organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-1,2-Bis(3-bromo­phen­yl)diazene 1-oxide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 19 September 2018; accepted 19 October 2018; online 26 October 2018)

The title compound C12H8Br2N2O, lies on an inversion centre in the space group P21/n. Doubts are cast on the report of a polymorph of this structure in the non-centrosymmetric space group P21 [Zhu, R.-T., Liu, J.-C., Jin, S., Liu, B. & Guo J.-P. (2006). Hecheng Huaxue (Chin. J. Synth. Chem.) 14, 591] as ADDSYM alerts point strongly to a centrosymmetric structure. In the crystal, C—H⋯O and C—H⋯Br hydrogen bonds together with offset ππ inter­actions stack the mol­ecules along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title azoxybenzene was prepared by the reduction of 1-bromo-3-nitro­benzene. It readily undergoes a benzidine rearrangement to provide a useful precursor for substituted biphenyl di­amines (Chen et al., 2011[Chen, J.-C., Liu, Y.-C., Ju, J.-J., Chiang, C.-J. & Chern, Y.-T. (2011). Polymer, 52, 954-964.]; Li et al., 2012[Li, Y., Chu, Y., Fang, R., Ding, S., Wang, Y., Shen, Y. & Zheng, A. (2012). Polymer, 53, 229-240.]).

The Cambridge Structural Database (CSD, version 5.39, November 2017, with four updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals what appears to be a polymorph of the title compound, SIYHAK, with data collected at 293 (2) K in the non-centrosymmetric spacegroup P21 (Zhu et al., 2006[Zhu, R.-T., Liu, J.-C., Jin, S., Liu, B. & Guo, J.-P. (2006). Hecheng Huaxue, 14, 591-593.]). However, the CIF from this deposition generates significant ADDSYM alerts, suggesting that the correct spacegroup is P21/n as was found in the refinement reported here. It appears, therefore, that the earlier report is not a polymorph of the structure reported here but that they are in fact the same structures.

The title (Z)-diazene derivative, C12H8Br2N2O (I), lies about an inversion centre located at the mid-point of the N1=N1 diazene bond with the oxide O1 atom disordered in equal occupancy about this centre. Each diazene nitro­gen atom also carries a 3-bromo­benzene ring (Fig. 1[link]). The BrC6NO half of the mol­ecule is almost planar with an r.m.s. deviation of only 0.0009 Å. Furthermore, the coplanar benzene rings are inclined to the O1/N1/C1 plane by 9.7 (7)°. An intra­molecular C2—H2⋯O1 hydrogen bond (Table 1[link]) supports this planarity. The N1=N1i distance observed here [1.274 (9) Å, symmetry code: (i) 1 − x, 1 − y, 1 − z] is not strikingly different from those observed in the two unique mol­ecules of the supposed monoclinic polymorph [1.263 (5) and 1.264 (5) Å; Zhu et al., 2006[Zhu, R.-T., Liu, J.-C., Jin, S., Liu, B. & Guo, J.-P. (2006). Hecheng Huaxue, 14, 591-593.]], especially taking into account the significant variation in the temperatures at which the data were collected. Furthermore, this distance is also similar to the mean value, 1.27 (5) Å, observed for the 42 other similar diazene structures found in the CSD. These include the structure of the chloro analogue of (I), (Z)-1,2-bis­(3-chloro­phen­yl)diazene 1-oxide (Jose Kavitha et al., 2003[Jose Kavitha, S., Chandrasekar, S. & Panchanatheswaran, K. (2003). Acta Cryst. E59, o947-o949.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.07 2.722 (7) 124
C6—H6⋯O1ii 0.95 2.39 3.199 (8) 143
C4—H4⋯Br3iii 0.95 3.11 3.974 (5) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I) showing the atom numbering with ellipsoids drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation −x + 1, −y + 1, −z + 1. An intra­molecular hydrogen bond is drawn as a dotted black line. In this and subsequent figures, the equivalent disorder component of the O1 atom is not shown.

In the crystal structure, C6—H6⋯O1 contacts link the mol­ecules into C(6) chains along the b-axis direction and combine with weaker C4—H4⋯Br3 hydrogen bonds that form C(12) chains, generating sheets of mol­ecules along the ac diagonal (Table 1[link], Fig. 2[link]). Offset ππ stacking inter­actions with centroid-to-centroid distances of 3.894 (3) Å occur between adjacent bromo­benzene rings, generating a three-dimensional network of mol­ecules stacked along the a-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
Sheets of mol­ecules of (I) with hydrogen bonds shown as blue dashed lines.
[Figure 3]
Figure 3
Overall packing of (I) viewed along the a-axis direction. Representative ππ contacts are shown as dotted green lines with ring centroids drawn as red spheres.

Synthesis and crystallization

The title compound was synthesized from 1-bromo-3-nitro­benzene following a literature procedure (Chen et al., 2011[Chen, J.-C., Liu, Y.-C., Ju, J.-J., Chiang, C.-J. & Chern, Y.-T. (2011). Polymer, 52, 954-964.]). Crystals suitable for the X-ray analysis were grown by evaporation from diethyl ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The mol­ecule of (I) lies about an inversion centre located at the midpoint of the N1=N1 bond with the oxide O1 atom disordered in equal occupancy about this centre.

Table 2
Experimental details

Crystal data
Chemical formula C12H8Br2N2O
Mr 356.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 3.8938 (2), 5.8223 (3), 25.8645 (16)
β (°) 92.044 (5)
V3) 586.00 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 8.65
Crystal size (mm) 0.38 × 0.19 × 0.08
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.334, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3440, 1171, 1128
Rint 0.036
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.00
No. of reflections 1171
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.99
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

(Z)-1,2-Bis(3-bromophenyl)diazene 1-oxide top
Crystal data top
C12H8Br2N2OF(000) = 344
Mr = 356.02Dx = 2.018 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 3.8938 (2) ÅCell parameters from 2305 reflections
b = 5.8223 (3) Åθ = 7.6–74.4°
c = 25.8645 (16) ŵ = 8.65 mm1
β = 92.044 (5)°T = 90 K
V = 586.00 (6) Å3Plate, yellow
Z = 20.38 × 0.19 × 0.08 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1171 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1128 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.036
ω scansθmax = 74.9°, θmin = 6.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 44
Tmin = 0.334, Tmax = 1.000k = 75
3440 measured reflectionsl = 3130
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0939P)2 + 2.3574P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1171 reflectionsΔρmax = 0.85 e Å3
82 parametersΔρmin = 0.99 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.224 (2)0.2546 (11)0.4785 (2)0.0334 (16)0.5
N10.4136 (12)0.4117 (7)0.50608 (16)0.0311 (9)
C10.3955 (13)0.3550 (8)0.56013 (19)0.0275 (10)
C20.5144 (10)0.4990 (6)0.60040 (15)0.0184 (8)
H20.6182270.6428610.5934890.022*
C30.4750 (11)0.4241 (7)0.65016 (17)0.0211 (8)
Br30.63666 (13)0.61575 (9)0.70533 (2)0.0335 (3)
C40.3228 (12)0.2162 (8)0.6618 (2)0.0321 (11)
H40.2988420.1704060.6967150.038*
C50.2071 (14)0.0774 (8)0.6218 (3)0.0407 (14)
H50.1024400.0658520.6290590.049*
C60.2435 (14)0.1471 (8)0.5705 (3)0.0391 (14)
H60.1634880.0512440.5429310.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.049 (4)0.030 (3)0.020 (3)0.021 (3)0.008 (3)0.003 (2)
N10.036 (2)0.0327 (19)0.024 (2)0.0138 (16)0.0080 (17)0.0113 (15)
C10.025 (2)0.028 (2)0.029 (2)0.0114 (18)0.0094 (18)0.0117 (17)
C20.020 (2)0.0133 (17)0.0217 (19)0.0007 (14)0.0023 (15)0.0010 (14)
C30.018 (2)0.0245 (19)0.021 (2)0.0052 (16)0.0023 (15)0.0020 (15)
Br30.0287 (4)0.0520 (4)0.0192 (4)0.0121 (2)0.0056 (2)0.01095 (18)
C40.026 (2)0.024 (2)0.047 (3)0.0106 (18)0.0119 (19)0.019 (2)
C50.021 (3)0.0147 (19)0.087 (5)0.0004 (17)0.008 (3)0.006 (2)
C60.022 (2)0.025 (2)0.069 (4)0.0057 (18)0.013 (2)0.022 (2)
Geometric parameters (Å, º) top
O1—N11.360 (7)C3—C41.385 (6)
N1—N1i1.274 (9)C3—Br31.901 (4)
N1—C11.440 (7)C4—C51.375 (9)
C1—C61.378 (8)C4—H40.9500
C1—C21.403 (6)C5—C61.399 (10)
C2—C31.373 (6)C5—H50.9500
C2—H20.9500C6—H60.9500
N1i—N1—O1134.0 (6)C4—C3—Br3118.9 (4)
N1i—N1—C1118.0 (5)C5—C4—C3118.8 (5)
O1—N1—C1108.0 (5)C5—C4—H4120.6
C6—C1—C2120.8 (5)C3—C4—H4120.6
C6—C1—N1115.3 (4)C4—C5—C6120.0 (4)
C2—C1—N1123.9 (4)C4—C5—H5120.0
C3—C2—C1117.5 (4)C6—C5—H5120.0
C3—C2—H2121.3C1—C6—C5119.9 (5)
C1—C2—H2121.3C1—C6—H6120.0
C2—C3—C4122.9 (4)C5—C6—H6120.0
C2—C3—Br3118.2 (3)
N1i—N1—C1—C6172.0 (5)C1—C2—C3—Br3179.7 (3)
O1—N1—C1—C69.0 (6)C2—C3—C4—C50.3 (7)
N1i—N1—C1—C29.4 (8)Br3—C3—C4—C5179.8 (4)
O1—N1—C1—C2169.6 (5)C3—C4—C5—C60.1 (7)
C6—C1—C2—C30.4 (6)C2—C1—C6—C50.1 (7)
N1—C1—C2—C3178.9 (4)N1—C1—C6—C5178.8 (4)
C1—C2—C3—C40.5 (6)C4—C5—C6—C10.0 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.072.722 (7)124
C6—H6···O1ii0.952.393.199 (8)143
C4—H4···Br3iii0.953.113.974 (5)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2.
 

Funding information

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Chemistry Department, University of Otago, for the support of his work.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, J.-C., Liu, Y.-C., Ju, J.-J., Chiang, C.-J. & Chern, Y.-T. (2011). Polymer, 52, 954–964.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJose Kavitha, S., Chandrasekar, S. & Panchanatheswaran, K. (2003). Acta Cryst. E59, o947–o949.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, Y., Chu, Y., Fang, R., Ding, S., Wang, Y., Shen, Y. & Zheng, A. (2012). Polymer, 53, 229–240.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, R.-T., Liu, J.-C., Jin, S., Liu, B. & Guo, J.-P. (2006). Hecheng Huaxue, 14, 591–593.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds