metal-organic compounds
Tetraaqua[2,6-diacetylpyridine bis(semicarbazone)]samarium(III) trinitrate
aCentral Connecticut State University, Department of Chemistry & Biochemistry, 1619 Stanley Street, New Britain, CT 06050, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The structure of tetraaqua[2,6-diacetylpyridine bis(semicarbazone)]samarium(III) trinitrate, [Sm(C11H15N7O2)(H2O)4](NO3)3, has monoclinic (P21/c) symmetry. The 2,6-diacetylpyridine (DAPSC) ligand is pentadentate. The coordination of the DAPSC ligand and four coordinated water molecules around the metal cation is best described as a distorted tricapped trigonal prism. The structure displays intermolecular hydrogen bonding. The structure is isomorphous with many other published lanthanide(III) nitrate salts with the DAPSC ligand, 2,6-diacetylpyridinebis(semicarbazone). One of the three nitrate counter-anions is disordered, which is consistent with the structures of other +3 lanthanide nitrate salts with DAPSC. of occupancies for the disordered nitrate group gave major and minor occupancies of 54.9 (14) and 45.1 (14)%, respectively.
Keywords: crystal structure; lanthanide(III) salts; DAPSC.
CCDC reference: 1873366
Structure description
2,6-Diacetylpyridinebis(semicarbazone), DAPSC, is a potential pentadentate ligand that has gained interest in the design of single molecule magnets (Qian et al., 2013). DAPSC has also gained interest as a potential antimicrobial agent in its metal-coordinated form. Kasuga and coworkers studied several and their zinc complexes as potential antibacterial agents. Whereas DAPSC alone showed no ability to inhibit the growth of several bacteria, its zinc salts with nitrate and acetate anions showed modest ability to inhibit the growth of E. coli and P. aeuginosa (Gram-negative) and of S. aureus and B. subtilis (Gram-positive) bacteria (Kasuga et al., 2003). Compared to the other zinc semicarbazone structures in the study, the authors postulated that antibacterial activity is enhanced when the metal–semicarbazone complex has extensive hydrogen-bonding interactions between the coordinated water molecules and the counter-anions (Kasuga et al., 2003). The authors also proposed a relationship between increased antibacterial activity and during a study of bismuth(III) semicarbazone complexes where an eight-coordinate BiIII DAPSC complex was more active in its inhibition of bacteria than bismuth(III) carbazones with lower coordination numbers (Nomiya et al., 2004).
Herein we report the room temperature ) is isomorphous with other previously published lanthanium(III) nitrate DAPSC complexes such as dysprosium(III) (Sasnovskaya et al., 2018), gadolinium(III) (Sommerer et al., 1993), europium(III), and holmium (III) (Palenik et al., 2006). All cations in these complexes with DAPSC have four coordinated water molecules such that their coordination geometry is best described as a distorted tricapped trigonal prism. The DAPSC ligand is nearly planar. The r.m.s. deviation of the thirteen atoms Sm1, O1, C1, N2, N3, C4, N4, C8, C9, N5, N6, C11, O2 is only 0.221 (3). Like the other salts, the samarium salt also has a nitrate disorder which was modeled. One of the three nitrate groups displays disorder over two orientations giving major and minor occupancies of 54.9 (14) and 45.1(14)%, respectively. The four coordinated water molecules are involved in an extensive hydrogen-bonding network (Table 1) with the three nitrate counter-anions as well. Fig. 2 shows the packing highlighting the hydrogen-bond interactions.
of a samarium(III) nitrate complex with DAPSC. Tetraaqua[2,6-diacetylpyridinebis(semicarbazone)]samarium(III) trinitrate (Fig. 1Synthesis and crystallization
2,6-diacetylpyridine, semicarbazide hydrochloride and samarium(III) nitrate were obtained from Sigma Aldrich and used without further purification. All other solvents and chemicals used were reagent grade.
Preparation of DAPSC
1.954 g of 2,6-diacetylpyridine (11.97 mmol) were dissolved in 100 ml of 95% ethanol. 2.670 g (23.94 mmol) semicarbazide hydrochloride and 1.964 g (23.94 mmol) sodium acetate were added to this solution and stirred, and deionized water was added until the solids dissolved completely. The solution was then heated, and a precipitate formed within 1 min. The white precipitate was removed by vacuum filtration. Yield 2.57 g or 56% DAPSC.
Preparation of [Sm(DAPSC)(H2O)4](NO3)3
Approximately 1.55 mmol DAPSC and 0.75 mmol Sm(NO3)3·xH2O were dissolved in 40 ml of deionized water. The solution was then stirred and heated to 52°C for 1 h. The solution was filtered hot and left in an open beaker to evaporate slowly. After several days, X-ray quality crystals were obtained and removed through filtration. Samples selected for study displayed uniform birefringence.
Refinement
Crystal and . A disordered nitrate group was refined by restraining N—O and O—O distances along with allowing the site occupancy for each portion of the disordered group to refine. of occupancies for the disordered nitrate group gave major and minor occupancies of 54.9(14) and 45.1(14)%, respectively.
details are shown in Table 2
|
Structural data
CCDC reference: 1873366
https://doi.org/10.1107/S2414314618014542/sj4193sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618014542/sj4193Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Sm(C11H15N7O2)(H2O)4](NO3)3 | F(000) = 1364 |
Mr = 685.74 | Dx = 1.986 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0164 (5) Å | Cell parameters from 23000 reflections |
b = 22.7494 (3) Å | θ = 4.3–32.9° |
c = 15.0848 (8) Å | µ = 2.66 mm−1 |
β = 138.151 (10)° | T = 293 K |
V = 2293.3 (3) Å3 | Block, yellow |
Z = 4 | 0.34 × 0.30 × 0.28 mm |
Rigaku Oxford Diffraction Xcalibur Sapphire3 diffractometer | 9028 independent reflections |
Radiation source: fine-focus sealed tube | 6975 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.097 |
Detector resolution: 16.1790 pixels mm-1 | θmax = 37.4°, θmin = 4.1° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −35→34 |
Tmin = 0.580, Tmax = 1.000 | l = −23→23 |
123615 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0649P)2 + 3.2075P] where P = (Fo2 + 2Fc2)/3 |
9028 reflections | (Δ/σ)max = 0.001 |
378 parameters | Δρmax = 1.71 e Å−3 |
12 restraints | Δρmin = −1.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sm1 | 0.43786 (2) | 0.39014 (2) | 0.21680 (2) | 0.02632 (6) | |
O1 | 0.1686 (4) | 0.33450 (12) | 0.1319 (3) | 0.0427 (6) | |
O2 | 0.2300 (4) | 0.47121 (12) | 0.0923 (3) | 0.0427 (6) | |
O3 | 0.2453 (5) | 0.37078 (16) | −0.0110 (3) | 0.0520 (7) | |
H3A | 0.1393 | 0.3921 | −0.0633 | 0.078* | |
H3B | 0.2007 | 0.3354 | −0.0319 | 0.078* | |
O4 | 0.7198 (5) | 0.43890 (15) | 0.4159 (3) | 0.0520 (7) | |
H4A | 0.7277 | 0.4753 | 0.4004 | 0.078* | |
H4B | 0.8312 | 0.4230 | 0.4514 | 0.078* | |
O5 | 0.5973 (5) | 0.33437 (13) | 0.4133 (3) | 0.0497 (7) | |
H5A | 0.5071 | 0.3152 | 0.4018 | 0.074* | |
H5B | 0.6561 | 0.3581 | 0.4821 | 0.074* | |
O6 | 0.3400 (5) | 0.43687 (15) | 0.3072 (3) | 0.0531 (8) | |
H6A | 0.3160 | 0.4773 | 0.2902 | 0.080* | |
H6B | 0.4425 | 0.4369 | 0.3999 | 0.080* | |
N1 | 0.0147 (6) | 0.24779 (17) | 0.0794 (5) | 0.0550 (10) | |
H1A | −0.0845 | 0.2645 | 0.0564 | 0.066* | |
H1B | 0.0166 | 0.2102 | 0.0742 | 0.066* | |
N2 | 0.3166 (5) | 0.25034 (14) | 0.1562 (4) | 0.0428 (7) | |
H2 | 0.3179 | 0.2126 | 0.1530 | 0.051* | |
N3 | 0.4651 (5) | 0.28430 (14) | 0.1948 (3) | 0.0381 (6) | |
N4 | 0.7029 (5) | 0.36044 (15) | 0.2395 (3) | 0.0388 (6) | |
N5 | 0.5609 (5) | 0.46636 (15) | 0.1683 (4) | 0.0411 (7) | |
N6 | 0.4595 (5) | 0.51843 (15) | 0.1209 (4) | 0.0452 (8) | |
H6 | 0.5039 | 0.5498 | 0.1178 | 0.054* | |
N7 | 0.1732 (6) | 0.56525 (16) | 0.0225 (4) | 0.0510 (9) | |
H7A | 0.0595 | 0.5665 | −0.0071 | 0.061* | |
H7B | 0.2161 | 0.5956 | 0.0155 | 0.061* | |
C1 | 0.1656 (6) | 0.28011 (16) | 0.1229 (4) | 0.0380 (7) | |
C2 | 0.6125 (7) | 0.26076 (18) | 0.2265 (4) | 0.0421 (8) | |
C3 | 0.6383 (10) | 0.1961 (2) | 0.2250 (7) | 0.0695 (16) | |
H3C | 0.7503 | 0.1823 | 0.3144 | 0.104* | |
H3D | 0.6616 | 0.1886 | 0.1747 | 0.104* | |
H3E | 0.5194 | 0.1759 | 0.1848 | 0.104* | |
C4 | 0.7537 (6) | 0.30343 (19) | 0.2572 (4) | 0.0408 (8) | |
C5 | 0.9236 (7) | 0.2862 (2) | 0.2931 (5) | 0.0538 (11) | |
H5 | 0.9588 | 0.2467 | 0.3063 | 0.065* | |
C6 | 1.0377 (8) | 0.3290 (3) | 0.3083 (6) | 0.0609 (13) | |
H6C | 1.1538 | 0.3186 | 0.3355 | 0.073* | |
C7 | 0.9796 (8) | 0.3867 (2) | 0.2833 (6) | 0.0542 (12) | |
H7 | 1.0520 | 0.4156 | 0.2895 | 0.065* | |
C8 | 0.8098 (6) | 0.4013 (2) | 0.2484 (4) | 0.0413 (8) | |
C9 | 0.7288 (6) | 0.46160 (19) | 0.2099 (4) | 0.0411 (8) | |
C10 | 0.8339 (8) | 0.5109 (2) | 0.2159 (6) | 0.0581 (12) | |
H10A | 0.7642 | 0.5470 | 0.1925 | 0.087* | |
H10B | 0.8367 | 0.5034 | 0.1547 | 0.087* | |
H10C | 0.9684 | 0.5139 | 0.3043 | 0.087* | |
C11 | 0.2812 (6) | 0.51712 (17) | 0.0783 (4) | 0.0395 (8) | |
O7 | −0.1567 (6) | 0.37785 (16) | −0.3329 (4) | 0.0583 (9) | |
O8 | −0.3794 (8) | 0.4429 (3) | −0.4153 (4) | 0.1019 (19) | |
O9 | −0.1190 (6) | 0.43889 (19) | −0.2064 (4) | 0.0661 (10) | |
N8 | −0.2184 (6) | 0.41941 (17) | −0.3193 (4) | 0.0478 (8) | |
O10 | 0.3359 (7) | 0.6816 (2) | 0.0444 (5) | 0.0779 (12) | |
O11 | 0.5420 (7) | 0.63334 (18) | 0.0667 (5) | 0.0734 (11) | |
O12 | 0.5472 (8) | 0.72787 (19) | 0.0658 (5) | 0.0800 (13) | |
N9 | 0.4759 (6) | 0.68165 (16) | 0.0580 (4) | 0.0472 (8) | |
N10 | 1.1785 (13) | 0.4007 (4) | 0.5921 (13) | 0.057 (3) | 0.549 (14) |
O13 | 1.0404 (14) | 0.3721 (4) | 0.5584 (10) | 0.081 (3) | 0.549 (14) |
O14 | 1.140 (2) | 0.4516 (4) | 0.5481 (15) | 0.088 (5) | 0.549 (14) |
O15 | 1.3432 (14) | 0.3775 (4) | 0.6638 (14) | 0.124 (6) | 0.549 (14) |
N10B | 1.218 (2) | 0.4132 (7) | 0.583 (2) | 0.079 (5) | 0.451 (14) |
O13B | 1.172 (3) | 0.3651 (5) | 0.5935 (18) | 0.118 (6) | 0.451 (14) |
O14B | 1.385 (2) | 0.4221 (7) | 0.633 (2) | 0.140 (8) | 0.451 (14) |
O15B | 1.102 (3) | 0.4556 (8) | 0.532 (3) | 0.118 (9) | 0.451 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sm1 | 0.02879 (9) | 0.02325 (9) | 0.03029 (9) | 0.00034 (5) | 0.02301 (8) | 0.00002 (5) |
O1 | 0.0467 (15) | 0.0318 (13) | 0.0576 (17) | −0.0029 (11) | 0.0412 (14) | −0.0039 (11) |
O2 | 0.0433 (14) | 0.0350 (13) | 0.0496 (16) | 0.0043 (11) | 0.0346 (14) | 0.0061 (11) |
O3 | 0.0559 (18) | 0.0561 (18) | 0.0452 (16) | 0.0046 (15) | 0.0380 (16) | 0.0020 (14) |
O4 | 0.0573 (18) | 0.0544 (18) | 0.0499 (17) | −0.0153 (14) | 0.0417 (16) | −0.0069 (14) |
O5 | 0.068 (2) | 0.0384 (15) | 0.0420 (15) | −0.0060 (13) | 0.0408 (16) | −0.0023 (12) |
O6 | 0.064 (2) | 0.0532 (18) | 0.0533 (17) | 0.0096 (15) | 0.0470 (17) | 0.0002 (14) |
N1 | 0.052 (2) | 0.0370 (18) | 0.079 (3) | −0.0106 (15) | 0.050 (2) | −0.0113 (17) |
N2 | 0.0464 (18) | 0.0312 (15) | 0.0522 (19) | −0.0010 (13) | 0.0371 (17) | −0.0042 (13) |
N3 | 0.0413 (16) | 0.0341 (15) | 0.0409 (16) | 0.0036 (12) | 0.0312 (15) | 0.0001 (12) |
N4 | 0.0414 (16) | 0.0418 (17) | 0.0428 (16) | 0.0025 (13) | 0.0343 (15) | −0.0002 (13) |
N5 | 0.0413 (16) | 0.0389 (16) | 0.0457 (17) | 0.0035 (13) | 0.0332 (15) | 0.0058 (13) |
N6 | 0.0455 (18) | 0.0329 (16) | 0.060 (2) | 0.0027 (13) | 0.0403 (18) | 0.0087 (14) |
N7 | 0.059 (2) | 0.0358 (17) | 0.068 (2) | 0.0100 (15) | 0.050 (2) | 0.0116 (16) |
C1 | 0.0399 (18) | 0.0333 (17) | 0.0417 (18) | −0.0013 (14) | 0.0307 (17) | −0.0017 (14) |
C2 | 0.050 (2) | 0.0363 (18) | 0.046 (2) | 0.0067 (16) | 0.0371 (19) | 0.0014 (15) |
C3 | 0.089 (4) | 0.034 (2) | 0.113 (5) | 0.011 (2) | 0.083 (4) | 0.003 (3) |
C4 | 0.0411 (19) | 0.045 (2) | 0.0402 (19) | 0.0071 (15) | 0.0313 (17) | 0.0031 (15) |
C5 | 0.049 (2) | 0.057 (3) | 0.062 (3) | 0.012 (2) | 0.043 (2) | 0.003 (2) |
C6 | 0.049 (2) | 0.070 (3) | 0.076 (3) | 0.007 (2) | 0.050 (3) | 0.002 (3) |
C7 | 0.042 (2) | 0.068 (3) | 0.061 (3) | 0.0018 (19) | 0.041 (2) | 0.003 (2) |
C8 | 0.0386 (19) | 0.050 (2) | 0.0419 (19) | 0.0009 (16) | 0.0320 (18) | 0.0024 (16) |
C9 | 0.0390 (19) | 0.047 (2) | 0.0412 (19) | −0.0019 (15) | 0.0312 (17) | 0.0029 (15) |
C10 | 0.057 (3) | 0.058 (3) | 0.077 (3) | −0.005 (2) | 0.055 (3) | 0.004 (2) |
C11 | 0.0425 (19) | 0.0373 (18) | 0.0403 (18) | 0.0044 (15) | 0.0313 (17) | 0.0054 (14) |
O7 | 0.070 (2) | 0.0537 (18) | 0.060 (2) | 0.0003 (17) | 0.051 (2) | −0.0055 (16) |
O8 | 0.098 (3) | 0.119 (4) | 0.050 (2) | 0.053 (3) | 0.043 (2) | 0.016 (2) |
O9 | 0.065 (2) | 0.089 (3) | 0.0483 (18) | −0.0188 (19) | 0.0434 (18) | −0.0213 (18) |
N8 | 0.055 (2) | 0.047 (2) | 0.0429 (18) | −0.0066 (16) | 0.0369 (18) | −0.0027 (15) |
O10 | 0.078 (3) | 0.075 (3) | 0.108 (4) | 0.015 (2) | 0.077 (3) | 0.013 (2) |
O11 | 0.114 (3) | 0.050 (2) | 0.102 (3) | 0.015 (2) | 0.094 (3) | 0.009 (2) |
O12 | 0.106 (3) | 0.059 (2) | 0.096 (3) | −0.015 (2) | 0.081 (3) | −0.005 (2) |
N9 | 0.056 (2) | 0.0414 (18) | 0.0499 (19) | 0.0048 (15) | 0.0409 (18) | 0.0029 (14) |
N10 | 0.054 (5) | 0.038 (6) | 0.046 (4) | 0.018 (4) | 0.027 (4) | 0.000 (4) |
O13 | 0.060 (5) | 0.047 (4) | 0.100 (7) | 0.000 (4) | 0.049 (5) | 0.017 (4) |
O14 | 0.072 (6) | 0.019 (4) | 0.090 (7) | −0.004 (3) | 0.036 (5) | 0.003 (4) |
O15 | 0.057 (6) | 0.062 (6) | 0.185 (13) | 0.017 (4) | 0.070 (7) | 0.018 (6) |
N10B | 0.098 (12) | 0.056 (9) | 0.096 (11) | 0.009 (9) | 0.076 (10) | −0.003 (8) |
O13B | 0.121 (15) | 0.040 (6) | 0.181 (16) | 0.022 (7) | 0.109 (13) | 0.031 (7) |
O14B | 0.095 (9) | 0.117 (14) | 0.206 (19) | −0.033 (9) | 0.111 (12) | −0.052 (12) |
O15B | 0.132 (15) | 0.092 (12) | 0.19 (2) | 0.034 (10) | 0.140 (17) | 0.042 (12) |
Sm1—O1 | 2.317 (3) | N7—C11 | 1.312 (5) |
Sm1—O2 | 2.332 (3) | N7—H7A | 0.8600 |
Sm1—O4 | 2.364 (3) | N7—H7B | 0.8600 |
Sm1—O3 | 2.418 (3) | C2—C4 | 1.476 (6) |
Sm1—O5 | 2.427 (3) | C2—C3 | 1.497 (6) |
Sm1—O6 | 2.438 (3) | C3—H3C | 0.9600 |
Sm1—N3 | 2.473 (3) | C3—H3D | 0.9600 |
Sm1—N4 | 2.504 (3) | C3—H3E | 0.9600 |
Sm1—N5 | 2.530 (3) | C4—C5 | 1.404 (6) |
O1—C1 | 1.243 (4) | C5—C6 | 1.385 (8) |
O2—C11 | 1.249 (5) | C5—H5 | 0.9300 |
O3—H3A | 0.8584 | C6—C7 | 1.371 (7) |
O3—H3B | 0.8585 | C6—H6C | 0.9300 |
O4—H4A | 0.8808 | C7—C8 | 1.395 (6) |
O4—H4B | 0.8797 | C7—H7 | 0.9300 |
O5—H5A | 0.8970 | C8—C9 | 1.476 (6) |
O5—H5B | 0.8972 | C9—C10 | 1.494 (6) |
O6—H6A | 0.9362 | C10—H10A | 0.9600 |
O6—H6B | 0.9325 | C10—H10B | 0.9600 |
N1—C1 | 1.333 (5) | C10—H10C | 0.9600 |
N1—H1A | 0.8600 | O7—N8 | 1.228 (5) |
N1—H1B | 0.8600 | O8—N8 | 1.227 (6) |
N2—N3 | 1.363 (5) | O9—N8 | 1.250 (5) |
N2—C1 | 1.367 (5) | O10—N9 | 1.257 (6) |
N2—H2 | 0.8600 | O11—N9 | 1.238 (5) |
N3—C2 | 1.282 (5) | O12—N9 | 1.226 (6) |
N4—C4 | 1.345 (5) | N10—O15 | 1.229 (8) |
N4—C8 | 1.347 (5) | N10—O13 | 1.243 (9) |
N5—C9 | 1.290 (5) | N10—O14 | 1.247 (9) |
N5—N6 | 1.365 (5) | N10B—O14B | 1.234 (10) |
N6—C11 | 1.376 (5) | N10B—O13B | 1.242 (10) |
N6—H6 | 0.8600 | N10B—O15B | 1.243 (10) |
O1—Sm1—O2 | 90.78 (10) | C8—N4—Sm1 | 120.7 (3) |
O1—Sm1—O4 | 139.06 (11) | C9—N5—N6 | 121.3 (4) |
O2—Sm1—O4 | 99.03 (12) | C9—N5—Sm1 | 122.8 (3) |
O1—Sm1—O3 | 75.33 (12) | N6—N5—Sm1 | 114.5 (3) |
O2—Sm1—O3 | 73.21 (12) | N5—N6—C11 | 115.2 (3) |
O4—Sm1—O3 | 145.52 (12) | N5—N6—H6 | 122.4 |
O1—Sm1—O5 | 79.97 (11) | C11—N6—H6 | 122.4 |
O2—Sm1—O5 | 141.02 (11) | C11—N7—H7A | 120.0 |
O4—Sm1—O5 | 67.49 (11) | C11—N7—H7B | 120.0 |
O3—Sm1—O5 | 137.95 (11) | H7A—N7—H7B | 120.0 |
O1—Sm1—O6 | 76.13 (11) | O1—C1—N1 | 122.0 (4) |
O2—Sm1—O6 | 67.41 (12) | O1—C1—N2 | 121.5 (4) |
O4—Sm1—O6 | 71.45 (12) | N1—C1—N2 | 116.5 (3) |
O3—Sm1—O6 | 130.31 (12) | N3—C2—C4 | 114.2 (4) |
O5—Sm1—O6 | 73.61 (12) | N3—C2—C3 | 124.6 (4) |
O1—Sm1—N3 | 66.00 (11) | C4—C2—C3 | 121.0 (4) |
O2—Sm1—N3 | 141.57 (11) | C2—C3—H3C | 109.5 |
O4—Sm1—N3 | 118.73 (12) | C2—C3—H3D | 109.5 |
O3—Sm1—N3 | 71.51 (12) | H3C—C3—H3D | 109.5 |
O5—Sm1—N3 | 67.49 (11) | C2—C3—H3E | 109.5 |
O6—Sm1—N3 | 129.07 (12) | H3C—C3—H3E | 109.5 |
O1—Sm1—N4 | 127.38 (10) | H3D—C3—H3E | 109.5 |
O2—Sm1—N4 | 122.90 (11) | N4—C4—C5 | 121.1 (4) |
O4—Sm1—N4 | 79.15 (12) | N4—C4—C2 | 116.1 (3) |
O3—Sm1—N4 | 77.72 (12) | C5—C4—C2 | 122.6 (4) |
O5—Sm1—N4 | 91.48 (12) | C6—C5—C4 | 118.8 (4) |
O6—Sm1—N4 | 150.29 (12) | C6—C5—H5 | 120.6 |
N3—Sm1—N4 | 62.86 (11) | C4—C5—H5 | 120.6 |
O1—Sm1—N5 | 146.23 (11) | C7—C6—C5 | 120.0 (5) |
O2—Sm1—N5 | 63.90 (11) | C7—C6—H6C | 120.0 |
O4—Sm1—N5 | 70.59 (12) | C5—C6—H6C | 120.0 |
O3—Sm1—N5 | 76.05 (12) | C6—C7—C8 | 118.6 (5) |
O5—Sm1—N5 | 133.78 (11) | C6—C7—H7 | 120.7 |
O6—Sm1—N5 | 110.36 (12) | C8—C7—H7 | 120.7 |
N3—Sm1—N5 | 120.15 (12) | N4—C8—C7 | 122.0 (4) |
N4—Sm1—N5 | 61.93 (11) | N4—C8—C9 | 116.0 (4) |
C1—O1—Sm1 | 121.9 (3) | C7—C8—C9 | 121.9 (4) |
C11—O2—Sm1 | 124.4 (3) | N5—C9—C8 | 113.9 (4) |
Sm1—O3—H3A | 109.6 | N5—C9—C10 | 124.9 (4) |
Sm1—O3—H3B | 109.8 | C8—C9—C10 | 121.2 (4) |
H3A—O3—H3B | 104.1 | C9—C10—H10A | 109.5 |
Sm1—O4—H4A | 111.3 | C9—C10—H10B | 109.5 |
Sm1—O4—H4B | 110.7 | H10A—C10—H10B | 109.5 |
H4A—O4—H4B | 103.0 | C9—C10—H10C | 109.5 |
Sm1—O5—H5A | 111.6 | H10A—C10—H10C | 109.5 |
Sm1—O5—H5B | 111.5 | H10B—C10—H10C | 109.5 |
H5A—O5—H5B | 102.4 | O2—C11—N7 | 124.0 (4) |
Sm1—O6—H6A | 113.8 | O2—C11—N6 | 119.5 (4) |
Sm1—O6—H6B | 112.7 | N7—C11—N6 | 116.4 (4) |
H6A—O6—H6B | 100.4 | O8—N8—O7 | 121.4 (4) |
C1—N1—H1A | 120.0 | O8—N8—O9 | 117.8 (5) |
C1—N1—H1B | 120.0 | O7—N8—O9 | 120.8 (4) |
H1A—N1—H1B | 120.0 | O12—N9—O11 | 121.7 (5) |
N3—N2—C1 | 115.7 (3) | O12—N9—O10 | 121.0 (4) |
N3—N2—H2 | 122.2 | O11—N9—O10 | 117.3 (4) |
C1—N2—H2 | 122.2 | O15—N10—O13 | 119.4 (10) |
C2—N3—N2 | 120.6 (3) | O15—N10—O14 | 123.1 (11) |
C2—N3—Sm1 | 124.6 (3) | O13—N10—O14 | 117.5 (9) |
N2—N3—Sm1 | 114.5 (2) | O14B—N10B—O13B | 122.0 (13) |
C4—N4—C8 | 119.4 (4) | O14B—N10B—O15B | 117.9 (13) |
C4—N4—Sm1 | 119.5 (3) | O13B—N10B—O15B | 119.7 (13) |
C1—N2—N3—C2 | −179.1 (4) | C2—C4—C5—C6 | 174.1 (5) |
C1—N2—N3—Sm1 | 6.2 (4) | C4—C5—C6—C7 | −2.6 (8) |
C9—N5—N6—C11 | 179.2 (4) | C5—C6—C7—C8 | 2.8 (9) |
Sm1—N5—N6—C11 | −14.3 (5) | C4—N4—C8—C7 | −3.9 (6) |
Sm1—O1—C1—N1 | 177.1 (3) | Sm1—N4—C8—C7 | 169.0 (4) |
Sm1—O1—C1—N2 | −3.5 (5) | C4—N4—C8—C9 | 172.0 (4) |
N3—N2—C1—O1 | −2.2 (6) | Sm1—N4—C8—C9 | −15.2 (5) |
N3—N2—C1—N1 | 177.1 (4) | C6—C7—C8—N4 | 0.4 (8) |
N2—N3—C2—C4 | 176.1 (4) | C6—C7—C8—C9 | −175.2 (5) |
Sm1—N3—C2—C4 | −9.9 (5) | N6—N5—C9—C8 | −175.8 (4) |
N2—N3—C2—C3 | 0.1 (7) | Sm1—N5—C9—C8 | 18.9 (5) |
Sm1—N3—C2—C3 | 174.1 (4) | N6—N5—C9—C10 | 2.2 (7) |
C8—N4—C4—C5 | 4.0 (6) | Sm1—N5—C9—C10 | −163.2 (4) |
Sm1—N4—C4—C5 | −168.9 (3) | N4—C8—C9—N5 | −2.2 (6) |
C8—N4—C4—C2 | −171.2 (4) | C7—C8—C9—N5 | 173.7 (4) |
Sm1—N4—C4—C2 | 15.8 (5) | N4—C8—C9—C10 | 179.8 (4) |
N3—C2—C4—N4 | −4.3 (5) | C7—C8—C9—C10 | −4.4 (7) |
C3—C2—C4—N4 | 171.9 (4) | Sm1—O2—C11—N7 | −171.0 (3) |
N3—C2—C4—C5 | −179.5 (4) | Sm1—O2—C11—N6 | 10.1 (6) |
C3—C2—C4—C5 | −3.3 (7) | N5—N6—C11—O2 | 4.2 (6) |
N4—C4—C5—C6 | −0.8 (7) | N5—N6—C11—N7 | −174.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O9 | 0.86 | 2.04 | 2.895 (6) | 173 |
O4—H4B···O14 | 0.88 | 2.33 | 3.050 (15) | 139 |
O4—H4B···O13 | 0.88 | 1.82 | 2.638 (11) | 155 |
O4—H4B···O15B | 0.88 | 2.11 | 2.805 (19) | 135 |
O4—H4B···N10 | 0.88 | 2.42 | 3.278 (9) | 164 |
O4—H4A···O14i | 0.88 | 1.89 | 2.706 (9) | 153 |
O4—H4A···O15Bi | 0.88 | 1.96 | 2.735 (19) | 147 |
O4—H4A···O14Bi | 0.88 | 2.47 | 3.239 (17) | 146 |
O4—H4A···N10Bi | 0.88 | 2.57 | 3.420 (15) | 164 |
O5—H5A···O12ii | 0.90 | 2.21 | 2.957 (6) | 141 |
O5—H5B···O7iii | 0.90 | 1.93 | 2.767 (5) | 155 |
O5—H5B···N8iii | 0.90 | 2.63 | 3.511 (5) | 170 |
O5—H5B···O8iii | 0.90 | 2.66 | 3.455 (6) | 149 |
O6—H6A···O8iv | 0.94 | 2.34 | 3.055 (6) | 133 |
O6—H6A···O9iv | 0.94 | 2.33 | 3.192 (6) | 154 |
O6—H6B···O8iii | 0.93 | 1.89 | 2.812 (6) | 171 |
N1—H1A···O10iv | 0.86 | 2.11 | 2.938 (6) | 162 |
N1—H1B···O13v | 0.86 | 1.93 | 2.780 (8) | 173 |
N1—H1B···O13Bv | 0.86 | 2.18 | 2.936 (13) | 146 |
N2—H2···O15v | 0.86 | 2.06 | 2.914 (11) | 175 |
N2—H2···O13Bv | 0.86 | 2.03 | 2.801 (13) | 149 |
O3—H3A···O2 | 0.86 | 2.53 | 2.833 (5) | 102 |
O3—H3B···N3 | 0.86 | 2.56 | 2.858 (5) | 101 |
O4—H4A···N5 | 0.88 | 2.52 | 2.831 (5) | 101 |
N6—H6···O11 | 0.86 | 2.19 | 3.031 (5) | 166 |
N7—H7A···O2iv | 0.86 | 2.29 | 3.095 (5) | 156 |
N7—H7B···O10 | 0.86 | 2.16 | 2.995 (6) | 163 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z+1; (iv) −x, −y+1, −z; (v) x−1, −y+1/2, z−1/2. |
Funding information
The authors would like to thank CSU–AAUP for the research funding.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nomiya, K., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Kasuga, N. C., Yokoyama, H., Nakano, S. & Onodera, K. (2004). J. Inorg. Biochem. 98, 601–615. CrossRef PubMed Google Scholar
Palenik, R. C., Abboud, K. A., Summers, S. P., Reitfort, L. L. & Palenik, G. J. (2006). Inorg. Chim. Acta, 359, 4645–4650. CrossRef Google Scholar
Qian, K., Huang, X.-C., Zhou, C., You, X.-Z., Wang, X.-Y. & Dunbar, K. R. (2013). J. Am. Chem. Soc. 135, 13302–13305. CrossRef PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sasnovskaya, V. D., Kopotkov, V. A., Kazakova, A. V., Talantsev, A. D., Morgunov, R. B., Simonov, S. V., Zorina, L. V., Mironov, V. S. & Yagubskii, E. B. (2018). New J. Chem. 42, 14883–14893. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sommerer, S. O., Westcott, B. L., Cundari, T. R. & Krause, J. A. (1993). Inorg. Chim. Acta, 209, 101–104. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.