metal-organic compounds
Bis[(4-chlorophenoxy)acetato-κO](ethylenediamine-κ2N,N′)zinc
aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan, and bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, M. Ulugbek Str. 77a, Tashkent 100170, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru
The mononuclear title complex, [Zn(C8H6ClO3)2(C2H8N2)], was obtained by the reaction of zinc(II) acetate dihydrate with p-chlorophenoxyacetic acid (pCPA) and ethylenediamine (EDA) in a water/ethanol mixture. The ZnII cation has a distorted tetrahedral coordination sphere involving two carboxylate O atoms of two monodentate pCPA ligands and two N atoms of one chelating EDA ligand. The pCPA ligands coordinate asymmetrically to the ZnII cation with two different Zn—O distances of 1.967 (3) and 1.978 (3) Å. In the crystal, molecules are linked by N—H⋯O hydrogen bonds, forming chains propagating parallel to [100]. These chains are linked by C—H⋯O hydrogen bonds, C—H⋯π stacking and Cl⋯Cl interactions, generating a three-dimensional supramolecular network.
CCDC reference: 1865841
Structure description
Phenoxyacetic acid (pCPA) and its derivatives are biologically active compounds which are widely used as herbicides and plant-growth substances. The interaction of metal ions with pCPA results in the formation of complexes in which it demonstrates monodentate (Ashurov et al., 2012; Ma et al., 2013, 2014; Li et al., 2014) and bidentate (Li et al., 2014; Smith et al., 1981; Sun et al., 2007) coordination. pCPA ligands can also show bridging properties (Liwporncharoenvong & Luck, 2005; Li et al., 2013; Jin et al., 2015; An et al., 2002) and form chain structures (Wang et al., 2006, 2008; Li et al., 2013). Ethylenediamine (EDA) ligands can coordinate to metal ions in a monodentate fashion (Xue et al., 2016; Mitzinger et al., 2016; Zhang et al., 2009; Fanizzi et al., 1984; Saidi et al., 2013) and in some complexes behave as bridging ligands (Binnemans et al., 2013; House & Steel, 1999; Bratsos et al., 2011; Doring & Jones, 2013; Kuhn et al., 2008). In many cases, EDA demonstrates a chelating property. There are metal complexes in which noncoordinating EDA molecules are situated in the outer sphere (Peipei et al., 2017; Tian et al., 2017; Mirzaei et al., 2014). A search in the Cambridge Structural Database (CSD; Groom et al., 2016) revealed that crystal structures have been reported for complexes of pCPA and EDA with many metal ions. However, no mixed-ligand metal complex including pCPA and EDA is documented in the CSD. Here, the synthesis and structure of the related title compound bis[(4-chlorophenoxy)acetato-κO](ethylenediamine-κ2N,N′)zinc is described.
The 8H7ClO3)2(C2H8N2)], as shown in Fig. 1. The of the ZnII cation is a distorted tetrahedron defined by an N2O2 coordination set. The distortion is indicated by bond angles O2—Zn1—O2′ [99.47 (11)°], O2—Zn1—N1 [117.37 (11)°], O2—Zn1—N2 [114.42 (12)°], O2′—Zn1—N1 [119.57 (13)°], O2′—Zn1—N2 [122.20 (12)°] and N1—Zn1—N2 [85.14 (13)°]. The dihedral angle between the N1/Zn1/N2 plane and the O2/Zn1/O2′ plane is 87.60 (16)°. The ZnII cation is coordinated by one EDA molecule, which acts as an N,N′-chelating ligand. The Zn1—N1 and Zn1—N2 distances are 2.041 (4) and 2.052 (3) Å, respectively. The bidentate coordination of the EDA ligand results in the formation of a five-membered chelate ring with an internal angle of 116.0 (15)° for N1—Zn1—N2. The N1—C9—C10—N2 torsion angle within the EDA molecule is −53.0 (4)°. The two pCPA ligands are asymmetrically coordinated to the ZnII cation, with Zn—O distances of 1.967 (3) and 1.978 (3) Å. The dihedral angle between the N1/Zn/N2 plane and the O2/Zn/O2′ plane is 87.61 (7)°. In both pCPA ligands, the oxyacetate group and the aromatic ring are not perfectly coplanar, the torsion angles being −174.2 (3) (C1—O1—C7—C8) and −170.8 (3)° (C1′—O1′—C7′—C8′). The dihedral angles between the acetate and 4-chlorophenoxy least-squares planes in the two independent ligands are 5.985 (3) and 5.513 (3)°.
of the title compound consists of a mononuclear complex of formula [Zn(CIn the crystal, molecules are linked by N—H⋯O hydrogen bonds (Table 1 and Fig. 2), forming chains propagating parallel to [100] (Figs. 2 and 3). The N—H⋯O hydrogen-bonding interactions between amine donor groups and carboxylate acceptors groups result in R42(12) ring motifs. The chains are linked by C—H⋯O hydrogen bonds (Table 1), forming a sheet structure extending parallel to (010) (Fig. 3). The molecules are further linked by C—H⋯π stacking [3.438 (3) Å] between benzene rings and methylene groups of pCPA, and by Cl1⋯Cl1i,ii interactions {3.438 (2) [symmetry code: (i) −x + 4, −y + 1, −z] and 3.801(3) Å [symmetry code: (ii) −x + 3, −y + 1, −z]}, generating a three-dimensional supramolecular network.
Synthesis and crystallization
To an aqueous solution (2.5 ml) of Zn(CH3COO)2 (0.049 g, 0.268 mmol) was added slowly under constant stirring an ethanol solution (5 ml) containing EDA (0.016 g) and pCPA (0.1 g, 0.536 mmol). Colourless crystals were obtained by solvent evaporation at room temperature after one week (yield 75%). Elemental analysis calculated for C18H20Cl2N2O6Zn: C 43.53, H 4.06, N 5.64%; found: C 43.58, H 4.12, N 5.69%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1865841
https://doi.org/10.1107/S2414314618012506/wm4086sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618012506/wm4086Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zn(C8H6ClO3)2(C2H8N2)] | F(000) = 1016 |
Mr = 496.63 | Dx = 1.608 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 5.6621 (11) Å | Cell parameters from 568 reflections |
b = 19.366 (13) Å | θ = 3.3–75.7° |
c = 18.816 (4) Å | µ = 4.40 mm−1 |
β = 96.09 (2)° | T = 293 K |
V = 2051.6 (15) Å3 | Block, colorless |
Z = 4 | 0.42 × 0.36 × 0.12 mm |
Oxford Diffraction Xcalibur Ruby diffractometer | 4125 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 75.3°, θmin = 3.3° |
ω scans | h = −6→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −14→24 |
Tmin = 0.569, Tmax = 1.000 | l = −23→23 |
8985 measured reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.84 | (Δ/σ)max < 0.001 |
4125 reflections | Δρmax = 0.97 e Å−3 |
262 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.48309 (8) | 0.70588 (3) | 0.38879 (3) | 0.05115 (17) | |
Cl1 | 1.7835 (2) | 0.54592 (7) | 0.03685 (7) | 0.0914 (4) | |
Cl1' | −0.8303 (3) | 0.54629 (7) | 0.73405 (8) | 0.1022 (5) | |
O2 | 0.6929 (4) | 0.64544 (13) | 0.33966 (14) | 0.0542 (7) | |
O2' | 0.2828 (4) | 0.63502 (13) | 0.42866 (14) | 0.0569 (7) | |
O3 | 0.8426 (5) | 0.74137 (14) | 0.29750 (16) | 0.0583 (7) | |
O3' | 0.1265 (5) | 0.72723 (13) | 0.47574 (16) | 0.0602 (8) | |
O1 | 1.1489 (5) | 0.67189 (13) | 0.22793 (16) | 0.0692 (9) | |
O1' | −0.1830 (5) | 0.65479 (15) | 0.53761 (19) | 0.0882 (11) | |
N1 | 0.6398 (5) | 0.78062 (16) | 0.45419 (19) | 0.0613 (9) | |
H1A | 0.5691 | 0.7834 | 0.4941 | 0.074* | |
H1B | 0.7926 | 0.7708 | 0.4658 | 0.074* | |
N2 | 0.3406 (5) | 0.78667 (15) | 0.32804 (18) | 0.0588 (9) | |
H2A | 0.4137 | 0.7911 | 0.2887 | 0.071* | |
H2B | 0.1867 | 0.7794 | 0.3152 | 0.071* | |
C8 | 0.8322 (6) | 0.6779 (2) | 0.3031 (2) | 0.0492 (9) | |
C1 | 1.2919 (7) | 0.6383 (2) | 0.1844 (2) | 0.0540 (10) | |
C8' | 0.1401 (6) | 0.6639 (2) | 0.4674 (2) | 0.0504 (10) | |
C7 | 0.9894 (6) | 0.63128 (19) | 0.2646 (2) | 0.0518 (10) | |
H7A | 1.0791 | 0.6011 | 0.2987 | 0.062* | |
H7B | 0.8926 | 0.6027 | 0.2307 | 0.062* | |
C7' | −0.0217 (6) | 0.6143 (2) | 0.5016 (2) | 0.0548 (10) | |
H7'A | −0.1083 | 0.5857 | 0.4654 | 0.066* | |
H7'B | 0.0709 | 0.5845 | 0.5353 | 0.066* | |
C6 | 1.3034 (7) | 0.5669 (2) | 0.1764 (2) | 0.0618 (12) | |
H6 | 1.2102 | 0.5381 | 0.2013 | 0.074* | |
C2 | 1.4358 (7) | 0.6799 (2) | 0.1478 (2) | 0.0615 (11) | |
H2 | 1.4320 | 0.7275 | 0.1545 | 0.074* | |
C3 | 1.5848 (7) | 0.6527 (2) | 0.1017 (2) | 0.0602 (11) | |
H3 | 1.6782 | 0.6812 | 0.0763 | 0.072* | |
C2' | −0.4549 (7) | 0.6694 (2) | 0.6210 (2) | 0.0643 (12) | |
H2' | −0.4363 | 0.7167 | 0.6151 | 0.077* | |
C3' | −0.6059 (7) | 0.6452 (2) | 0.6682 (2) | 0.0627 (12) | |
H3' | −0.6882 | 0.6757 | 0.6948 | 0.075* | |
C4' | −0.6321 (7) | 0.5753 (2) | 0.6751 (2) | 0.0616 (11) | |
C1' | −0.3307 (7) | 0.6237 (2) | 0.5824 (2) | 0.0608 (11) | |
C6' | −0.3578 (8) | 0.5530 (2) | 0.5898 (2) | 0.0659 (12) | |
H6' | −0.2745 | 0.5223 | 0.5637 | 0.079* | |
C5' | −0.5131 (8) | 0.5287 (2) | 0.6373 (2) | 0.0661 (12) | |
H5' | −0.5353 | 0.4816 | 0.6431 | 0.079* | |
C4 | 1.5910 (7) | 0.5819 (2) | 0.0942 (2) | 0.0613 (11) | |
C9 | 0.6155 (7) | 0.8462 (2) | 0.4149 (3) | 0.0699 (13) | |
H9A | 0.7391 | 0.8500 | 0.3832 | 0.084* | |
H9B | 0.6325 | 0.8845 | 0.4483 | 0.084* | |
C5 | 1.4556 (8) | 0.5395 (2) | 0.1306 (2) | 0.0671 (13) | |
H5 | 1.4649 | 0.4919 | 0.1249 | 0.081* | |
C10 | 0.3740 (7) | 0.8491 (2) | 0.3721 (2) | 0.0690 (13) | |
H10A | 0.2509 | 0.8519 | 0.4041 | 0.083* | |
H10B | 0.3632 | 0.8897 | 0.3418 | 0.083* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0394 (2) | 0.0495 (3) | 0.0668 (4) | 0.0015 (3) | 0.0163 (2) | −0.0043 (3) |
Cl1 | 0.0874 (9) | 0.1086 (10) | 0.0866 (9) | 0.0091 (7) | 0.0490 (7) | −0.0154 (8) |
Cl1' | 0.1095 (11) | 0.1037 (10) | 0.1036 (11) | −0.0081 (9) | 0.0589 (9) | 0.0235 (9) |
O2 | 0.0457 (15) | 0.0576 (15) | 0.0637 (18) | 0.0021 (12) | 0.0256 (13) | −0.0020 (14) |
O2' | 0.0452 (14) | 0.0623 (16) | 0.0669 (19) | −0.0009 (13) | 0.0236 (13) | −0.0063 (15) |
O3 | 0.0477 (16) | 0.0576 (16) | 0.073 (2) | 0.0030 (14) | 0.0237 (14) | 0.0016 (16) |
O3' | 0.0441 (15) | 0.0581 (16) | 0.082 (2) | −0.0018 (12) | 0.0249 (14) | −0.0045 (15) |
O1 | 0.0669 (19) | 0.0579 (16) | 0.091 (2) | −0.0050 (14) | 0.0453 (17) | −0.0115 (16) |
O1' | 0.080 (2) | 0.0644 (18) | 0.133 (3) | 0.0086 (16) | 0.068 (2) | 0.016 (2) |
N1 | 0.0416 (18) | 0.071 (2) | 0.073 (3) | −0.0009 (16) | 0.0118 (16) | −0.013 (2) |
N2 | 0.0435 (17) | 0.059 (2) | 0.076 (2) | 0.0024 (16) | 0.0179 (16) | 0.0044 (19) |
C8 | 0.039 (2) | 0.058 (2) | 0.052 (3) | −0.0022 (18) | 0.0112 (18) | −0.008 (2) |
C1 | 0.050 (2) | 0.059 (2) | 0.056 (3) | 0.0027 (19) | 0.0201 (19) | −0.006 (2) |
C8' | 0.037 (2) | 0.061 (2) | 0.054 (3) | 0.0005 (18) | 0.0092 (18) | 0.000 (2) |
C7 | 0.052 (2) | 0.054 (2) | 0.052 (2) | 0.0012 (19) | 0.0202 (19) | −0.003 (2) |
C7' | 0.049 (2) | 0.062 (2) | 0.056 (3) | 0.0040 (19) | 0.0186 (19) | −0.001 (2) |
C6 | 0.065 (3) | 0.057 (2) | 0.068 (3) | −0.006 (2) | 0.031 (2) | −0.009 (2) |
C2 | 0.053 (2) | 0.060 (2) | 0.075 (3) | 0.003 (2) | 0.022 (2) | 0.004 (2) |
C3 | 0.054 (2) | 0.074 (3) | 0.056 (3) | 0.003 (2) | 0.024 (2) | 0.007 (2) |
C2' | 0.061 (3) | 0.050 (2) | 0.086 (3) | −0.006 (2) | 0.028 (2) | −0.005 (2) |
C3' | 0.059 (3) | 0.067 (3) | 0.066 (3) | −0.002 (2) | 0.021 (2) | −0.008 (2) |
C4' | 0.058 (3) | 0.071 (3) | 0.059 (3) | −0.003 (2) | 0.019 (2) | 0.007 (2) |
C1' | 0.054 (2) | 0.062 (2) | 0.071 (3) | −0.002 (2) | 0.024 (2) | 0.002 (2) |
C6' | 0.066 (3) | 0.057 (2) | 0.078 (3) | 0.011 (2) | 0.020 (2) | 0.000 (2) |
C5' | 0.067 (3) | 0.060 (2) | 0.072 (3) | −0.005 (2) | 0.013 (2) | 0.011 (2) |
C4 | 0.056 (2) | 0.078 (3) | 0.052 (3) | 0.005 (2) | 0.016 (2) | −0.006 (2) |
C9 | 0.055 (3) | 0.052 (2) | 0.106 (4) | −0.009 (2) | 0.027 (3) | −0.020 (3) |
C5 | 0.071 (3) | 0.062 (3) | 0.073 (3) | −0.002 (2) | 0.030 (2) | −0.009 (2) |
C10 | 0.058 (3) | 0.051 (2) | 0.101 (4) | 0.010 (2) | 0.028 (3) | 0.005 (2) |
Zn1—O2 | 1.967 (2) | C7'—H7'A | 0.9700 |
Zn1—O2' | 1.978 (3) | C7'—H7'B | 0.9700 |
Zn1—N1 | 2.041 (3) | C6—H6 | 0.9300 |
Zn1—N2 | 2.052 (3) | C6—C5 | 1.386 (5) |
Cl1—C4 | 1.757 (4) | C2—H2 | 0.9300 |
Cl1'—C4' | 1.752 (4) | C2—C3 | 1.377 (5) |
O2—C8 | 1.267 (4) | C3—H3 | 0.9300 |
O2'—C8' | 1.274 (4) | C3—C4 | 1.379 (6) |
O3—C8 | 1.235 (4) | C2'—H2' | 0.9300 |
O3'—C8' | 1.240 (4) | C2'—C3' | 1.378 (5) |
O1—C1 | 1.375 (4) | C2'—C1' | 1.384 (5) |
O1—C7 | 1.430 (4) | C3'—H3' | 0.9300 |
O1'—C7' | 1.428 (4) | C3'—C4' | 1.369 (5) |
O1'—C1' | 1.386 (4) | C4'—C5' | 1.370 (6) |
N1—H1A | 0.8900 | C1'—C6' | 1.385 (6) |
N1—H1B | 0.8900 | C6'—H6' | 0.9300 |
N1—C9 | 1.469 (5) | C6'—C5' | 1.401 (6) |
N2—H2A | 0.8900 | C5'—H5' | 0.9300 |
N2—H2B | 0.8900 | C4—C5 | 1.359 (6) |
N2—C10 | 1.466 (5) | C9—H9A | 0.9700 |
C8—C7 | 1.506 (5) | C9—H9B | 0.9700 |
C1—C6 | 1.392 (5) | C9—C10 | 1.513 (6) |
C1—C2 | 1.381 (5) | C5—H5 | 0.9300 |
C8'—C7' | 1.516 (5) | C10—H10A | 0.9700 |
C7—H7A | 0.9700 | C10—H10B | 0.9700 |
C7—H7B | 0.9700 | ||
O2—Zn1—O2' | 99.47 (11) | C5—C6—C1 | 119.2 (4) |
O2—Zn1—N1 | 117.37 (12) | C5—C6—H6 | 120.4 |
O2—Zn1—N2 | 114.42 (12) | C1—C2—H2 | 119.2 |
O2'—Zn1—N1 | 119.57 (13) | C3—C2—C1 | 121.6 (4) |
O2'—Zn1—N2 | 122.20 (12) | C3—C2—H2 | 119.2 |
N1—Zn1—N2 | 85.14 (14) | C2—C3—H3 | 121.0 |
C8—O2—Zn1 | 113.7 (2) | C2—C3—C4 | 117.9 (4) |
C8'—O2'—Zn1 | 109.7 (2) | C4—C3—H3 | 121.0 |
C1—O1—C7 | 118.0 (3) | C3'—C2'—H2' | 119.8 |
C1'—O1'—C7' | 120.5 (3) | C3'—C2'—C1' | 120.4 (4) |
Zn1—N1—H1A | 110.2 | C1'—C2'—H2' | 119.8 |
Zn1—N1—H1B | 110.2 | C2'—C3'—H3' | 120.7 |
H1A—N1—H1B | 108.5 | C4'—C3'—C2' | 118.5 (4) |
C9—N1—Zn1 | 107.4 (3) | C4'—C3'—H3' | 120.7 |
C9—N1—H1A | 110.2 | C3'—C4'—Cl1' | 117.4 (3) |
C9—N1—H1B | 110.2 | C3'—C4'—C5' | 122.5 (4) |
Zn1—N2—H2A | 110.3 | C5'—C4'—Cl1' | 120.0 (3) |
Zn1—N2—H2B | 110.3 | C2'—C1'—O1' | 114.5 (4) |
H2A—N2—H2B | 108.6 | C2'—C1'—C6' | 120.7 (4) |
C10—N2—Zn1 | 107.1 (3) | C6'—C1'—O1' | 124.8 (4) |
C10—N2—H2A | 110.3 | C1'—C6'—H6' | 120.7 |
C10—N2—H2B | 110.3 | C1'—C6'—C5' | 118.7 (4) |
O2—C8—C7 | 113.4 (3) | C5'—C6'—H6' | 120.7 |
O3—C8—O2 | 125.3 (4) | C4'—C5'—C6' | 119.2 (4) |
O3—C8—C7 | 121.3 (3) | C4'—C5'—H5' | 120.4 |
O1—C1—C6 | 124.9 (4) | C6'—C5'—H5' | 120.4 |
O1—C1—C2 | 115.9 (4) | C3—C4—Cl1 | 118.8 (3) |
C2—C1—C6 | 119.2 (4) | C5—C4—Cl1 | 119.3 (4) |
O2'—C8'—C7' | 114.4 (3) | C5—C4—C3 | 121.9 (4) |
O3'—C8'—O2' | 123.9 (4) | N1—C9—H9A | 109.8 |
O3'—C8'—C7' | 121.6 (3) | N1—C9—H9B | 109.8 |
O1—C7—C8 | 109.8 (3) | N1—C9—C10 | 109.3 (3) |
O1—C7—H7A | 109.7 | H9A—C9—H9B | 108.3 |
O1—C7—H7B | 109.7 | C10—C9—H9A | 109.8 |
C8—C7—H7A | 109.7 | C10—C9—H9B | 109.8 |
C8—C7—H7B | 109.7 | C6—C5—H5 | 119.9 |
H7A—C7—H7B | 108.2 | C4—C5—C6 | 120.1 (4) |
O1'—C7'—C8' | 107.4 (3) | C4—C5—H5 | 119.9 |
O1'—C7'—H7'A | 110.2 | N2—C10—C9 | 109.1 (3) |
O1'—C7'—H7'B | 110.2 | N2—C10—H10A | 109.9 |
C8'—C7'—H7'A | 110.2 | N2—C10—H10B | 109.9 |
C8'—C7'—H7'B | 110.2 | C9—C10—H10A | 109.9 |
H7'A—C7'—H7'B | 108.5 | C9—C10—H10B | 109.9 |
C1—C6—H6 | 120.4 | H10A—C10—H10B | 108.3 |
Zn1—O2—C8—O3 | 0.4 (6) | C7—O1—C1—C6 | −3.9 (6) |
Zn1—O2—C8—C7 | −179.0 (2) | C7—O1—C1—C2 | 177.4 (4) |
Zn1—O2'—C8'—O3' | 2.5 (5) | C7'—O1'—C1'—C2' | 171.9 (4) |
Zn1—O2'—C8'—C7' | −179.4 (3) | C7'—O1'—C1'—C6' | −8.1 (7) |
Zn1—N1—C9—C10 | 38.5 (4) | C6—C1—C2—C3 | 2.2 (7) |
Zn1—N2—C10—C9 | 39.2 (4) | C2—C1—C6—C5 | −1.3 (7) |
Cl1—C4—C5—C6 | 179.7 (3) | C2—C3—C4—Cl1 | −178.9 (3) |
Cl1'—C4'—C5'—C6' | 179.2 (4) | C2—C3—C4—C5 | 0.1 (7) |
O2—C8—C7—O1 | −176.9 (3) | C3—C4—C5—C6 | 0.7 (7) |
O2'—C8'—C7'—O1' | −174.9 (3) | C2'—C3'—C4'—Cl1' | −178.6 (3) |
O3—C8—C7—O1 | 3.7 (6) | C2'—C3'—C4'—C5' | 0.4 (7) |
O3'—C8'—C7'—O1' | 3.1 (6) | C2'—C1'—C6'—C5' | −0.2 (7) |
O1—C1—C6—C5 | −180.0 (4) | C3'—C2'—C1'—O1' | −179.2 (4) |
O1—C1—C2—C3 | −179.0 (4) | C3'—C2'—C1'—C6' | 0.8 (7) |
O1'—C1'—C6'—C5' | 179.8 (4) | C3'—C4'—C5'—C6' | 0.2 (7) |
N1—C9—C10—N2 | −53.0 (4) | C1'—O1'—C7'—C8' | −170.8 (4) |
C1—O1—C7—C8 | −174.2 (3) | C1'—C2'—C3'—C4' | −0.9 (7) |
C1—C6—C5—C4 | −0.1 (7) | C1'—C6'—C5'—C4' | −0.3 (7) |
C1—C2—C3—C4 | −1.6 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3′i | 0.89 | 2.06 | 2.931 (4) | 166 |
N2—H2B···O3ii | 0.89 | 2.08 | 2.950 (4) | 167 |
C3—H3···O3′iii | 0.93 | 2.59 | 3.346 (5) | 139 |
C3′—H3′···O3iv | 0.93 | 2.50 | 3.314 (5) | 146 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x+3/2, −y+3/2, z−1/2; (iv) x−3/2, −y+3/2, z+1/2. |
Funding information
Funding for this research was provided by: Center of Science and Technology, Uzbekistan (Grant for Fundamental Research No. BA-FA-F7-004).
References
An, J., Wang, Sh., Yan, B. & Chen, Z. (2002). J. Coord. Chem. 55, 1223–1232. Web of Science CrossRef Google Scholar
Ashurov, J., Ziyaev, M., Ibragimov, B. & Talipov, S. (2012). Acta Cryst. E68, m1464. CrossRef IUCr Journals Google Scholar
Binnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578–588. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533–9543. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474–492. Google Scholar
Fanizzi, F. P., Natile, G., Maresca, L., Lanfredi, A. M. M. & Tiripicchio, A. (1984). J. Chem. Soc. Dalton Trans. 7, 1467–1470. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
House, D. A. & Steel, P. J. (1999). Inorg. Chim. Acta, 288, 53–56. Web of Science CrossRef Google Scholar
Jin, Sh., Liu, H., Chen, G., An, Z., Lou, Y., Huang, K. & Wang, D. (2015). Polyhedron, 95, 91–107. Web of Science CrossRef Google Scholar
Kuhn, N., Abu-Salem, Q., Maichle-Mossmer, C. & Steimann, M. (2008). Z. Anorg. Allg. Chem. 634, 1276–1280. Web of Science CrossRef Google Scholar
Li, L., Diaoa, K., Ding, Y. & Yin, X. (2013). Mol. Cryst. Liq. Cryst. 575, 173–187. Web of Science CrossRef Google Scholar
Li, L., Diao, K., Ding, Y. & Yin, X. (2014). Mol. Cryst. Liq. Cryst. 588, 63–73. Web of Science CrossRef Google Scholar
Liwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191–m1193. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, D.-Y., Guo, H.-F., Dong, J. & Xu, J. (2013). J. Mol. Struct. 1054–1055, 46–52. Web of Science CrossRef Google Scholar
Ma, D.-Y., Guo, H.-F., Qin, L., Li, Y., Ruan, Q.-T., Huang, Y.-W. & Xu, J. (2014). J. Chem. Crystallogr. 44, 63–69. Web of Science CrossRef Google Scholar
Mirzaei, M., Eshtiagh-Hosseini, H., Bauza, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149–6158. Web of Science CrossRef Google Scholar
Mitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1–10. Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Peipei, S., Shuzhen, L., Jingyu, H., Yali, Sh., Hui, S. & Dingxian, J. (2017). Transition Met. Chem. 42, 387–393. Google Scholar
Saidi, K., Kamoun, S., Ayedi, H. F. & Arous, M. (2013). J. Phys. Chem. Solids, 74, 1560–1569. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111–120. CSD CrossRef CAS Web of Science Google Scholar
Sun, Y., Wang, Z., Zhang, H., Cao, Y., Zhang, S., Chen, Y., Huang, Ch. & Yu, X. (2007). Inorg. Chim. Acta, 360, 2565–2572. Web of Science CrossRef Google Scholar
Tian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304–313. Web of Science CrossRef Google Scholar
Wang, Z., Liu, D. Sh., Zhang, H.-H., Huang, Ch. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419–425. Web of Science CrossRef Google Scholar
Wang, Z., Zhang, H., Chen, Y., Huang, Ch., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem. 179, 1536–1544. Web of Science CrossRef Google Scholar
Xue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322–12331. Web of Science CrossRef Google Scholar
Zhang, Q., Chung, I., Jang, J. I., Ketterson, J. B. & Kanatzidis, M. G. (2009). Chem. Mater. 21, 12–14. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.