metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis[2-(amino­meth­yl)pyridine-κ2N,N′]platinum(II)] bis­­(hexa­fluorido­phosphate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan, and bDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by O. Blacque, University of Zürich, Switzerland (Received 21 August 2018; accepted 31 August 2018; online 7 September 2018)

The title compound, [Pt(amp)2](PF6)2 [amp = 2-(amino­meth­yl)pyridine, C6H8N2], crystallizes in the space group P[\overline{1}] with a half of one [Pt(amp)2]2+ cation and one hexa­fluorido­phosphate ion in the asymmetric unit. The PtII atom lies on an inversion centre and has a square-planar coordination sphere defined by two amino groups and two pyridine moieties of two 2-(amino­meth­yl)pyridine chelate ligands. The crystal structure of the title salt is composed of alternating rows of [Pt(amp)2]2+ cations and PF6 anions. The crystal packing is stabilized by N—H⋯F hydrogen bonds between the amino groups and the hexa­fluorido­phosphate anions. The PF6 anion is disordered over two sets of sites with an occupancy ratio of 0.744 (6):0.256 (6).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

trans-Bis[(2-(amino­meth­yl)pyridine-κ2N,N′)platinum(II)] bis­(hexa­fluorido­phosphate), [Pt(amp)2](PF6)2 (amp = 2-(amino­meth­yl)pyridine), was prepared in order to elucidate the single-crystalline photochromism of [Pt(amp)2] salts. One of them, [Pt(amp)2]Cl2·H2O, has been reported as the first single-crystalline photochromic metal-complex salt (Nishimura & Matsushita, 2002[Nishimura, H. & Matsushita, N. (2002). Chem. Lett. 31, 930-931.]). The title salt is the hexa­fluorido­phosphate of trans-bis­(2-(amino­meth­yl)pyridine-κ2N,N′)platinum(II) complex and does not display single-crystalline photochromic behavior under the same photo-irradiation conditions as [Pt(amp)2]Cl2·H2O, i.e. under the visible light of a tungsten lamp.

The mol­ecular components of the title salt are displayed in Fig. 1[link]. The asymmetric unit comprises half of one [Pt(amp)2]2+ cation and one hexa­fluorido­phosphate anion. The PtII atom of [Pt(amp)2]2+ cation lies on an inversion centre and is coordinated by four N atoms of two amino groups and two pyridine moieties of the two 2-(amino­meth­yl)pyridine chelate ligands in a trans configuration. The methyl­pyridine part of the 2-(amino­meth­yl)pyridine ligand forms a planar configuration with the r.m.s. deviation of the least-squares plane formed by atoms C1–C6 and N2 being 0.0066 Å. The dihedral angle between the methyl­pyridine plane and the [PtN4] coordination plane is 10.4 (2)°. The [Pt(amp)2]2+ cation does not adapt a co-planar configuration and is slightly distorted.

[Figure 1]
Figure 1
The structures of the mol­ecular components of the title salt, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. The green hollow F ellipsoids and the black hollow lines between P and F atoms represent the minor disorder component of the PF6 anion [symmetry code: (i) −x, 1 − y, 1 − z].

The Pt—Namine [2.044 (3) Å] and Pt—Npyridine [2.013 (3) Å] bond lengths, and N—Pt—N [80.67 (12)°] bond angle in the chelate ring are consistent with those values reported for [Pt(amp)2]Cl2·H2O [Pt—Namine = 2.043 (5), 2.048 (4) Å, Pt—Npyridine = 2.011 (4), 2.018 (4) Å, N—Pt—N = 81.06 (17), 81.33 (18)°; Nishimura & Matsushita, 2002[Nishimura, H. & Matsushita, N. (2002). Chem. Lett. 31, 930-931.]].

The crystal structure of the title salt is composed of alternating rows of [Pt(amp)2]2+ cations and PF6 anions (Fig. 2[link]). The arrangement of the cations and anions in the crystal packing of the title salt is very similar to that of the chloride monohydrate, [Pt(amp)2]Cl2·H2O (Nishimura & Matsushita, 2002[Nishimura, H. & Matsushita, N. (2002). Chem. Lett. 31, 930-931.]). The N—H⋯F hydrogen bonds between the amino groups of [Pt(amp)2]2+ cations and the fluorine atoms of the PF6 anions stabilize the crystal packing of the title salt (Fig. 3[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F2i 0.89 2.40 3.080 (8) 133
N1—H1A⋯F4 0.89 2.24 2.971 (9) 139
N1—H1B⋯F6ii 0.89 2.46 3.233 (10) 146
N1—H1A⋯F2B 0.89 2.22 2.98 (2) 143
N1—H1B⋯F5Bii 0.89 2.05 2.84 (2) 148
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z.
[Figure 2]
Figure 2
The crystal packing of the title salt, viewed along the b axis. Orange solid lines indicate the unit cell.
[Figure 3]
Figure 3
Hydrogen bonds between the amino groups of the 2-(amino­meth­yl)pyridine ligands of the platinum complex mol­ecules and fluorine atoms of the hexa­fluorido­phosphate anions, represented by light-blue dashed lines. Orange solid lines indicate the unit cell. The minor disordered parts of the PF6 anions were omitted for clarify except for one site [symmetry codes: (ii) −x, 1 − y, −z; (iii) x, 1 + y, z; (iv) x, −1 + y, z].

Synthesis and crystallization

To a solution of [Pt(amp)2]Cl2·H2O (216 mg) dissolved in water (60 ml) was slowly added a solution of NH4PF6 (150 mg) dissolved in water (40 ml). A short time later, slightly yellowish colourless needle-like crystals precipitated. The crystals were collected by filtration and air-dried. Yield: 158 mg (52%). Elemental analysis: found: C, 20.51; H, 2.28; N, 7.99%, calculated for C12H16F12N4P2Pt: C, 20.55; H, 2.30; N, 7.99%. The elemental analysis was carried out by the Laboratory of Organic Elemental Analysis, Department of Chemistry, Graduate School of Science, The University of Tokyo. A single-crystal suitable for X-ray crystallography was chosen from the crystals collected.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component disordered structure of the PF6 anion, the minor fluorine atoms of which were based on the positions of residual peaks. The occupancy ratio of 0.744 (6):0.256 (6) for the two orientations was obtained by refinement with a free variable. The maximum and minimum electron density peaks are located 0.76 and 0.68 Å, respectively, from the Pt atom.

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C6H8N2)2](PF6)2
Mr 701.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.3011 (3), 8.3055 (3), 9.2821 (3)
α, β, γ (°) 64.226 (4), 75.212 (5), 84.540 (6)
V3) 489.99 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 7.44
Crystal size (mm) 0.41 × 0.29 × 0.12
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging-plate
Absorption correction Integration (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.206, 0.508
No. of measured, independent and observed [I > 2σ(I)] reflections 12933, 3484, 3484
Rint 0.059
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.05
No. of reflections 3484
No. of parameters 180
No. of restraints 48
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.92, −1.55
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), RAPID-AUTO (Rigaku, 2015[Rigaku (2015). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 2015); data reduction: RAPID-AUTO (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

trans-Bis[2-(aminomethyl)pyridine-κ2N,N']platinum(II)] bis(hexafluoridophosphate) top
Crystal data top
[Pt(C6H8N2)2](PF6)2Z = 1
Mr = 701.32F(000) = 332
Triclinic, P1Dx = 2.377 Mg m3
a = 7.3011 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.3055 (3) ÅCell parameters from 13361 reflections
c = 9.2821 (3) Åθ = 2.5–32.6°
α = 64.226 (4)°µ = 7.44 mm1
β = 75.212 (5)°T = 296 K
γ = 84.540 (6)°Needle, colourless
V = 489.99 (4) Å30.41 × 0.29 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
3484 independent reflections
Radiation source: X-ray sealed tube3484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10.00 pixels mm-1θmax = 32.6°, θmin = 2.5°
ω scansh = 1110
Absorption correction: integration
(NUMABS; Rigaku, 1999)
k = 1212
Tmin = 0.206, Tmax = 0.508l = 1414
12933 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0395P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3484 reflectionsΔρmax = 1.92 e Å3
180 parametersΔρmin = 1.55 e Å3
48 restraintsExtinction correction: (SHELXL2014; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.038 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.00000.50000.50000.03263 (7)
N10.1202 (5)0.6204 (5)0.2528 (4)0.0488 (7)
H1A0.06910.57400.20150.059*
H1B0.09540.73670.21410.059*
N20.2490 (4)0.3730 (4)0.4965 (3)0.0375 (5)
C10.3271 (6)0.5969 (6)0.2169 (5)0.0525 (8)
H1C0.39010.70280.20150.063*
H1D0.36820.58180.11550.063*
C20.3812 (5)0.4376 (5)0.3542 (4)0.0416 (6)
C30.5584 (6)0.3611 (7)0.3380 (6)0.0555 (9)
H30.64840.40740.23820.067*
C40.5998 (6)0.2157 (7)0.4716 (7)0.0608 (10)
H40.71850.16400.46380.073*
C50.4624 (7)0.1487 (6)0.6161 (7)0.0582 (10)
H50.48700.05000.70720.070*
C60.2876 (6)0.2284 (5)0.6259 (5)0.0489 (7)
H60.19460.18140.72370.059*
P0.13393 (16)0.17834 (14)0.13320 (13)0.04854 (19)
F10.3338 (7)0.2085 (8)0.1472 (8)0.1137 (18)
F30.0705 (8)0.1541 (9)0.1136 (8)0.132 (3)
F20.1733 (10)0.3286 (9)0.0505 (7)0.096 (2)0.744 (6)
F40.0336 (12)0.3072 (11)0.2050 (11)0.115 (2)0.744 (6)
F50.0933 (13)0.0057 (10)0.2996 (9)0.118 (3)0.744 (6)
F60.2280 (17)0.0422 (11)0.0581 (12)0.135 (3)0.744 (6)
F2B0.131 (3)0.399 (3)0.070 (3)0.107 (4)0.256 (6)
F4B0.076 (4)0.167 (4)0.313 (3)0.115 (4)0.256 (6)
F5B0.161 (4)0.014 (3)0.182 (4)0.114 (4)0.256 (6)
F6B0.199 (4)0.222 (4)0.047 (3)0.110 (4)0.256 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.03905 (9)0.02788 (9)0.02934 (8)0.00042 (5)0.00823 (5)0.01065 (5)
N10.0496 (14)0.0518 (17)0.0335 (12)0.0053 (13)0.0089 (11)0.0093 (11)
N20.0410 (11)0.0324 (11)0.0383 (12)0.0031 (9)0.0117 (10)0.0137 (9)
C10.0476 (16)0.053 (2)0.0392 (16)0.0015 (15)0.0034 (13)0.0073 (14)
C20.0415 (13)0.0400 (15)0.0424 (15)0.0001 (11)0.0075 (12)0.0178 (12)
C30.0430 (16)0.060 (2)0.061 (2)0.0034 (16)0.0062 (16)0.028 (2)
C40.0504 (18)0.059 (2)0.077 (3)0.0162 (17)0.019 (2)0.033 (2)
C50.058 (2)0.046 (2)0.066 (3)0.0142 (17)0.0238 (19)0.0179 (18)
C60.0517 (16)0.0405 (16)0.0461 (17)0.0085 (14)0.0153 (14)0.0104 (13)
P0.0556 (5)0.0396 (4)0.0434 (4)0.0051 (4)0.0151 (4)0.0104 (3)
F10.081 (2)0.114 (4)0.137 (5)0.003 (2)0.057 (3)0.028 (3)
F30.102 (3)0.126 (5)0.136 (5)0.032 (3)0.067 (3)0.001 (3)
F20.103 (4)0.078 (3)0.063 (3)0.004 (3)0.022 (3)0.011 (3)
F40.131 (5)0.106 (4)0.117 (5)0.030 (4)0.012 (4)0.072 (4)
F50.143 (5)0.090 (4)0.071 (3)0.021 (4)0.043 (3)0.024 (3)
F60.197 (7)0.089 (4)0.118 (5)0.038 (4)0.019 (5)0.060 (4)
F2B0.125 (7)0.072 (6)0.108 (7)0.012 (6)0.025 (6)0.027 (6)
F4B0.146 (7)0.117 (7)0.074 (6)0.001 (7)0.018 (6)0.038 (6)
F5B0.165 (8)0.067 (6)0.099 (7)0.009 (6)0.038 (7)0.022 (6)
F6B0.154 (8)0.099 (7)0.071 (6)0.005 (7)0.027 (6)0.032 (6)
Geometric parameters (Å, º) top
Pt—N2i2.013 (3)C4—C51.373 (8)
Pt—N22.013 (3)C4—H40.9300
Pt—N12.044 (3)C5—C61.382 (6)
Pt—N1i2.044 (3)C5—H50.9300
N1—C11.475 (5)C6—H60.9300
N1—H1A0.8900P—F5B1.46 (2)
N1—H1B0.8900P—F6B1.50 (2)
N2—C21.340 (4)P—F41.532 (6)
N2—C61.349 (4)P—F11.551 (4)
C1—C21.491 (5)P—F51.565 (5)
C1—H1C0.9700P—F4B1.58 (2)
C1—H1D0.9700P—F21.586 (5)
C2—C31.388 (5)P—F31.590 (5)
C3—C41.381 (7)P—F61.590 (7)
C3—H30.9300P—F2B1.66 (2)
N2i—Pt—N2180.0N2—C6—C5121.3 (4)
N2i—Pt—N199.33 (12)N2—C6—H6119.3
N2—Pt—N180.67 (12)C5—C6—H6119.3
N2i—Pt—N1i80.67 (12)F5B—P—F6B92.5 (15)
N2—Pt—N1i99.33 (12)F5B—P—F193.4 (12)
N1—Pt—N1i180.0F6B—P—F193.6 (11)
C1—N1—Pt111.7 (2)F4—P—F195.5 (5)
C1—N1—H1A109.3F4—P—F596.1 (5)
Pt—N1—H1A109.3F1—P—F593.4 (4)
C1—N1—H1B109.3F5B—P—F4B96.4 (15)
Pt—N1—H1B109.3F6B—P—F4B170.4 (15)
H1A—N1—H1B107.9F1—P—F4B82.2 (10)
C2—N2—C6119.3 (3)F4—P—F293.1 (5)
C2—N2—Pt116.6 (2)F1—P—F291.2 (3)
C6—N2—Pt124.2 (2)F5—P—F2169.3 (5)
N1—C1—C2110.6 (3)F5B—P—F388.2 (12)
N1—C1—H1C109.5F6B—P—F385.2 (11)
C2—C1—H1C109.5F4—P—F384.0 (5)
N1—C1—H1D109.5F1—P—F3178.0 (3)
C2—C1—H1D109.5F5—P—F388.5 (4)
H1C—C1—H1D108.1F4B—P—F398.8 (11)
N2—C2—C3121.5 (4)F2—P—F387.0 (3)
N2—C2—C1116.0 (3)F4—P—F6177.1 (6)
C3—C2—C1122.5 (4)F1—P—F687.4 (5)
C4—C3—C2119.3 (4)F5—P—F683.6 (5)
C4—C3—H3120.3F2—P—F686.9 (5)
C2—C3—H3120.3F3—P—F693.2 (6)
C5—C4—C3118.8 (4)F5B—P—F2B173.1 (15)
C5—C4—H4120.6F6B—P—F2B84.9 (13)
C3—C4—H4120.6F1—P—F2B80.5 (9)
C4—C5—C6119.8 (4)F4B—P—F2B85.9 (13)
C4—C5—H5120.1F3—P—F2B97.8 (9)
C6—C5—H5120.1
Pt—N1—C1—C222.8 (5)N2—C2—C3—C40.3 (7)
C6—N2—C2—C31.3 (5)C1—C2—C3—C4178.8 (4)
Pt—N2—C2—C3179.6 (3)C2—C3—C4—C51.2 (7)
C6—N2—C2—C1179.6 (4)C3—C4—C5—C60.7 (8)
Pt—N2—C2—C10.5 (4)C2—N2—C6—C51.9 (6)
N1—C1—C2—N215.6 (5)Pt—N2—C6—C5179.1 (3)
N1—C1—C2—C3165.3 (4)C4—C5—C6—N20.9 (7)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F2ii0.892.403.080 (8)133
N1—H1A···F40.892.242.971 (9)139
N1—H1B···F6iii0.892.463.233 (10)146
N1—H1A···F2B0.892.222.98 (2)143
N1—H1B···F5Biii0.892.052.84 (2)148
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (Coordination Asymmetry) (grant No. JP16H06509).

References

First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNishimura, H. & Matsushita, N. (2002). Chem. Lett. 31, 930–931.  Web of Science CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds