organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Revision of the crystal structure of `bis­­(glycine) squaric acid'1

CROSSMARK_Color_square_no_text.svg

aInstitut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 August 2018; accepted 17 September 2018; online 21 September 2018)

The crystal structure of `bis­(glycine) squaric acid' [Tyagi et al. (2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]). RSC Adv. 6, 24565–24576], is revised. Re-refinement of the structure against the original X-ray intensity data after correct placement of the donor H atoms proves that the compound is in fact the previously reported diglycinium squarate [systematic name: bis­(carb­oxy­methanaminium) 3,4-dioxo­cyclo­but-1-ene-1,2-diolate; Anioła et al. (2014[Anioła, M., Dega-Szafran, Z., Katrusiak, A. & Szafran, M. (2014). New J. Chem. 38, 3556-3568.]). New J. Chem. 38, 3556–3568]. The findings are consistent with the pKa rule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a search of the Cambridge Structural Database (CSD Version 5.39 with February 2018 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for salts of squaric acid (H2C4O4) and α-amino acids, we stumbled upon CSD entries SIZKIX and SIZKIX01 (additional database identifier VABNUK). SIZKIX is diglycinium squarate, i.e. a 2:1 proton-transfer compound of glycine and squaric acid, and was reported by Anioła et al. (2014[Anioła, M., Dega-Szafran, Z., Katrusiak, A. & Szafran, M. (2014). New J. Chem. 38, 3556-3568.]). SIZKIX01, however, is reportedly a 2:1 non-ionized acid–base complex of glycine and squaric acid (Tyagi et al., 2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]). In the original publication (Tyagi et al., 2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]), the compound was designated as ``bis ­glycine' squarate' whereas in the CSD, `bis­(glycine) squaric acid' was assigned as the common name. Since squaric acid is a remarkably strong diprotic acid (Gilli et al., 2001[Gilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859-865.]), the formation of a non-ionized acid–base complex rather than a salt with a glycinium cation would be very unusual. Considering that incorrect placement of H atoms is a common pitfall in crystal structure refinement (Spek, 2009; Bernal & Watkins, 2013[Bernal, I. & Watkins, S. F. (2013). Acta Cryst. C69, 808-810.]; Schwalbe, 2018[Schwalbe, C. H. (2018). Crystallogr. Rev. https://doi.org/10.1080/0889311X.2018.1508209.]), this prompted us to scrutinize the structure and crystallographic data of SIZKIX01.

First of all, visual inspection of the original structural model for SIZKIX01 revealed that the hydrogen-bonding pattern is not sensible. Moreover, several checkCIF/PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) alerts concerning a strange C—O—H geometry (level A alert), short intra- and inter­molecular D—H⋯H—D (D = hydrogen-bond donor) contacts (level B alerts), positive and negative residual electron density at N and O atoms (level C alerts) and a C—O bond without an H atom attached longer than 1.3 Å, indicated incorrectly positioned hydrogen atoms.

It is instructive to inspect the FobsFcalc difference electron-density map to identify incorrectly (and correctly) positioned H atoms. From Fig. 1[link] it is obvious that the positions of the N—H and O—H hydrogen atoms are incorrect, with the exception of that bonded to O6. After re-refinement of the crystal structure with correctly positioned donor H atoms against original diffraction data, R1 [I >2σ(I)] dropped from 0.0589 to 0.0426. It should be noted that the R factors reported in the article by Tyagi et al. (2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]) do not agree with those in the corresponding deposited CIF (CCDC 1052856). The residual difference electron densities after re-refinement are 0.35 and −0.28 e Å−3 (originally 0.63 and −0.68 e Å−3). Fig. 2[link] depicts the revised and re-refined structural model for SIZKIX01. A detailed description of the crystal structure of diglycinium squarate can be found in the article by Anioła et al. (2014[Anioła, M., Dega-Szafran, Z., Katrusiak, A. & Szafran, M. (2014). New J. Chem. 38, 3556-3568.]). It is worth noting that the carb­oxy group of one glycinium ion adopts a syn conformation, whereas the other exhibits an anti conformation. The crystal packing of diglycinium squarate is governed by H bonds of the N—H⋯O and O—H⋯O type (Table 1[link]). For other squarate salts of α-amino acids, see: Seidel & Zareva (2018[Seidel, R. W. & Zareva, S. (2018). Bulg. Chem. Commun. 50, 106-113.]), and references cited therein.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 2.08 2.9148 (15) 156
N1—H1A⋯O11i 0.89 2.57 3.0297 (16) 113
N1—H1B⋯O3ii 0.89 2.11 2.8933 (15) 146
N1—H1C⋯O4iii 0.89 1.98 2.7890 (15) 151
N2—H2A⋯O3ii 0.89 2.33 3.1075 (19) 146
N2—H2A⋯O11i 0.89 2.60 3.0591 (18) 113
N2—H2B⋯O3i 0.89 1.93 2.8064 (17) 167
N2—H2C⋯O1iv 0.89 2.48 3.1602 (18) 134
N2—H2C⋯O6ii 0.89 2.13 2.8007 (16) 132
O6—H6⋯O2v 0.82 1.64 2.4406 (16) 167
O9—H9⋯O1 0.82 1.75 2.5629 (15) 169
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) -x, -y+2, -z.
[Figure 1]
Figure 1
FobsFcalc difference electron density map 1.41 Å around visible atoms for SIZKIX01: 0.11 e Å−3 (green), −0.11 e Å−3 (red), σ = 0.039. Misplaced hydrogen atoms show up as negative density (red), and the correct positions appear as positive density (green).
[Figure 2]
Figure 2
Revised and re-refined structural model for SIZKIX01, proving that the structure is indeed diglycinium squarate and thus identical with SIZKIX. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. Hydrogen bonds are represented by dashed lines.

Considering that for ΔpKa = pKa[protonated base] − pKa[acid] > 4 ionized acid–base proton-transfer compounds were observed exclusively (Cruz-Cabeza, 2012[Cruz-Cabeza, A. (2012). CrystEngComm, 14, 6362-6365.]), the formation of a non-ionized acid–base complex of glycine and squaric acid appears to be very unlikely. The pKa value of the amino group in glycine is 9.6 (Dawson et al., 1986[Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. (1986). Data for Biochemical Research. Oxford: Oxford Science Publications, OUP.]), and for squaric acid, pKa1 values of 0.51±0.02 and 0.55±0.15 were obtained by conductometric determination (Gelb, 1971[Gelb, R. I. (1971). Anal. Chem. 43, 1110-1113.]) and potentiometric titration (Schwartz & Howard, 1970[Schwartz, L. M. & Howard, L. O. (1970). J. Phys. Chem. 74, 4374-4377.]), respectively, although based on earlier studies pKa1 values in the range of 1.2–1.7 were reported (Gilli et al., 2001[Gilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859-865.]).

In conclusion, the crystal structure of the compound previously described as `bis­(glycine) squaric acid' (CSD refcode: SIZKIX01) is revised. It has been demonstrated that the structure is in fact the known proton-transfer compound diglycinium squarate and, thus, identical with CSD entry SIZKIX. Consequently, the results of Hirshfeld surface analysis in the original report by Tyagi et al. (2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]), using the incorrect structure model, must be questioned. It is to be hoped that this contribution helps to avoid such errors in crystal structure refinement in the future.

Synthesis and crystallization

The crystallization of the compound was described by Tyagi et al. (2016[Tyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565-24576.]).

Refinement

The original data (CCDC 1052856) were retrieved in CIF format from the Cambridge Crystallographic Data Centre (CCDC) via https://www.ccdc.cam.ac.uk/structures. The reflection data (HKL) and the SHELXL instruction file (INS) were extracted from the CIF using the program shredCIF, which is distributed with SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). A structure factor file (FCF) was generated with SHELXL2018/3 using the LIST 6 command, and the FobsFcalc difference electron-density map was visualized as a three-dimensional mesh (Fig. 1[link]), using shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

A re-refinement against the original intensity data was carried out with SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). For the sake of consistency, the chosen asymmetric unit and atom labels, as shown in Fig. 1[link], were maintained. The positions of carbon-bound H atoms were calculated geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). The C—H bond lengths were set at 0.97 Å. The initial torsion angles of the protonated amino groups and the carb­oxy O—H groups were determined via difference Fourier syntheses and subsequently refined while maintaining the tetra­hedral angles, and with Uiso(H) = 1.5 Ueq(N,O). The N—H bond lengths were set at 0.89 Å and the O—H bond lengths were set at 0.82 Å. Crystal data, data collection and structure refinement details are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4O4·2C2H6NO2
Mr 264.20
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 16.8050 (16), 8.3008 (8), 15.7976 (13)
β (°) 100.259 (9)
V3) 2168.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.50 × 0.50 × 0.50
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (ABSPACK in CrysAlis PRO; Rigaku OD, 2014[Rigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.403, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7067, 2570, 2277
Rint 0.036
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections 2570
No. of parameters 168
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2014[Rigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2014); cell refinement: CrysAlis PRO (Rigaku OD, 2014); data reduction: CrysAlis PRO (Rigaku OD, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Bis(carboxymethanaminium) 3,4-dioxocyclobut-1-ene-1,2-diolate top
Crystal data top
C4O4·2C2H6NO2F(000) = 1104
Mr = 264.20Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.8050 (16) ÅCell parameters from 2994 reflections
b = 8.3008 (8) Åθ = 3.6–29.4°
c = 15.7976 (13) ŵ = 0.15 mm1
β = 100.259 (9)°T = 293 K
V = 2168.5 (3) Å3Prism, colourless
Z = 80.50 × 0.50 × 0.50 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
2570 independent reflections
Radiation source: Enhance (Mo) X-ray Source2277 reflections with I > 2σ(I)
Detector resolution: 15.9853 pixels mm-1Rint = 0.036
ω scansθmax = 29.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSPACK in CrysAlisPro; Rigaku OD, 2014)
h = 2122
Tmin = 0.403, Tmax = 1.000k = 1011
7067 measured reflectionsl = 2119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.323P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2570 reflectionsΔρmax = 0.35 e Å3
168 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0281 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.09201 (8)0.84696 (17)0.03393 (8)0.0264 (3)
C20.09470 (9)0.75825 (17)0.04588 (8)0.0277 (3)
C30.17481 (8)0.82723 (16)0.07796 (8)0.0232 (3)
C40.17066 (8)0.91641 (17)0.00344 (8)0.0245 (3)
C50.10057 (8)0.62754 (18)0.28928 (9)0.0274 (3)
C70.15012 (8)1.19712 (16)0.15276 (8)0.0244 (3)
C100.11860 (9)0.53370 (17)0.37145 (8)0.0295 (3)
H10A0.0712810.4720520.3788620.035*
H10B0.1623920.4587530.3688930.035*
C120.12634 (8)1.10722 (18)0.22754 (8)0.0269 (3)
H12A0.1000221.1803010.2617570.032*
H12B0.0884571.0221380.2062530.032*
N10.19877 (7)1.03746 (14)0.28119 (7)0.0270 (3)
H1A0.2181640.9589760.2522870.041*
H1B0.1857500.9976090.3292150.041*
H1C0.2361821.1136280.2944910.041*
N20.14146 (9)0.64295 (17)0.44486 (8)0.0361 (3)
H2A0.1545620.7387180.4260430.054*
H2B0.1836540.6023420.4805600.054*
H2C0.1000090.6540230.4724740.054*
O10.04871 (8)0.66282 (16)0.07434 (7)0.0471 (3)
O20.04301 (7)0.85940 (16)0.10400 (6)0.0408 (3)
O30.21416 (7)1.01203 (14)0.03532 (6)0.0353 (3)
O40.22470 (6)0.81538 (12)0.14578 (6)0.0297 (3)
O60.09122 (6)1.24195 (15)0.09348 (6)0.0366 (3)
H60.0483641.2094170.1051100.055*
O90.09184 (8)0.53179 (14)0.22230 (7)0.0443 (3)
H90.0800610.5852350.1781940.066*
O100.09541 (7)0.77080 (13)0.28753 (7)0.0392 (3)
O110.22034 (6)1.22618 (15)0.15001 (7)0.0370 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (6)0.0325 (7)0.0201 (6)0.0021 (6)0.0021 (5)0.0027 (5)
C20.0307 (7)0.0320 (7)0.0188 (6)0.0057 (6)0.0003 (5)0.0025 (5)
C30.0262 (6)0.0241 (6)0.0186 (6)0.0007 (5)0.0022 (5)0.0012 (4)
C40.0274 (6)0.0275 (7)0.0182 (6)0.0015 (5)0.0028 (5)0.0003 (5)
C50.0206 (6)0.0319 (7)0.0284 (6)0.0028 (6)0.0006 (5)0.0048 (5)
C70.0277 (6)0.0255 (6)0.0200 (6)0.0034 (5)0.0040 (5)0.0002 (5)
C100.0318 (7)0.0288 (7)0.0262 (7)0.0038 (6)0.0006 (5)0.0017 (5)
C120.0263 (6)0.0312 (7)0.0231 (6)0.0006 (6)0.0041 (5)0.0054 (5)
N10.0319 (6)0.0274 (6)0.0201 (5)0.0015 (5)0.0000 (4)0.0018 (4)
N20.0432 (7)0.0391 (7)0.0257 (6)0.0067 (6)0.0057 (5)0.0018 (5)
O10.0467 (7)0.0612 (8)0.0289 (6)0.0282 (6)0.0053 (5)0.0161 (5)
O20.0312 (5)0.0648 (8)0.0226 (5)0.0073 (5)0.0052 (4)0.0123 (5)
O30.0364 (6)0.0446 (6)0.0238 (5)0.0150 (5)0.0024 (4)0.0059 (4)
O40.0319 (5)0.0332 (5)0.0207 (4)0.0029 (4)0.0049 (4)0.0019 (4)
O60.0310 (5)0.0514 (7)0.0252 (5)0.0043 (5)0.0005 (4)0.0130 (4)
O90.0659 (8)0.0400 (6)0.0237 (5)0.0044 (6)0.0012 (5)0.0027 (4)
O100.0407 (6)0.0306 (6)0.0427 (6)0.0029 (5)0.0025 (5)0.0086 (5)
O110.0291 (5)0.0470 (7)0.0350 (6)0.0088 (5)0.0064 (4)0.0080 (5)
Geometric parameters (Å, º) top
C1—O21.2608 (16)C10—N21.4684 (18)
C1—C41.4437 (18)C10—H10A0.9700
C1—C21.4538 (18)C10—H10B0.9700
C2—O11.2453 (18)C12—N11.4724 (16)
C2—C31.4676 (18)C12—H12A0.9700
C3—O41.2413 (15)C12—H12B0.9700
C3—C41.4746 (17)N1—H1A0.8900
C4—O31.2447 (17)N1—H1B0.8900
C5—O101.1923 (18)N1—H1C0.8900
C5—O91.3106 (18)N2—H2A0.8900
C5—C101.4979 (18)N2—H2B0.8900
C7—O111.2126 (17)N2—H2C0.8900
C7—O61.2904 (16)O6—H60.8200
C7—C121.5101 (18)O9—H90.8200
O2—C1—C4132.55 (13)C5—C10—H10B109.6
O2—C1—C2135.85 (13)H10A—C10—H10B108.1
C4—C1—C291.59 (10)N1—C12—C7109.74 (11)
O1—C2—C1135.23 (13)N1—C12—H12A109.7
O1—C2—C3135.53 (12)C7—C12—H12A109.7
C1—C2—C389.24 (11)N1—C12—H12B109.7
O4—C3—C2134.77 (12)C7—C12—H12B109.7
O4—C3—C4135.42 (13)H12A—C12—H12B108.2
C2—C3—C489.81 (10)C12—N1—H1A109.5
O3—C4—C1133.50 (12)C12—N1—H1B109.5
O3—C4—C3137.14 (12)H1A—N1—H1B109.5
C1—C4—C389.35 (10)C12—N1—H1C109.5
O10—C5—O9126.08 (13)H1A—N1—H1C109.5
O10—C5—C10122.79 (13)H1B—N1—H1C109.5
O9—C5—C10111.13 (12)C10—N2—H2A109.5
O11—C7—O6122.84 (12)C10—N2—H2B109.5
O11—C7—C12121.40 (12)H2A—N2—H2B109.5
O6—C7—C12115.75 (12)C10—N2—H2C109.5
N2—C10—C5110.32 (12)H2A—N2—H2C109.5
N2—C10—H10A109.6H2B—N2—H2C109.5
C5—C10—H10A109.6C7—O6—H6109.5
N2—C10—H10B109.6C5—O9—H9109.5
O2—C1—C2—O10.9 (3)O2—C1—C4—C3178.53 (17)
C4—C1—C2—O1179.47 (19)C2—C1—C4—C30.14 (11)
O2—C1—C2—C3178.46 (18)O4—C3—C4—O30.0 (3)
C4—C1—C2—C30.14 (11)C2—C3—C4—O3179.65 (18)
O1—C2—C3—O40.9 (3)O4—C3—C4—C1179.79 (16)
C1—C2—C3—O4179.79 (16)C2—C3—C4—C10.14 (11)
O1—C2—C3—C4179.5 (2)O10—C5—C10—N29.3 (2)
C1—C2—C3—C40.14 (11)O9—C5—C10—N2170.58 (12)
O2—C1—C4—O31.7 (3)O11—C7—C12—N111.53 (19)
C2—C1—C4—O3179.66 (17)O6—C7—C12—N1169.34 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.082.9148 (15)156
N1—H1A···O11i0.892.573.0297 (16)113
N1—H1B···O3ii0.892.112.8933 (15)146
N1—H1C···O4iii0.891.982.7890 (15)151
N2—H2A···O3ii0.892.333.1075 (19)146
N2—H2A···O11i0.892.603.0591 (18)113
N2—H2B···O3i0.891.932.8064 (17)167
N2—H2C···O1iv0.892.483.1602 (18)134
N2—H2C···O6ii0.892.132.8007 (16)132
O6—H6···O2v0.821.642.4406 (16)167
O9—H9···O10.821.752.5629 (15)169
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z+1/2; (v) x, y+2, z.
 

Footnotes

1In the original publication by Tyagi et al. (2016), the compound was named `bis glycine' squarate.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAnioła, M., Dega-Szafran, Z., Katrusiak, A. & Szafran, M. (2014). New J. Chem. 38, 3556–3568.  Google Scholar
First citationBernal, I. & Watkins, S. F. (2013). Acta Cryst. C69, 808–810.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCruz-Cabeza, A. (2012). CrystEngComm, 14, 6362–6365.  Google Scholar
First citationDawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. (1986). Data for Biochemical Research. Oxford: Oxford Science Publications, OUP.  Google Scholar
First citationGelb, R. I. (1971). Anal. Chem. 43, 1110–1113.  CrossRef Google Scholar
First citationGilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859–865.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2014). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchwalbe, C. H. (2018). Crystallogr. Rev. https://doi.org/10.1080/0889311X.2018.1508209Google Scholar
First citationSchwartz, L. M. & Howard, L. O. (1970). J. Phys. Chem. 74, 4374–4377.  CrossRef Google Scholar
First citationSeidel, R. W. & Zareva, S. (2018). Bulg. Chem. Commun. 50, 106–113.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyagi, N., Sinha, N., Yadav, H. & Kumar, B. (2016). RSC Adv. 6, 24565–24576.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds