.059 (2)0.0445 (18)0.0164 (17)0.0028 (17)0.0197 (16)
O40.0550 (19)0.065 (2)0.0417 (16)0.0101 (16)0.0175 (14)0.0228 (16)
N10.0216 (14)0.0432 (18)0.0423 (17)0.0004 (12)0.0020 (13)0.0006 (15)
N20.0245 (14)0.0345 (15)0.0323 (15)0.0002 (11)0.0020 (12)0.0032 (13)
N30.0256 (15)0.0485 (19)0.0416 (18)0.0006 (13)0.0002 (13)0.0068 (15)
C10.0257 (17)0.044 (2)0.0350 (18)0.0058 (15)0.0033 (14)0.0028 (16)
C20.0308 (17)0.0326 (18)0.0327 (18)0.0008 (13)0.0038 (14)0.0028 (15)
C30.0265 (16)0.0313 (17)0.0280 (16)0.0023 (13)0.0010 (13)0.0010 (14)
C40.0282 (16)0.0288 (16)0.0347 (17)0.0003 (13)0.0062 (15)0.0010 (15)
C50.0279 (17)0.0344 (18)0.0385 (19)0.0011 (14)0.0072 (15)0.0025 (16)
C60.035 (2)0.063 (3)0.061 (3)0.002 (2)0.011 (2)0.018 (2)
C70.034 (2)0.050 (3)0.064 (3)0.0100 (19)0.001 (2)0.004 (2)
C80.0398 (19)0.037 (2)0.0373 (19)0.0001 (15)0.0086 (16)0.0053 (17)
C90.076 (4)0.037 (2)0.083 (4)0.013 (2)0.009 (3)0.001 (3)
C100.095 (5)0.056 (4)0.172 (10)0.034 (4)0.028 (6)0.004 (5)
C110.041 (2)0.0343 (19)0.0347 (18)0.0018 (15)0.0027 (16)0.0016 (16)
C120.077 (4)0.063 (6)0.043 (4)0.004 (4)0.023 (3)0.008 (4)
C130.100 (7)0.112 (8)0.066 (6)0.028 (6)0.048 (6)0.019 (5)
C12A0.077 (4)0.063 (6)0.043 (4)0.004 (4)0.023 (3)0.008 (4)
C13A0.100 (7)0.112 (8)0.066 (6)0.028 (6)0.048 (6)0.019 (5)
C140.0274 (16)0.0283 (16)0.0312 (17)0.0043 (12)0.0029 (14)0.0016 (14)
C150.0273 (17)0.040 (2)0.035 (2)0.0045 (15)0.0018 (14)0.0036 (16)
C160.0307 (18)0.042 (2)0.040 (2)0.0000 (15)0.0000 (16)0.0017 (17)
C170.037 (2)0.067 (3)0.054 (3)0.002 (2)0.003 (2)0.021 (2)
C180.048 (4)0.065 (4)0.060 (4)0.006 (3)0.007 (3)0.015 (3)
C190.078 (5)0.117 (8)0.069 (5)0.008 (6)0.043 (5)0.042 (5)
C17A0.037 (2)0.067 (3)0.054 (3)0.002 (2)0.003 (2)0.021 (2)
C18A0.048 (4)0.065 (4)0.060 (4)0.006 (3)0.007 (3)0.015 (3)
C19A0.078 (5)0.117 (8)0.069 (5)0.008 (6)0.043 (5)0.042 (5)
O50.0416 (16)0.0426 (16)0.0400 (16)0.0000 (12)0.0005 (12)0.0037 (12)
Geometric parameters (Å, º) top
Cl1—C151.718 (4)C10—H10C0.9800
O1—C81.226 (5)C12—C131.436 (12)
O2—C81.328 (5)C12—H12A0.9900
O2—C91.456 (6)C12—H12B0.9900
O3—C111.212 (5)C13—H13A0.9800
O4—C111.346 (6)C13—H13B0.9800
O4—C121.453 (6)C13—H13C0.9800
O4—C12A1.453 (7)C12A—C13A1.435 (12)
N1—C51.364 (5)C12A—H12C0.9900
N1—C11.373 (5)C12A—H12D0.9900
N1—H10.9100C13A—H13D0.9800
N2—C161.339 (5)C13A—H13E0.9800
N2—C141.382 (5)C13A—H13F0.9800
N2—H20.9100C14—C151.354 (5)
N3—C161.323 (5)C16—C17A1.498 (7)
N3—C151.364 (5)C16—C171.499 (7)
C1—C21.352 (5)C17—C181.53 (2)
C1—C61.512 (6)C17—H17A0.9900
C2—C81.460 (5)C17—H17B0.9900
C2—C31.525 (5)C18—C191.626 (13)
C3—C141.498 (5)C18—H18A0.9900
C3—C41.527 (5)C18—H18B0.9900
C3—H31.0000C19—H19A0.9800
C4—C51.356 (5)C19—H19B0.9800
C4—C111.451 (5)C19—H19C0.9800
C5—C71.489 (6)C17A—C18A1.54 (2)
C6—H6A0.9800C17A—H17C0.9900
C6—H6B0.9800C17A—H17D0.9900
C6—H6C0.9800C18A—C19A1.629 (13)
C7—H7A0.9800C18A—H18C0.9900
C7—H7B0.9800C18A—H18D0.9900
C7—H7C0.9800C19A—H19D0.9800
C9—C101.451 (12)C19A—H19E0.9800
C9—H9A0.9900C19A—H19F0.9800
C9—H9B0.9900O5—H5A0.8699
C10—H10A0.9800O5—H5B0.8699
C10—H10B0.9800
C8—O2—C9115.8 (4)C12—C13—H13B109.5
C11—O4—C12118.1 (5)H13A—C13—H13B109.5
C11—O4—C12A112.3 (8)C12—C13—H13C109.5
C5—N1—C1123.4 (3)H13A—C13—H13C109.5
C5—N1—H1113.9H13B—C13—H13C109.5
C1—N1—H1114.2C13A—C12A—O4106.5 (13)
C16—N2—C14108.7 (3)C13A—C12A—H12C110.4
C16—N2—H2122.8O4—C12A—H12C110.4
C14—N2—H2128.2C13A—C12A—H12D110.4
C16—N3—C15103.9 (3)O4—C12A—H12D110.4
C2—C1—N1118.9 (3)H12C—C12A—H12D108.6
C2—C1—C6127.1 (4)C12A—C13A—H13D109.5
N1—C1—C6113.9 (4)C12A—C13A—H13E109.5
C1—C2—C8120.6 (4)H13D—C13A—H13E109.5
C1—C2—C3120.9 (3)C12A—C13A—H13F109.5
C8—C2—C3118.5 (3)H13D—C13A—H13F109.5
C14—C3—C2112.1 (3)H13E—C13A—H13F109.5
C14—C3—C4110.8 (3)C15—C14—N2102.9 (3)
C2—C3—C4109.8 (3)C15—C14—C3131.7 (3)
C14—C3—H3108.0N2—C14—C3125.3 (3)
C2—C3—H3108.0C14—C15—N3113.0 (3)
C4—C3—H3108.0C14—C15—Cl1127.0 (3)
C5—C4—C11121.3 (3)N3—C15—Cl1120.0 (3)
C5—C4—C3120.3 (3)N3—C16—N2111.4 (4)
C11—C4—C3118.3 (3)N3—C16—C17A124.3 (6)
C4—C5—N1119.6 (3)N2—C16—C17A124.2 (5)
C4—C5—C7126.8 (4)N3—C16—C17123.2 (5)
N1—C5—C7113.6 (4)N2—C16—C17125.3 (5)
C1—C6—H6A109.5C16—C17—C18113.4 (15)
C1—C6—H6B109.5C16—C17—H17A108.9
H6A—C6—H6B109.5C18—C17—H17A108.9
C1—C6—H6C109.5C16—C17—H17B108.9
H6A—C6—H6C109.5C18—C17—H17B108.9
H6B—C6—H6C109.5H17A—C17—H17B107.7
C5—C7—H7A109.5C17—C18—C19121.6 (9)
C5—C7—H7B109.5C17—C18—H18A106.9
H7A—C7—H7B109.5C19—C18—H18A106.9
C5—C7—H7C109.5C17—C18—H18B106.9
H7A—C7—H7C109.5C19—C18—H18B106.9
H7B—C7—H7C109.5H18A—C18—H18B106.7
O1—C8—O2121.6 (4)C18—C19—H19A109.5
O1—C8—C2125.4 (4)C18—C19—H19B109.5
O2—C8—C2113.0 (3)H19A—C19—H19B109.5
C10—C9—O2108.2 (5)C18—C19—H19C109.5
C10—C9—H9A110.1H19A—C19—H19C109.5
O2—C9—H9A110.1H19B—C19—H19C109.5
C10—C9—H9B110.1C16—C17A—C18A113.1 (16)
O2—C9—H9B110.1C16—C17A—H17C109.0
H9A—C9—H9B108.4C18A—C17A—H17C109.0
C9—C10—H10A109.5C16—C17A—H17D109.0
C9—C10—H10B109.5C18A—C17A—H17D109.0
H10A—C10—H10B109.5H17C—C17A—H17D107.8
C9—C10—H10C109.5C17A—C18A—C19A120.5 (9)
H10A—C10—H10C109.5C17A—C18A—H18C107.2
H10B—C10—H10C109.5C19A—C18A—H18C107.2
O3—C11—O4121.5 (4)C17A—C18A—H18D107.2
O3—C11—C4127.2 (4)C19A—C18A—H18D107.2
O4—C11—C4111.3 (3)H18C—C18A—H18D106.8
C13—C12—O4111.3 (8)C18A—C19A—H19D109.5
C13—C12—H12A109.4C18A—C19A—H19E109.5
O4—C12—H12A109.4H19D—C19A—H19E109.5
C13—C12—H12B109.4C18A—C19A—H19F109.5
O4—C12—H12B109.4H19D—C19A—H19F109.5
H12A—C12—H12B108.0H19E—C19A—H19F109.5
C12—C13—H13A109.5H5A—O5—H5B104.1
C5—N1—C1—C215.6 (6)C5—C4—C11—O32.5 (6)
C5—N1—C1—C6163.8 (4)C3—C4—C11—O3178.4 (4)
N1—C1—C2—C8171.6 (3)C5—C4—C11—O4178.0 (4)
C6—C1—C2—C87.7 (6)C3—C4—C11—O41.1 (5)
N1—C1—C2—C36.9 (5)C11—O4—C12—C13154.4 (11)
C6—C1—C2—C3173.8 (4)C11—O4—C12A—C13A172.3 (18)
C1—C2—C3—C1498.7 (4)C16—N2—C14—C150.2 (4)
C8—C2—C3—C1482.7 (4)C16—N2—C14—C3179.2 (4)
C1—C2—C3—C424.9 (5)C2—C3—C14—C15115.7 (4)
C8—C2—C3—C4153.6 (3)C4—C3—C14—C15121.2 (4)
C14—C3—C4—C5100.0 (4)C2—C3—C14—N263.0 (5)
C2—C3—C4—C524.4 (5)C4—C3—C14—N260.1 (4)
C14—C3—C4—C1180.9 (4)N2—C14—C15—N30.2 (4)
C2—C3—C4—C11154.7 (3)C3—C14—C15—N3178.7 (4)
C11—C4—C5—N1173.1 (3)N2—C14—C15—Cl1180.0 (3)
C3—C4—C5—N15.9 (5)C3—C14—C15—Cl11.0 (6)
C11—C4—C5—C77.9 (6)C16—N3—C15—C140.5 (5)
C3—C4—C5—C7173.0 (4)C16—N3—C15—Cl1179.7 (3)
C1—N1—C5—C416.1 (6)C15—N3—C16—N20.6 (5)
C1—N1—C5—C7164.8 (4)C15—N3—C16—C17A177 (3)
C9—O2—C8—O14.4 (7)C15—N3—C16—C17180 (2)
C9—O2—C8—C2175.5 (4)C14—N2—C16—N30.5 (5)
C1—C2—C8—O12.4 (6)C14—N2—C16—C17A177 (3)
C3—C2—C8—O1179.0 (4)C14—N2—C16—C17179 (2)
C1—C2—C8—O2177.6 (4)N3—C16—C17—C1826 (4)
C3—C2—C8—O21.0 (5)N2—C16—C17—C18152.4 (14)
C8—O2—C9—C10172.8 (6)C16—C17—C18—C19178.8 (18)
C12—O4—C11—O39.8 (9)N3—C16—C17A—C18A34 (4)
C12A—O4—C11—O37.5 (15)N2—C16—C17A—C18A150.1 (16)
C12—O4—C11—C4170.7 (7)C16—C17A—C18A—C19A175 (2)
C12A—O4—C11—C4172.0 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2/N3/C14–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.912.002.906 (4)173
N2—H2···O50.911.942.827 (4)165
O5—H5A···O3ii0.872.072.853 (4)149
O5—H5B···O1iii0.871.982.823 (5)163
C13—H13B···Cg1iv0.982.783.518 (14)133
Symmetry codes: (i) x+1, y, z; (ii) y+1, x1, z1/4; (iii) x, y1, z; (iv) y, x+1, z+1/4.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. KR is grateful to the Directorate of Minorities, Government of Karnataka for providing a research fellowship.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Guild, C. J., Pek, A. E., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 429–442.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharma, V. K. & Singh, S. K. (2017). RSC Adv. 7, 2682–2732.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, L., Peng, X. M., Damu, G. L. V., Geng, R. X. & Zhou, C. H. (2014). Med. Res. Rev. 34, 340–437.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds