metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­aqua­[2,6-di­acetyl­pyridine bis­­(semi­carbazone)]samarium(III) trinitrate

CROSSMARK_Color_square_no_text.svg

aCentral Connecticut State University, Department of Chemistry & Biochemistry, 1619 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 8 October 2018; accepted 15 October 2018; online 19 October 2018)

The structure of tetra­aqua­[2,6-di­acetyl­pyridine bis­(semicarbazone)]samarium(III) trinitrate, [Sm(C11H15N7O2)(H2O)4](NO3)3, has monoclinic (P21/c) symmetry. The 2,6-di­acetyl­pyridine (DAPSC) ligand is penta­dentate. The coordination of the DAPSC ligand and four coordinated water mol­ecules around the metal cation is best described as a distorted tricapped trigonal prism. The structure displays inter­molecular hydrogen bonding. The structure is isomorphous with many other published lanthanide(III) nitrate salts with the DAPSC ligand, 2,6-di­acetyl­pyridine­bis­(semicarbazone). One of the three nitrate counter-anions is disordered, which is consistent with the structures of other +3 lanthanide nitrate salts with DAPSC. Refinement of occupancies for the disordered nitrate group gave major and minor occupancies of 54.9 (14) and 45.1 (14)%, respectively.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2,6-Di­acetyl­pyridine­bis­(semicarbazone), DAPSC, is a potential penta­dentate ligand that has gained inter­est in the design of single mol­ecule magnets (Qian et al., 2013[Qian, K., Huang, X.-C., Zhou, C., You, X.-Z., Wang, X.-Y. & Dunbar, K. R. (2013). J. Am. Chem. Soc. 135, 13302-13305.]). DAPSC has also gained inter­est as a potential anti­microbial agent in its metal-coordinated form. Kasuga and coworkers studied several semicarbazones and their zinc complexes as potential anti­bacterial agents. Whereas DAPSC alone showed no ability to inhibit the growth of several bacteria, its zinc salts with nitrate and acetate anions showed modest ability to inhibit the growth of E. coli and P. aeuginosa (Gram-negative) and of S. aureus and B. subtilis (Gram-positive) bacteria (Kasuga et al., 2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]). Compared to the other zinc semicarbazone structures in the study, the authors postulated that anti­bacterial activity is enhanced when the metal–semicarbazone complex has extensive hydrogen-bonding inter­actions between the coordinated water mol­ecules and the counter-anions (Kasuga et al., 2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]). The authors also proposed a relationship between increased anti­bacterial activity and coordination number during a study of bis­muth(III) semicarbazone complexes where an eight-coord­in­ate BiIII DAPSC complex was more active in its inhibition of bacteria than bis­muth(III) carbazones with lower coordination numbers (Nomiya et al., 2004[Nomiya, K., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Kasuga, N. C., Yokoyama, H., Nakano, S. & Onodera, K. (2004). J. Inorg. Biochem. 98, 601-615.]).

Herein we report the room temperature crystal structure of a samarium(III) nitrate complex with DAPSC. Tetra­aqua­[2,6-di­acetyl­pyridine­bis­(semicarbazone)]samarium(III) trinitrate (Fig. 1[link]) is isomorphous with other previously published lanthanium(III) nitrate DAPSC complexes such as dysprosium(III) (Sasnovskaya et al., 2018[Sasnovskaya, V. D., Kopotkov, V. A., Kazakova, A. V., Talantsev, A. D., Morgunov, R. B., Simonov, S. V., Zorina, L. V., Mironov, V. S. & Yagubskii, E. B. (2018). New J. Chem. 42, 14883-14893.]), gadolinium(III) (Sommerer et al., 1993[Sommerer, S. O., Westcott, B. L., Cundari, T. R. & Krause, J. A. (1993). Inorg. Chim. Acta, 209, 101-104.]), europium(III), and holmium (III) (Palenik et al., 2006[Palenik, R. C., Abboud, K. A., Summers, S. P., Reitfort, L. L. & Palenik, G. J. (2006). Inorg. Chim. Acta, 359, 4645-4650.]). All cations in these complexes with DAPSC have four coordinated water mol­ecules such that their coordination geometry is best described as a distorted tricapped trigonal prism. The DAPSC ligand is nearly planar. The r.m.s. deviation of the thirteen atoms Sm1, O1, C1, N2, N3, C4, N4, C8, C9, N5, N6, C11, O2 is only 0.221 (3). Like the other salts, the samarium salt also has a nitrate disorder which was modeled. One of the three nitrate groups displays disorder over two orientations giving major and minor occupancies of 54.9 (14) and 45.1(14)%, respectively. The four coord­in­ated water mol­ecules are involved in an extensive hydrogen-bonding network (Table 1[link]) with the three nitrate counter-anions as well. Fig. 2[link] shows the packing highlighting the hydrogen-bond inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O9 0.86 2.04 2.895 (6) 173
O4—H4B⋯O14 0.88 2.33 3.050 (15) 139
O4—H4B⋯O13 0.88 1.82 2.638 (11) 155
O4—H4B⋯O15B 0.88 2.11 2.805 (19) 135
O4—H4B⋯N10 0.88 2.42 3.278 (9) 164
O4—H4A⋯O14i 0.88 1.89 2.706 (9) 153
O4—H4A⋯O15Bi 0.88 1.96 2.735 (19) 147
O4—H4A⋯O14Bi 0.88 2.47 3.239 (17) 146
O4—H4A⋯N10Bi 0.88 2.57 3.420 (15) 164
O5—H5A⋯O12ii 0.90 2.21 2.957 (6) 141
O5—H5B⋯O7iii 0.90 1.93 2.767 (5) 155
O5—H5B⋯N8iii 0.90 2.63 3.511 (5) 170
O5—H5B⋯O8iii 0.90 2.66 3.455 (6) 149
O6—H6A⋯O8iv 0.94 2.34 3.055 (6) 133
O6—H6A⋯O9iv 0.94 2.33 3.192 (6) 154
O6—H6B⋯O8iii 0.93 1.89 2.812 (6) 171
N1—H1A⋯O10iv 0.86 2.11 2.938 (6) 162
N1—H1B⋯O13v 0.86 1.93 2.780 (8) 173
N1—H1B⋯O13Bv 0.86 2.18 2.936 (13) 146
N2—H2⋯O15v 0.86 2.06 2.914 (11) 175
N2—H2⋯O13Bv 0.86 2.03 2.801 (13) 149
O3—H3A⋯O2 0.86 2.53 2.833 (5) 102
O3—H3B⋯N3 0.86 2.56 2.858 (5) 101
O4—H4A⋯N5 0.88 2.52 2.831 (5) 101
N6—H6⋯O11 0.86 2.19 3.031 (5) 166
N7—H7A⋯O2iv 0.86 2.29 3.095 (5) 156
N7—H7B⋯O10 0.86 2.16 2.995 (6) 163
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z+1; (iv) -x, -y+1, -z; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
An ORTEP plot (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) of tetra­aqua­[2,6-di­acetyl­pyridine­bis­(semicarbazone)]samarium(III) trinitrate with 50% probability ellipsoids. Hydrogen atoms and the nitrate anions omitted for clarity.
[Figure 2]
Figure 2
Packing (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) as viewed along the (100) direction showing the counter-anions as well as hydrogen-bonding inter­actions (dashed lines). The minor component of the disordered nitrate group was omitted for clarity.

Synthesis and crystallization

2,6-di­acetyl­pyridine, semicarbazide hydro­chloride and samarium(III) nitrate were obtained from Sigma Aldrich and used without further purif­ication. All other solvents and chemicals used were reagent grade.

Preparation of DAPSC

1.954 g of 2,6-di­acetyl­pyridine (11.97 mmol) were dissolved in 100 ml of 95% ethanol. 2.670 g (23.94 mmol) semicarbazide hydro­chloride and 1.964 g (23.94 mmol) sodium acetate were added to this solution and stirred, and deionized water was added until the solids dissolved completely. The solution was then heated, and a precipitate formed within 1 min. The white precipitate was removed by vacuum filtration. Yield 2.57 g or 56% DAPSC.

Preparation of [Sm(DAPSC)(H2O)4](NO3)3

Approximately 1.55 mmol DAPSC and 0.75 mmol Sm(NO3)3·xH2O were dissolved in 40 ml of deionized water. The solution was then stirred and heated to 52°C for 1 h. The solution was filtered hot and left in an open beaker to evaporate slowly. After several days, X-ray quality crystals were obtained and removed through filtration. Samples selected for study displayed uniform birefringence.

Refinement

Crystal and refinement details are shown in Table 2[link]. A disordered nitrate group was refined by restraining N—O and O—O distances along with allowing the site occupancy for each portion of the disordered group to refine. Refinement of occupancies for the disordered nitrate group gave major and minor occupancies of 54.9(14) and 45.1(14)%, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Sm(C11H15N7O2)(H2O)4](NO3)3
Mr 685.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0164 (5), 22.7494 (3), 15.0848 (8)
β (°) 138.151 (10)
V3) 2293.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.66
Crystal size (mm) 0.34 × 0.30 × 0.28
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.580, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 123615, 9028, 6975
Rint 0.097
(sin θ/λ)max−1) 0.854
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.03
No. of reflections 9028
No. of parameters 378
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.71, −1.43
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetraaqua[2,6-diacetylpyridine bis(semicarbazone)]samarium(III) trinitrate top
Crystal data top
[Sm(C11H15N7O2)(H2O)4](NO3)3F(000) = 1364
Mr = 685.74Dx = 1.986 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0164 (5) ÅCell parameters from 23000 reflections
b = 22.7494 (3) Åθ = 4.3–32.9°
c = 15.0848 (8) ŵ = 2.66 mm1
β = 138.151 (10)°T = 293 K
V = 2293.3 (3) Å3Block, yellow
Z = 40.34 × 0.30 × 0.28 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur Sapphire3
diffractometer
9028 independent reflections
Radiation source: fine-focus sealed tube6975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 16.1790 pixels mm-1θmax = 37.4°, θmin = 4.1°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 3534
Tmin = 0.580, Tmax = 1.000l = 2323
123615 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0649P)2 + 3.2075P]
where P = (Fo2 + 2Fc2)/3
9028 reflections(Δ/σ)max = 0.001
378 parametersΔρmax = 1.71 e Å3
12 restraintsΔρmin = 1.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.43786 (2)0.39014 (2)0.21680 (2)0.02632 (6)
O10.1686 (4)0.33450 (12)0.1319 (3)0.0427 (6)
O20.2300 (4)0.47121 (12)0.0923 (3)0.0427 (6)
O30.2453 (5)0.37078 (16)0.0110 (3)0.0520 (7)
H3A0.13930.39210.06330.078*
H3B0.20070.33540.03190.078*
O40.7198 (5)0.43890 (15)0.4159 (3)0.0520 (7)
H4A0.72770.47530.40040.078*
H4B0.83120.42300.45140.078*
O50.5973 (5)0.33437 (13)0.4133 (3)0.0497 (7)
H5A0.50710.31520.40180.074*
H5B0.65610.35810.48210.074*
O60.3400 (5)0.43687 (15)0.3072 (3)0.0531 (8)
H6A0.31600.47730.29020.080*
H6B0.44250.43690.39990.080*
N10.0147 (6)0.24779 (17)0.0794 (5)0.0550 (10)
H1A0.08450.26450.05640.066*
H1B0.01660.21020.07420.066*
N20.3166 (5)0.25034 (14)0.1562 (4)0.0428 (7)
H20.31790.21260.15300.051*
N30.4651 (5)0.28430 (14)0.1948 (3)0.0381 (6)
N40.7029 (5)0.36044 (15)0.2395 (3)0.0388 (6)
N50.5609 (5)0.46636 (15)0.1683 (4)0.0411 (7)
N60.4595 (5)0.51843 (15)0.1209 (4)0.0452 (8)
H60.50390.54980.11780.054*
N70.1732 (6)0.56525 (16)0.0225 (4)0.0510 (9)
H7A0.05950.56650.00710.061*
H7B0.21610.59560.01550.061*
C10.1656 (6)0.28011 (16)0.1229 (4)0.0380 (7)
C20.6125 (7)0.26076 (18)0.2265 (4)0.0421 (8)
C30.6383 (10)0.1961 (2)0.2250 (7)0.0695 (16)
H3C0.75030.18230.31440.104*
H3D0.66160.18860.17470.104*
H3E0.51940.17590.18480.104*
C40.7537 (6)0.30343 (19)0.2572 (4)0.0408 (8)
C50.9236 (7)0.2862 (2)0.2931 (5)0.0538 (11)
H50.95880.24670.30630.065*
C61.0377 (8)0.3290 (3)0.3083 (6)0.0609 (13)
H6C1.15380.31860.33550.073*
C70.9796 (8)0.3867 (2)0.2833 (6)0.0542 (12)
H71.05200.41560.28950.065*
C80.8098 (6)0.4013 (2)0.2484 (4)0.0413 (8)
C90.7288 (6)0.46160 (19)0.2099 (4)0.0411 (8)
C100.8339 (8)0.5109 (2)0.2159 (6)0.0581 (12)
H10A0.76420.54700.19250.087*
H10B0.83670.50340.15470.087*
H10C0.96840.51390.30430.087*
C110.2812 (6)0.51712 (17)0.0783 (4)0.0395 (8)
O70.1567 (6)0.37785 (16)0.3329 (4)0.0583 (9)
O80.3794 (8)0.4429 (3)0.4153 (4)0.1019 (19)
O90.1190 (6)0.43889 (19)0.2064 (4)0.0661 (10)
N80.2184 (6)0.41941 (17)0.3193 (4)0.0478 (8)
O100.3359 (7)0.6816 (2)0.0444 (5)0.0779 (12)
O110.5420 (7)0.63334 (18)0.0667 (5)0.0734 (11)
O120.5472 (8)0.72787 (19)0.0658 (5)0.0800 (13)
N90.4759 (6)0.68165 (16)0.0580 (4)0.0472 (8)
N101.1785 (13)0.4007 (4)0.5921 (13)0.057 (3)0.549 (14)
O131.0404 (14)0.3721 (4)0.5584 (10)0.081 (3)0.549 (14)
O141.140 (2)0.4516 (4)0.5481 (15)0.088 (5)0.549 (14)
O151.3432 (14)0.3775 (4)0.6638 (14)0.124 (6)0.549 (14)
N10B1.218 (2)0.4132 (7)0.583 (2)0.079 (5)0.451 (14)
O13B1.172 (3)0.3651 (5)0.5935 (18)0.118 (6)0.451 (14)
O14B1.385 (2)0.4221 (7)0.633 (2)0.140 (8)0.451 (14)
O15B1.102 (3)0.4556 (8)0.532 (3)0.118 (9)0.451 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02879 (9)0.02325 (9)0.03029 (9)0.00034 (5)0.02301 (8)0.00002 (5)
O10.0467 (15)0.0318 (13)0.0576 (17)0.0029 (11)0.0412 (14)0.0039 (11)
O20.0433 (14)0.0350 (13)0.0496 (16)0.0043 (11)0.0346 (14)0.0061 (11)
O30.0559 (18)0.0561 (18)0.0452 (16)0.0046 (15)0.0380 (16)0.0020 (14)
O40.0573 (18)0.0544 (18)0.0499 (17)0.0153 (14)0.0417 (16)0.0069 (14)
O50.068 (2)0.0384 (15)0.0420 (15)0.0060 (13)0.0408 (16)0.0023 (12)
O60.064 (2)0.0532 (18)0.0533 (17)0.0096 (15)0.0470 (17)0.0002 (14)
N10.052 (2)0.0370 (18)0.079 (3)0.0106 (15)0.050 (2)0.0113 (17)
N20.0464 (18)0.0312 (15)0.0522 (19)0.0010 (13)0.0371 (17)0.0042 (13)
N30.0413 (16)0.0341 (15)0.0409 (16)0.0036 (12)0.0312 (15)0.0001 (12)
N40.0414 (16)0.0418 (17)0.0428 (16)0.0025 (13)0.0343 (15)0.0002 (13)
N50.0413 (16)0.0389 (16)0.0457 (17)0.0035 (13)0.0332 (15)0.0058 (13)
N60.0455 (18)0.0329 (16)0.060 (2)0.0027 (13)0.0403 (18)0.0087 (14)
N70.059 (2)0.0358 (17)0.068 (2)0.0100 (15)0.050 (2)0.0116 (16)
C10.0399 (18)0.0333 (17)0.0417 (18)0.0013 (14)0.0307 (17)0.0017 (14)
C20.050 (2)0.0363 (18)0.046 (2)0.0067 (16)0.0371 (19)0.0014 (15)
C30.089 (4)0.034 (2)0.113 (5)0.011 (2)0.083 (4)0.003 (3)
C40.0411 (19)0.045 (2)0.0402 (19)0.0071 (15)0.0313 (17)0.0031 (15)
C50.049 (2)0.057 (3)0.062 (3)0.012 (2)0.043 (2)0.003 (2)
C60.049 (2)0.070 (3)0.076 (3)0.007 (2)0.050 (3)0.002 (3)
C70.042 (2)0.068 (3)0.061 (3)0.0018 (19)0.041 (2)0.003 (2)
C80.0386 (19)0.050 (2)0.0419 (19)0.0009 (16)0.0320 (18)0.0024 (16)
C90.0390 (19)0.047 (2)0.0412 (19)0.0019 (15)0.0312 (17)0.0029 (15)
C100.057 (3)0.058 (3)0.077 (3)0.005 (2)0.055 (3)0.004 (2)
C110.0425 (19)0.0373 (18)0.0403 (18)0.0044 (15)0.0313 (17)0.0054 (14)
O70.070 (2)0.0537 (18)0.060 (2)0.0003 (17)0.051 (2)0.0055 (16)
O80.098 (3)0.119 (4)0.050 (2)0.053 (3)0.043 (2)0.016 (2)
O90.065 (2)0.089 (3)0.0483 (18)0.0188 (19)0.0434 (18)0.0213 (18)
N80.055 (2)0.047 (2)0.0429 (18)0.0066 (16)0.0369 (18)0.0027 (15)
O100.078 (3)0.075 (3)0.108 (4)0.015 (2)0.077 (3)0.013 (2)
O110.114 (3)0.050 (2)0.102 (3)0.015 (2)0.094 (3)0.009 (2)
O120.106 (3)0.059 (2)0.096 (3)0.015 (2)0.081 (3)0.005 (2)
N90.056 (2)0.0414 (18)0.0499 (19)0.0048 (15)0.0409 (18)0.0029 (14)
N100.054 (5)0.038 (6)0.046 (4)0.018 (4)0.027 (4)0.000 (4)
O130.060 (5)0.047 (4)0.100 (7)0.000 (4)0.049 (5)0.017 (4)
O140.072 (6)0.019 (4)0.090 (7)0.004 (3)0.036 (5)0.003 (4)
O150.057 (6)0.062 (6)0.185 (13)0.017 (4)0.070 (7)0.018 (6)
N10B0.098 (12)0.056 (9)0.096 (11)0.009 (9)0.076 (10)0.003 (8)
O13B0.121 (15)0.040 (6)0.181 (16)0.022 (7)0.109 (13)0.031 (7)
O14B0.095 (9)0.117 (14)0.206 (19)0.033 (9)0.111 (12)0.052 (12)
O15B0.132 (15)0.092 (12)0.19 (2)0.034 (10)0.140 (17)0.042 (12)
Geometric parameters (Å, º) top
Sm1—O12.317 (3)N7—C111.312 (5)
Sm1—O22.332 (3)N7—H7A0.8600
Sm1—O42.364 (3)N7—H7B0.8600
Sm1—O32.418 (3)C2—C41.476 (6)
Sm1—O52.427 (3)C2—C31.497 (6)
Sm1—O62.438 (3)C3—H3C0.9600
Sm1—N32.473 (3)C3—H3D0.9600
Sm1—N42.504 (3)C3—H3E0.9600
Sm1—N52.530 (3)C4—C51.404 (6)
O1—C11.243 (4)C5—C61.385 (8)
O2—C111.249 (5)C5—H50.9300
O3—H3A0.8584C6—C71.371 (7)
O3—H3B0.8585C6—H6C0.9300
O4—H4A0.8808C7—C81.395 (6)
O4—H4B0.8797C7—H70.9300
O5—H5A0.8970C8—C91.476 (6)
O5—H5B0.8972C9—C101.494 (6)
O6—H6A0.9362C10—H10A0.9600
O6—H6B0.9325C10—H10B0.9600
N1—C11.333 (5)C10—H10C0.9600
N1—H1A0.8600O7—N81.228 (5)
N1—H1B0.8600O8—N81.227 (6)
N2—N31.363 (5)O9—N81.250 (5)
N2—C11.367 (5)O10—N91.257 (6)
N2—H20.8600O11—N91.238 (5)
N3—C21.282 (5)O12—N91.226 (6)
N4—C41.345 (5)N10—O151.229 (8)
N4—C81.347 (5)N10—O131.243 (9)
N5—C91.290 (5)N10—O141.247 (9)
N5—N61.365 (5)N10B—O14B1.234 (10)
N6—C111.376 (5)N10B—O13B1.242 (10)
N6—H60.8600N10B—O15B1.243 (10)
O1—Sm1—O290.78 (10)C8—N4—Sm1120.7 (3)
O1—Sm1—O4139.06 (11)C9—N5—N6121.3 (4)
O2—Sm1—O499.03 (12)C9—N5—Sm1122.8 (3)
O1—Sm1—O375.33 (12)N6—N5—Sm1114.5 (3)
O2—Sm1—O373.21 (12)N5—N6—C11115.2 (3)
O4—Sm1—O3145.52 (12)N5—N6—H6122.4
O1—Sm1—O579.97 (11)C11—N6—H6122.4
O2—Sm1—O5141.02 (11)C11—N7—H7A120.0
O4—Sm1—O567.49 (11)C11—N7—H7B120.0
O3—Sm1—O5137.95 (11)H7A—N7—H7B120.0
O1—Sm1—O676.13 (11)O1—C1—N1122.0 (4)
O2—Sm1—O667.41 (12)O1—C1—N2121.5 (4)
O4—Sm1—O671.45 (12)N1—C1—N2116.5 (3)
O3—Sm1—O6130.31 (12)N3—C2—C4114.2 (4)
O5—Sm1—O673.61 (12)N3—C2—C3124.6 (4)
O1—Sm1—N366.00 (11)C4—C2—C3121.0 (4)
O2—Sm1—N3141.57 (11)C2—C3—H3C109.5
O4—Sm1—N3118.73 (12)C2—C3—H3D109.5
O3—Sm1—N371.51 (12)H3C—C3—H3D109.5
O5—Sm1—N367.49 (11)C2—C3—H3E109.5
O6—Sm1—N3129.07 (12)H3C—C3—H3E109.5
O1—Sm1—N4127.38 (10)H3D—C3—H3E109.5
O2—Sm1—N4122.90 (11)N4—C4—C5121.1 (4)
O4—Sm1—N479.15 (12)N4—C4—C2116.1 (3)
O3—Sm1—N477.72 (12)C5—C4—C2122.6 (4)
O5—Sm1—N491.48 (12)C6—C5—C4118.8 (4)
O6—Sm1—N4150.29 (12)C6—C5—H5120.6
N3—Sm1—N462.86 (11)C4—C5—H5120.6
O1—Sm1—N5146.23 (11)C7—C6—C5120.0 (5)
O2—Sm1—N563.90 (11)C7—C6—H6C120.0
O4—Sm1—N570.59 (12)C5—C6—H6C120.0
O3—Sm1—N576.05 (12)C6—C7—C8118.6 (5)
O5—Sm1—N5133.78 (11)C6—C7—H7120.7
O6—Sm1—N5110.36 (12)C8—C7—H7120.7
N3—Sm1—N5120.15 (12)N4—C8—C7122.0 (4)
N4—Sm1—N561.93 (11)N4—C8—C9116.0 (4)
C1—O1—Sm1121.9 (3)C7—C8—C9121.9 (4)
C11—O2—Sm1124.4 (3)N5—C9—C8113.9 (4)
Sm1—O3—H3A109.6N5—C9—C10124.9 (4)
Sm1—O3—H3B109.8C8—C9—C10121.2 (4)
H3A—O3—H3B104.1C9—C10—H10A109.5
Sm1—O4—H4A111.3C9—C10—H10B109.5
Sm1—O4—H4B110.7H10A—C10—H10B109.5
H4A—O4—H4B103.0C9—C10—H10C109.5
Sm1—O5—H5A111.6H10A—C10—H10C109.5
Sm1—O5—H5B111.5H10B—C10—H10C109.5
H5A—O5—H5B102.4O2—C11—N7124.0 (4)
Sm1—O6—H6A113.8O2—C11—N6119.5 (4)
Sm1—O6—H6B112.7N7—C11—N6116.4 (4)
H6A—O6—H6B100.4O8—N8—O7121.4 (4)
C1—N1—H1A120.0O8—N8—O9117.8 (5)
C1—N1—H1B120.0O7—N8—O9120.8 (4)
H1A—N1—H1B120.0O12—N9—O11121.7 (5)
N3—N2—C1115.7 (3)O12—N9—O10121.0 (4)
N3—N2—H2122.2O11—N9—O10117.3 (4)
C1—N2—H2122.2O15—N10—O13119.4 (10)
C2—N3—N2120.6 (3)O15—N10—O14123.1 (11)
C2—N3—Sm1124.6 (3)O13—N10—O14117.5 (9)
N2—N3—Sm1114.5 (2)O14B—N10B—O13B122.0 (13)
C4—N4—C8119.4 (4)O14B—N10B—O15B117.9 (13)
C4—N4—Sm1119.5 (3)O13B—N10B—O15B119.7 (13)
C1—N2—N3—C2179.1 (4)C2—C4—C5—C6174.1 (5)
C1—N2—N3—Sm16.2 (4)C4—C5—C6—C72.6 (8)
C9—N5—N6—C11179.2 (4)C5—C6—C7—C82.8 (9)
Sm1—N5—N6—C1114.3 (5)C4—N4—C8—C73.9 (6)
Sm1—O1—C1—N1177.1 (3)Sm1—N4—C8—C7169.0 (4)
Sm1—O1—C1—N23.5 (5)C4—N4—C8—C9172.0 (4)
N3—N2—C1—O12.2 (6)Sm1—N4—C8—C915.2 (5)
N3—N2—C1—N1177.1 (4)C6—C7—C8—N40.4 (8)
N2—N3—C2—C4176.1 (4)C6—C7—C8—C9175.2 (5)
Sm1—N3—C2—C49.9 (5)N6—N5—C9—C8175.8 (4)
N2—N3—C2—C30.1 (7)Sm1—N5—C9—C818.9 (5)
Sm1—N3—C2—C3174.1 (4)N6—N5—C9—C102.2 (7)
C8—N4—C4—C54.0 (6)Sm1—N5—C9—C10163.2 (4)
Sm1—N4—C4—C5168.9 (3)N4—C8—C9—N52.2 (6)
C8—N4—C4—C2171.2 (4)C7—C8—C9—N5173.7 (4)
Sm1—N4—C4—C215.8 (5)N4—C8—C9—C10179.8 (4)
N3—C2—C4—N44.3 (5)C7—C8—C9—C104.4 (7)
C3—C2—C4—N4171.9 (4)Sm1—O2—C11—N7171.0 (3)
N3—C2—C4—C5179.5 (4)Sm1—O2—C11—N610.1 (6)
C3—C2—C4—C53.3 (7)N5—N6—C11—O24.2 (6)
N4—C4—C5—C60.8 (7)N5—N6—C11—N7174.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O90.862.042.895 (6)173
O4—H4B···O140.882.333.050 (15)139
O4—H4B···O130.881.822.638 (11)155
O4—H4B···O15B0.882.112.805 (19)135
O4—H4B···N100.882.423.278 (9)164
O4—H4A···O14i0.881.892.706 (9)153
O4—H4A···O15Bi0.881.962.735 (19)147
O4—H4A···O14Bi0.882.473.239 (17)146
O4—H4A···N10Bi0.882.573.420 (15)164
O5—H5A···O12ii0.902.212.957 (6)141
O5—H5B···O7iii0.901.932.767 (5)155
O5—H5B···N8iii0.902.633.511 (5)170
O5—H5B···O8iii0.902.663.455 (6)149
O6—H6A···O8iv0.942.343.055 (6)133
O6—H6A···O9iv0.942.333.192 (6)154
O6—H6B···O8iii0.931.892.812 (6)171
N1—H1A···O10iv0.862.112.938 (6)162
N1—H1B···O13v0.861.932.780 (8)173
N1—H1B···O13Bv0.862.182.936 (13)146
N2—H2···O15v0.862.062.914 (11)175
N2—H2···O13Bv0.862.032.801 (13)149
O3—H3A···O20.862.532.833 (5)102
O3—H3B···N30.862.562.858 (5)101
O4—H4A···N50.882.522.831 (5)101
N6—H6···O110.862.193.031 (5)166
N7—H7A···O2iv0.862.293.095 (5)156
N7—H7B···O100.862.162.995 (6)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x1, y+1/2, z1/2.
 

Funding information

The authors would like to thank CSU–AAUP for the research funding.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNomiya, K., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Kasuga, N. C., Yokoyama, H., Nakano, S. & Onodera, K. (2004). J. Inorg. Biochem. 98, 601–615.  CrossRef PubMed Google Scholar
First citationPalenik, R. C., Abboud, K. A., Summers, S. P., Reitfort, L. L. & Palenik, G. J. (2006). Inorg. Chim. Acta, 359, 4645–4650.  CrossRef Google Scholar
First citationQian, K., Huang, X.-C., Zhou, C., You, X.-Z., Wang, X.-Y. & Dunbar, K. R. (2013). J. Am. Chem. Soc. 135, 13302–13305.  CrossRef PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSasnovskaya, V. D., Kopotkov, V. A., Kazakova, A. V., Talantsev, A. D., Morgunov, R. B., Simonov, S. V., Zorina, L. V., Mironov, V. S. & Yagubskii, E. B. (2018). New J. Chem. 42, 14883–14893.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommerer, S. O., Westcott, B. L., Cundari, T. R. & Krause, J. A. (1993). Inorg. Chim. Acta, 209, 101–104.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds