organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4-(3,4,6-tri­methyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-5-yl)benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000, Beni-Mellal, Morocco, bLaboratoire de Chimie Bioorganique & Analytique, URAC 22 Université Hassan II, Mohammedia-Casablanca, Faculté des Sciences et Techniques, BP 146, 28800, Mohammedia, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jabranejouha1@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 October 2018; accepted 14 October 2018; online 19 October 2018)

In the title compound, C24H23N3O2, the dihedral angles between the pyrazolo­pyridine ring system (r.m.s. deviation = 0.001 Å) and the N-bound and C-bound benzene rings are 15.95 (2) and 83.71 (4)°, respectively. The conformation of the former is influenced by an intra­molecular C—H⋯N hydrogen bond, which generates an S(6) ring. In the crystal, stepped layers are generated by three sets of C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolo­[3,4-b]pyridine derivatives show various biological properties, for example, anti-proliferative and anti-coagulant activities (Goda et al., 2004[Goda, F. E., Abdel-Aziz, A. A. M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]; Kundariya et al., 2011[Kundariya, D. S., Bheshdadia, B. M., Joshi, N. K. & Patel, P. K. (2011). Int. J. Chem. Tech. Res, 3, 238-243.]). In this work we continue the investigation of pyrazolo­[3,4-b]pyridine derivatives published by our group (Jouha et al., 2017[Jouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagcı, T., Khouili, M., Aydın, F., Saso, L. & Armagan, G. (2017). Eur. J. Med. Chem. 129, 41-52.]).

As expected, the pyrazolyl­pyridine moiety is almost planar (r.m.s. deviation = 0.001). The pendant C10–C15 (attached to N2) and C16–C21 (attached to C2) benzene rings are inclined to the mean plane of the pyrazolyl­pyridine ring system by 15.95 (2) and 83.71 (4)°, respectively. The orientation of the C10–C15 ring is determined in part by an intra­molecular C15—H15⋯N1 hydrogen bond (Fig. 1[link] and Table 1[link]). In the crystal, inversion-related pairs of C6—H6ACg2 and of C18—H18⋯Cg3 inter­actions form dimers (Table 1[link] and Fig. 2[link]), which are connected by inversion-related pairs of C23—H23ACg4 inter­actions into stepped layers (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, C10–C15 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N1 0.988 (13) 2.385 (13) 3.0225 (14) 121.6 (10)
C6—H6ACg2i 0.96 (2) 2.79 (3) 3.6483 (15) 149.5 (17)
C18—H18⋯Cg3i 0.948 (15) 2.558 (16) 3.4209 (14) 151.4 (11)
C23—H23ACg4ii 0.975 (17) 2.910 (17) 3.6135 (17) 129.7 (13)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The title mol­ecule showing 50% probability ellipsoids. The intra­molecular C—H⋯N bond is indicated by a dashed line.
[Figure 2]
Figure 2
Packing viewed along the b-axis direction with C—H⋯π(ring) inter­actions shown as dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯π(ring) inter­actions shown as dashed lines.

Synthesis and crystallization

A flask containing a stirring bar was charged with 5-bromo-3,4,6-trimethyl-1-phenyl-1H-pyrazolo­[3,4-b]pyridine (100 mg, 0.31 mmol), 4-eth­oxy­carbonyl­phenyl boronic acid (67 mg, 0.35 mmol) and sodium bicarbonate (1.5 equiv, 0.47 mmol) in a mixture of toluene/ethanol (2/1 v/v). Pd(PPh3)4 (0.05 equiv, 0.018 mmol) was added and the mixture was refluxed for 12 h. After cooling, the solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v/v = 90:10). The title compound was recrystallized from ethanol solution at room temperature, giving colourless blocks (yield: 80%; m.p. 422–424 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H23N3O2
Mr 385.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.6962 (12), 8.7349 (12), 14.559 (2)
α, β, γ (°) 106.468 (2), 92.949 (2), 111.771 (2)
V3) 969.5 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.34 × 0.29 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 18971, 5268, 4248
Rint 0.029
(sin θ/λ)max−1) 0.695
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.12
No. of reflections 5268
No. of parameters 354
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.48, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 4-(3,4,6-trimethyl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-5-yl)benzoate top
Crystal data top
C24H23N3O2Z = 2
Mr = 385.45F(000) = 408
Triclinic, P1Dx = 1.320 Mg m3
a = 8.6962 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7349 (12) ÅCell parameters from 8772 reflections
c = 14.559 (2) Åθ = 2.6–29.6°
α = 106.468 (2)°µ = 0.09 mm1
β = 92.949 (2)°T = 100 K
γ = 111.771 (2)°Block, colourless
V = 969.5 (2) Å30.34 × 0.29 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5268 independent reflections
Radiation source: fine-focus sealed tube4248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.97, Tmax = 0.98k = 1212
18971 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.137All H-atom parameters refined
S = 1.12 w = 1/[σ2(Fo2) + (0.0918P)2]
where P = (Fo2 + 2Fc2)/3
5268 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23175 (11)0.57825 (12)0.07653 (6)0.0290 (2)
O20.51281 (10)0.69386 (10)0.02991 (5)0.02180 (19)
N10.23651 (11)0.88745 (11)0.52975 (6)0.01411 (19)
N20.16953 (11)0.75274 (11)0.65507 (6)0.01468 (19)
N30.16485 (11)0.60229 (11)0.66993 (6)0.0164 (2)
C10.27729 (12)0.85912 (12)0.44097 (7)0.0138 (2)
C20.29302 (13)0.70350 (12)0.38726 (7)0.0133 (2)
C30.27667 (13)0.57422 (12)0.42865 (7)0.0136 (2)
C40.23587 (12)0.60380 (12)0.52264 (7)0.0134 (2)
C50.21382 (12)0.75768 (12)0.56641 (7)0.0132 (2)
C60.30824 (15)1.00548 (14)0.40044 (8)0.0186 (2)
H6A0.425 (3)1.077 (3)0.4065 (15)0.077 (7)*
H6B0.255 (3)1.086 (3)0.4290 (14)0.069 (6)*
H6C0.268 (2)0.968 (2)0.3306 (13)0.052 (5)*
C70.30068 (15)0.41217 (14)0.37623 (8)0.0185 (2)
H7A0.201 (2)0.309 (2)0.3664 (13)0.054 (5)*
H7B0.388 (2)0.400 (2)0.4145 (13)0.053 (5)*
H7C0.325 (3)0.409 (3)0.3160 (15)0.068 (6)*
C80.20401 (13)0.51302 (13)0.59214 (7)0.0150 (2)
C90.20687 (16)0.34153 (14)0.58796 (8)0.0202 (2)
H9A0.1196 (18)0.2449 (18)0.5352 (10)0.025 (4)*
H9B0.1864 (19)0.3229 (18)0.6506 (11)0.031 (4)*
H9C0.3194 (19)0.3413 (17)0.5768 (10)0.024 (3)*
C100.13290 (13)0.87315 (13)0.72905 (7)0.0140 (2)
C110.13272 (13)0.85723 (14)0.82151 (8)0.0168 (2)
H110.1558 (18)0.7698 (18)0.8352 (9)0.022 (3)*
C120.09668 (14)0.97454 (14)0.89422 (8)0.0201 (2)
H120.1010 (18)0.9640 (18)0.9589 (10)0.025 (4)*
C130.06252 (14)1.10730 (15)0.87670 (8)0.0209 (2)
H130.0429 (18)1.1944 (17)0.9304 (10)0.026 (4)*
C140.06191 (14)1.12117 (14)0.78412 (8)0.0188 (2)
H140.0400 (18)1.2165 (18)0.7725 (10)0.026 (4)*
C150.09546 (13)1.00400 (13)0.70950 (7)0.0159 (2)
H150.0939 (17)1.0137 (16)0.6435 (10)0.020 (3)*
C160.31614 (13)0.67883 (12)0.28381 (7)0.0135 (2)
C170.47296 (13)0.75326 (13)0.25873 (7)0.0160 (2)
H170.5705 (17)0.8175 (17)0.3081 (10)0.020 (3)*
C180.48821 (13)0.73679 (13)0.16198 (7)0.0163 (2)
H180.5959 (19)0.7913 (18)0.1471 (10)0.027 (4)*
C190.34573 (13)0.64654 (12)0.08963 (7)0.0147 (2)
C200.18917 (13)0.56965 (13)0.11409 (7)0.0166 (2)
H200.0915 (19)0.5081 (18)0.0624 (11)0.029 (4)*
C210.17423 (13)0.58490 (13)0.21035 (7)0.0158 (2)
H210.0619 (17)0.5258 (17)0.2258 (9)0.021 (3)*
C220.35412 (14)0.63421 (13)0.01422 (7)0.0174 (2)
C230.53668 (18)0.69586 (17)0.12779 (8)0.0256 (3)
H23A0.637 (2)0.671 (2)0.1346 (11)0.035 (4)*
H23B0.439 (2)0.6031 (19)0.1725 (11)0.029 (4)*
C240.56473 (17)0.87103 (18)0.13631 (10)0.0291 (3)
H24A0.661 (2)0.966 (2)0.0887 (12)0.045 (5)*
H24B0.463 (2)0.898 (2)0.1262 (11)0.038 (4)*
H24C0.588 (2)0.874 (2)0.2032 (12)0.039 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (4)0.0428 (5)0.0154 (4)0.0095 (4)0.0018 (3)0.0124 (4)
O20.0248 (4)0.0301 (4)0.0152 (4)0.0121 (4)0.0103 (3)0.0117 (3)
N10.0175 (4)0.0149 (4)0.0118 (4)0.0074 (3)0.0050 (3)0.0056 (3)
N20.0199 (4)0.0154 (4)0.0124 (4)0.0089 (3)0.0070 (3)0.0067 (3)
N30.0202 (4)0.0150 (4)0.0162 (4)0.0076 (3)0.0061 (4)0.0074 (3)
C10.0150 (5)0.0146 (4)0.0128 (4)0.0066 (4)0.0037 (4)0.0052 (4)
C20.0140 (4)0.0144 (4)0.0115 (4)0.0052 (4)0.0040 (4)0.0044 (4)
C30.0139 (4)0.0134 (4)0.0133 (5)0.0053 (4)0.0035 (4)0.0041 (4)
C40.0150 (5)0.0130 (4)0.0127 (4)0.0058 (4)0.0038 (4)0.0046 (3)
C50.0144 (4)0.0143 (4)0.0111 (4)0.0058 (4)0.0032 (4)0.0042 (4)
C60.0273 (6)0.0171 (5)0.0167 (5)0.0115 (4)0.0077 (4)0.0092 (4)
C70.0265 (6)0.0155 (5)0.0172 (5)0.0115 (4)0.0085 (5)0.0058 (4)
C80.0169 (5)0.0145 (4)0.0146 (5)0.0063 (4)0.0045 (4)0.0058 (4)
C90.0290 (6)0.0168 (5)0.0205 (5)0.0121 (4)0.0094 (5)0.0098 (4)
C100.0139 (4)0.0151 (4)0.0121 (4)0.0050 (4)0.0050 (4)0.0034 (4)
C110.0176 (5)0.0190 (5)0.0153 (5)0.0075 (4)0.0049 (4)0.0070 (4)
C120.0220 (5)0.0244 (5)0.0144 (5)0.0093 (4)0.0084 (4)0.0064 (4)
C130.0223 (5)0.0220 (5)0.0184 (5)0.0099 (4)0.0097 (4)0.0041 (4)
C140.0196 (5)0.0184 (5)0.0207 (5)0.0097 (4)0.0078 (4)0.0064 (4)
C150.0165 (5)0.0174 (5)0.0144 (5)0.0068 (4)0.0050 (4)0.0058 (4)
C160.0175 (5)0.0128 (4)0.0122 (4)0.0076 (4)0.0051 (4)0.0046 (3)
C170.0155 (5)0.0180 (5)0.0128 (5)0.0050 (4)0.0021 (4)0.0049 (4)
C180.0160 (5)0.0182 (5)0.0152 (5)0.0061 (4)0.0056 (4)0.0067 (4)
C190.0194 (5)0.0151 (4)0.0122 (4)0.0088 (4)0.0047 (4)0.0055 (4)
C200.0166 (5)0.0186 (5)0.0135 (5)0.0064 (4)0.0013 (4)0.0049 (4)
C210.0162 (5)0.0171 (5)0.0147 (5)0.0068 (4)0.0049 (4)0.0060 (4)
C220.0228 (5)0.0182 (5)0.0143 (5)0.0095 (4)0.0062 (4)0.0074 (4)
C230.0357 (7)0.0340 (6)0.0169 (5)0.0190 (6)0.0153 (5)0.0141 (5)
C240.0291 (6)0.0348 (7)0.0315 (7)0.0137 (6)0.0100 (6)0.0206 (6)
Geometric parameters (Å, º) top
O1—C221.2073 (13)C10—C151.3943 (14)
O2—C221.3396 (14)C11—C121.3879 (15)
O2—C231.4547 (13)C11—H110.927 (15)
N1—C11.3373 (13)C12—C131.3833 (16)
N1—C51.3405 (13)C12—H120.972 (14)
N2—C51.3736 (13)C13—C141.3869 (16)
N2—N31.3776 (12)C13—H130.996 (14)
N2—C101.4174 (13)C14—C151.3916 (14)
N3—C81.3200 (13)C14—H140.976 (14)
C1—C21.4228 (13)C15—H150.988 (13)
C1—C61.4979 (14)C16—C171.3943 (14)
C2—C31.3907 (14)C16—C211.3984 (14)
C2—C161.4948 (13)C17—C181.3930 (14)
C3—C41.4080 (13)C17—H170.953 (13)
C3—C71.5009 (14)C18—C191.3916 (14)
C4—C51.4027 (13)C18—H180.948 (15)
C4—C81.4319 (14)C19—C201.3923 (15)
C6—H6A0.96 (2)C19—C221.4925 (14)
C6—H6B0.99 (2)C20—C211.3871 (14)
C6—H6C0.975 (18)C20—H200.971 (15)
C7—H7A0.961 (19)C21—H210.993 (14)
C7—H7B0.97 (2)C23—C241.4999 (18)
C7—H7C0.91 (2)C23—H23A0.975 (17)
C8—C91.4913 (15)C23—H23B0.965 (15)
C9—H9A0.988 (14)C24—H24A0.983 (17)
C9—H9B0.984 (15)C24—H24B1.006 (17)
C9—H9C1.001 (15)C24—H24C1.008 (16)
C10—C111.3919 (14)
C22—O2—C23117.09 (9)C10—C11—H11121.3 (8)
C1—N1—C5114.70 (8)C13—C12—C11121.29 (10)
C5—N2—N3110.21 (8)C13—C12—H12120.7 (8)
C5—N2—C10131.24 (9)C11—C12—H12118.0 (8)
N3—N2—C10118.55 (8)C12—C13—C14119.08 (10)
C8—N3—N2107.28 (8)C12—C13—H13120.5 (8)
N1—C1—C2123.76 (9)C14—C13—H13120.4 (8)
N1—C1—C6115.23 (9)C13—C14—C15120.85 (10)
C2—C1—C6121.00 (9)C13—C14—H14118.7 (8)
C3—C2—C1120.42 (9)C15—C14—H14120.4 (8)
C3—C2—C16121.38 (9)C14—C15—C10119.23 (10)
C1—C2—C16118.08 (9)C14—C15—H15120.6 (8)
C2—C3—C4116.16 (9)C10—C15—H15120.2 (8)
C2—C3—C7122.03 (9)C17—C16—C21119.14 (9)
C4—C3—C7121.81 (9)C17—C16—C2122.16 (9)
C5—C4—C3118.41 (9)C21—C16—C2118.63 (9)
C5—C4—C8104.69 (9)C18—C17—C16120.59 (9)
C3—C4—C8136.89 (9)C18—C17—H17119.5 (8)
N1—C5—N2126.44 (9)C16—C17—H17119.9 (8)
N1—C5—C4126.36 (9)C19—C18—C17119.86 (10)
N2—C5—C4107.17 (9)C19—C18—H18121.3 (8)
C1—C6—H6A113.6 (14)C17—C18—H18118.9 (8)
C1—C6—H6B114.9 (12)C18—C19—C20119.79 (9)
H6A—C6—H6B106.3 (17)C18—C19—C22121.86 (10)
C1—C6—H6C114.1 (11)C20—C19—C22118.32 (9)
H6A—C6—H6C102.5 (16)C21—C20—C19120.33 (9)
H6B—C6—H6C104.2 (16)C21—C20—H20121.4 (9)
C3—C7—H7A111.7 (11)C19—C20—H20118.3 (9)
C3—C7—H7B110.7 (10)C20—C21—C16120.28 (10)
H7A—C7—H7B105.6 (15)C20—C21—H21118.9 (7)
C3—C7—H7C112.7 (13)C16—C21—H21120.8 (7)
H7A—C7—H7C105.6 (16)O1—C22—O2124.06 (10)
H7B—C7—H7C110.3 (17)O1—C22—C19123.73 (10)
N3—C8—C4110.65 (9)O2—C22—C19112.20 (9)
N3—C8—C9118.86 (9)O2—C23—C24110.74 (10)
C4—C8—C9130.48 (9)O2—C23—H23A102.5 (9)
C8—C9—H9A111.3 (8)C24—C23—H23A111.7 (9)
C8—C9—H9B108.6 (8)O2—C23—H23B107.7 (9)
H9A—C9—H9B109.1 (11)C24—C23—H23B112.6 (9)
C8—C9—H9C110.2 (8)H23A—C23—H23B111.1 (13)
H9A—C9—H9C108.8 (11)C23—C24—H24A112.3 (10)
H9B—C9—H9C108.8 (11)C23—C24—H24B111.2 (9)
C11—C10—C15120.41 (10)H24A—C24—H24B107.8 (14)
C11—C10—N2118.83 (9)C23—C24—H24C110.3 (9)
C15—C10—N2120.76 (9)H24A—C24—H24C107.5 (13)
C12—C11—C10119.11 (10)H24B—C24—H24C107.6 (13)
C12—C11—H11119.6 (8)
C5—N2—N3—C80.46 (11)N3—N2—C10—C1114.94 (14)
C10—N2—N3—C8179.60 (9)C5—N2—C10—C1516.86 (17)
C5—N1—C1—C21.16 (15)N3—N2—C10—C15164.22 (9)
C5—N1—C1—C6178.18 (9)C15—C10—C11—C120.73 (16)
N1—C1—C2—C34.27 (16)N2—C10—C11—C12179.90 (9)
C6—C1—C2—C3175.04 (10)C10—C11—C12—C130.57 (17)
N1—C1—C2—C16171.81 (9)C11—C12—C13—C141.01 (17)
C6—C1—C2—C168.88 (14)C12—C13—C14—C150.16 (17)
C1—C2—C3—C43.15 (14)C13—C14—C15—C101.11 (16)
C16—C2—C3—C4172.79 (9)C11—C10—C15—C141.55 (16)
C1—C2—C3—C7176.98 (10)N2—C10—C15—C14179.30 (9)
C16—C2—C3—C77.08 (15)C3—C2—C16—C17101.45 (12)
C2—C3—C4—C50.50 (14)C1—C2—C16—C1782.51 (13)
C7—C3—C4—C5179.37 (10)C3—C2—C16—C2181.68 (13)
C2—C3—C4—C8178.72 (11)C1—C2—C16—C2194.36 (11)
C7—C3—C4—C81.15 (18)C21—C16—C17—C180.96 (15)
C1—N1—C5—N2179.15 (9)C2—C16—C17—C18175.89 (9)
C1—N1—C5—C42.93 (15)C16—C17—C18—C190.53 (16)
N3—N2—C5—N1177.42 (9)C17—C18—C19—C201.52 (15)
C10—N2—C5—N11.58 (18)C17—C18—C19—C22176.35 (9)
N3—N2—C5—C40.83 (11)C18—C19—C20—C211.01 (16)
C10—N2—C5—C4179.82 (10)C22—C19—C20—C21176.93 (9)
C3—C4—C5—N13.85 (16)C19—C20—C21—C160.50 (15)
C8—C4—C5—N1177.41 (10)C17—C16—C21—C201.47 (15)
C3—C4—C5—N2177.91 (9)C2—C16—C21—C20175.49 (9)
C8—C4—C5—N20.83 (11)C23—O2—C22—O12.20 (16)
N2—N3—C8—C40.09 (11)C23—O2—C22—C19177.20 (8)
N2—N3—C8—C9179.35 (9)C18—C19—C22—O1169.52 (11)
C5—C4—C8—N30.58 (11)C20—C19—C22—O18.38 (16)
C3—C4—C8—N3177.80 (11)C18—C19—C22—O29.89 (14)
C5—C4—C8—C9179.73 (11)C20—C19—C22—O2172.21 (9)
C3—C4—C8—C91.3 (2)C22—O2—C23—C2494.70 (12)
C5—N2—C10—C11163.98 (10)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, C10–C15 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N10.988 (13)2.385 (13)3.0225 (14)121.6 (10)
C6—H6A···Cg2i0.96 (2)2.79 (3)3.6483 (15)149.5 (17)
C18—H18···Cg3i0.948 (15)2.558 (16)3.4209 (14)151.4 (11)
C23—H23A···Cg4ii0.975 (17)2.910 (17)3.6135 (17)129.7 (13)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoda, F. E., Abdel-Aziz, A. A. M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  CrossRef PubMed Google Scholar
First citationJouha, J., Loubidi, M., Bouali, J., Hamri, S., Hafid, A., Suzenet, F., Guillaumet, G., Dagcı, T., Khouili, M., Aydın, F., Saso, L. & Armagan, G. (2017). Eur. J. Med. Chem. 129, 41–52.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKundariya, D. S., Bheshdadia, B. M., Joshi, N. K. & Patel, P. K. (2011). Int. J. Chem. Tech. Res, 3, 238–243.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds