organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 4-{N′-[(1E)-1-(pyrazin-2-yl)ethyl­­idene]hydrazinecarbon­yl}benzoate

CROSSMARK_Color_square_no_text.svg

aChongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China, and bCollege of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China
*Correspondence e-mail: ouwzdong@qq.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 21 August 2018; accepted 30 August 2018; online 7 September 2018)

The title Schiff base, C15H14N4O3, was synthesized by the condensation reaction between caprylic hydrazide and 2-acetyl­pyrazine. There are two independent pseudo-enanti­omeric mol­ecules, A and B, in the asymmetric unit that differ mainly in the orientation of the hydrazone units. For example, the dihedral angles between the benzene and pyrazine rings are 20.836 (13) (A) and 15.701 (14)° (B). The mol­ecular packing features N—H⋯O hydrogen bonds that lead to a twisted supra­molecular chain along the b-axis direction. The presence of C—H⋯O inter­actions consolidates the chains into a three-dimensional architecture. The studied sample was a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazone-based Schiff bases are important members of the Schiff base family. Their method of synthesis is simple and products can be tailored by changing the aldehyde or ketone and caprylic hydrazide precursors. Their applications are focused upon mol­ecular switches (Coskun et al., 2012[Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19-30.]), sensors (Albelda et al., 2012[Albelda, M. T., Frías, J. C., García-España, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859-3877.]) and single mol­ecule magnets (SMMs; Tian et al., 2013[Tian, H.-Q., Zhao, L., Lin, H.-F., Tang, J.-K. & Li, G.-S. (2013). Chem. Eur. J. 19, 13235-13241.]) as a result of their ability to adopt variable coordination modes towards metals. 2-Acetyl­pyrazine-based hydrazone ligands and their transition metal chemistry have also been reported (Hou et al., 2018[Hou, X.-F., Zhao, X.-L., Zhang, L., Wu, W.-N. & Wang, Y. (2018). Chin. J. Inorg. Chem. 34, 201-205.]; Li et al., 2015[Li, C.-R., Liao, Z.-C., Qin, J.-C., Wang, B.-D. & Yang, Z.-Y. (2015). J. Lumin. 168, 330-333.]). Herein, we aimed to synthesize a new hydrazone ligand substituted with 2-acetyl­pyrazine to enrich its potential coordination chemistry with transition metals; the successful synthesis of the hydrazone ligand was confirmed by its X-ray crystal structure determination.

The asymmetric unit of the title mol­ecule, Fig. 1[link], comprises two independent mol­ecules (A and B) that differ primarily in the relative orientation about the hydrazone bond. In mol­ecule A, the benzene and pyrazine rings make a dihedral angle of 20.836 (13)°, the corresponding angle in mol­ecule B being 15.701 (14)°. In the crystal, N—H⋯O hydrogen bonds lead to twisted supra­molecular chains along the b-axis direction, which are consolidated by C—H⋯O inter­actions, Table 1[link] and Fig. 2[link], leading to a three-dimensional architecture. Mol­ecules A and B are also linked through ππ inter­actions between benzene rings with an offset centroid–centroid distance of 3.739 (3) Å, and pyrazine rings with an offset centroid–centroid distance of 4.0519 (3) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.31 3.063 (5) 147
N5—H5⋯O3ii 0.86 2.39 3.172 (5) 151
C10—H10⋯O4iii 0.93 2.51 3.440 (7) 175
C12—H12A⋯O3iv 0.96 2.38 3.327 (6) 171
C12—H12C⋯O6i 0.96 2.58 3.360 (6) 139
C28—H28A⋯O3ii 0.96 2.59 3.422 (6) 145
Symmetry codes: (i) x-1, y, z; (ii) x+1, y-1, z; (iii) x-1, y+1, z-1; (iv) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular packing for the title compound viewed along the b-axis direction. Dashed lines indicate hydrogen bonding.

Synthesis and crystallization

All reagents and solvents were purchased from commercial sources and used as received without further purification. The title mol­ecule was synthesized via two steps; firstly, the inter­mediate caprylic hydrazide was prepared by refluxing dimethyl terephthalate (3.08 g,19.4 mmol) and an excess of hydrazine hydrate (2.94 g, 58.8 mmol) in methanol (40 ml). After 50 min., a white precipitate was evident, and after refluxing for an additional 15 h the suspension was cooled to room temperature. A white solid was filtered off and used in the next step. The title mol­ecule was prepared by the condensation reaction of pyrazine-2-carbohydrazide (1.38 g, 10 mmol) with 2-acetyl­pyrazine (1.22 g,10 mmol) under reflux in ethanol (50 ml) for 16 h. A transparent, light-yellow solution resulted. Colourless crystals suitable for X-ray analysis precipitated overnight.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The sample was refined as an inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula C15H14N4O3
Mr 298.30
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 5.859 (5), 7.479 (6), 16.329 (14)
α, β, γ (°) 93.818 (12), 91.29 (3), 94.252 (10)
V3) 711.7 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.654, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5678, 4773, 3720
Rint 0.026
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.106, 1.12
No. of reflections 4773
No. of parameters 402
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.29
Absolute structure Refined as an inversion twin.
Absolute structure parameter −2 (2)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Methyl 4-{N'-[(1E)-1-(pyrazin-2-yl)ethylidene]hydrazinecarbonyl}benzoate top
Crystal data top
C15H14N4O3Z = 2
Mr = 298.30F(000) = 312
Triclinic, P1Dx = 1.392 Mg m3
a = 5.859 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.479 (6) ÅCell parameters from 1904 reflections
c = 16.329 (14) Åθ = 2.5–27.2°
α = 93.818 (12)°µ = 0.10 mm1
β = 91.29 (3)°T = 296 K
γ = 94.252 (10)°Block, colourless
V = 711.7 (10) Å30.2 × 0.14 × 0.12 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.026
ω scanθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 77
Tmin = 0.654, Tmax = 0.746k = 99
5678 measured reflectionsl = 2121
4773 independent reflections1 standard reflections every 60 reflections
3720 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.0177P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.19 e Å3
4773 reflectionsΔρmin = 0.29 e Å3
402 parametersAbsolute structure: Refined as an inversion twin.
3 restraintsAbsolute structure parameter: 2 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The N-bound H atoms were fixed with a distance restraint of 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3039 (5)0.6312 (5)0.84591 (19)0.0456 (9)
O20.0696 (6)0.5807 (5)0.8700 (2)0.0603 (11)
O30.2556 (5)0.9093 (4)0.48052 (17)0.0385 (8)
N10.0715 (6)0.7886 (5)0.4389 (2)0.0363 (9)
H10.1848690.7286620.4521420.044*
N20.0480 (6)0.8439 (5)0.3598 (2)0.0347 (9)
N30.3753 (6)0.8849 (5)0.1848 (2)0.0426 (10)
N40.0495 (6)0.9510 (6)0.1154 (2)0.0473 (11)
C10.0809 (8)0.6288 (6)0.8255 (3)0.0385 (12)
C20.0443 (7)0.6855 (6)0.7409 (3)0.0289 (10)
C30.1726 (7)0.6523 (6)0.7041 (3)0.0345 (11)
H30.2916850.6000590.7332190.041*
C40.2120 (7)0.6966 (6)0.6244 (3)0.0317 (10)
H40.3577900.6749910.6003690.038*
C50.0347 (7)0.7733 (5)0.5799 (3)0.0280 (10)
C60.0871 (7)0.8304 (6)0.4950 (3)0.0289 (10)
C70.2074 (7)0.8007 (6)0.3105 (3)0.0309 (10)
C80.1809 (7)0.8627 (5)0.2262 (2)0.0304 (10)
C90.3527 (8)0.9423 (7)0.1097 (3)0.0505 (14)
H90.4835980.9604260.0792240.061*
C100.1469 (8)0.9758 (7)0.0753 (3)0.0498 (14)
H100.1425711.0169190.0228010.060*
C110.0282 (7)0.8952 (6)0.1906 (3)0.0394 (12)
H110.1595140.8772060.2208230.047*
C120.4108 (7)0.7020 (6)0.3303 (3)0.0383 (11)
H12A0.5078500.7733040.3700070.057*
H12B0.4941750.6788220.2812200.057*
H12C0.3615370.5901110.3522910.057*
C130.1824 (7)0.8081 (6)0.6165 (3)0.0326 (10)
H130.3015520.8594090.5870810.039*
C140.2203 (7)0.7662 (6)0.6966 (3)0.0322 (10)
H140.3646450.7920250.7212960.039*
C150.3571 (8)0.5638 (7)0.9260 (3)0.0579 (15)
H15A0.2952060.4414980.9270910.087*
H15B0.2906410.6363380.9685450.087*
H15C0.5200790.5695000.9347610.087*
O41.0985 (5)0.1083 (5)0.8783 (2)0.0585 (11)
O50.7286 (5)0.0840 (5)0.83908 (19)0.0499 (9)
O61.3020 (4)0.4597 (4)0.49293 (17)0.0372 (7)
N50.9896 (6)0.2855 (5)0.4416 (2)0.0319 (9)
H50.8806650.2071060.4515850.038*
N61.0116 (6)0.3429 (5)0.3625 (2)0.0326 (9)
N70.6591 (6)0.3785 (6)0.1892 (2)0.0441 (10)
N81.0817 (6)0.4420 (6)0.1156 (2)0.0468 (11)
C160.9514 (7)0.1210 (6)0.8273 (3)0.0339 (11)
C170.6688 (9)0.0272 (8)0.9194 (3)0.0625 (16)
H17A0.5052060.0158270.9234080.094*
H17B0.7328120.1148650.9608680.094*
H17C0.7287230.0866370.9272060.094*
C180.9934 (7)0.1775 (5)0.7422 (3)0.0296 (10)
C191.2130 (7)0.2443 (6)0.7237 (3)0.0321 (11)
H191.3304600.2507630.7632640.039*
C201.2559 (6)0.3010 (5)0.6461 (3)0.0293 (10)
H201.4018010.3481780.6341930.035*
C211.0823 (7)0.2879 (5)0.5858 (3)0.0262 (9)
C221.1377 (7)0.3515 (5)0.5028 (3)0.0285 (10)
C230.8349 (7)0.3018 (5)0.3149 (3)0.0287 (10)
C240.8557 (7)0.3584 (5)0.2296 (3)0.0297 (10)
C250.6773 (8)0.4326 (7)0.1131 (3)0.0520 (15)
H250.5442310.4490990.0833170.062*
C260.8838 (8)0.4646 (7)0.0771 (3)0.0491 (14)
H260.8861540.5032830.0241690.059*
C271.0638 (7)0.3898 (6)0.1920 (3)0.0369 (11)
H271.1974880.3736690.2214560.044*
C280.6158 (7)0.2061 (7)0.3387 (3)0.0447 (12)
H28A0.6456040.0896000.3559520.067*
H28B0.5103680.1927390.2924680.067*
H28C0.5508420.2744190.3830070.067*
C290.8626 (7)0.2227 (5)0.6058 (3)0.0301 (10)
H290.7445640.2157900.5663630.036*
C300.8188 (7)0.1685 (6)0.6832 (3)0.0316 (10)
H300.6715810.1258080.6958680.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0410 (19)0.068 (2)0.029 (2)0.0028 (16)0.0042 (14)0.0172 (17)
O20.046 (2)0.107 (3)0.033 (2)0.0108 (19)0.0100 (16)0.031 (2)
O30.0421 (17)0.0496 (19)0.0261 (18)0.0162 (14)0.0021 (13)0.0071 (15)
N10.042 (2)0.050 (2)0.020 (2)0.0162 (18)0.0068 (16)0.0125 (18)
N20.042 (2)0.043 (2)0.020 (2)0.0056 (17)0.0027 (17)0.0098 (18)
N30.035 (2)0.065 (3)0.029 (2)0.0008 (18)0.0042 (16)0.013 (2)
N40.043 (2)0.071 (3)0.029 (2)0.010 (2)0.0032 (18)0.012 (2)
C10.043 (3)0.045 (3)0.029 (3)0.010 (2)0.003 (2)0.007 (2)
C20.035 (2)0.034 (2)0.019 (2)0.0088 (19)0.0041 (18)0.0047 (19)
C30.032 (2)0.045 (3)0.029 (3)0.009 (2)0.009 (2)0.012 (2)
C40.028 (2)0.040 (3)0.028 (3)0.0039 (19)0.0027 (19)0.006 (2)
C50.035 (2)0.027 (2)0.024 (3)0.0105 (18)0.0020 (19)0.0052 (19)
C60.037 (2)0.031 (2)0.020 (3)0.0042 (19)0.0016 (18)0.0074 (19)
C70.033 (2)0.035 (3)0.024 (2)0.0014 (18)0.0006 (18)0.0042 (19)
C80.037 (2)0.032 (2)0.022 (3)0.0007 (19)0.0042 (19)0.007 (2)
C90.039 (3)0.086 (4)0.028 (3)0.001 (3)0.007 (2)0.020 (3)
C100.053 (3)0.073 (4)0.025 (3)0.009 (3)0.005 (2)0.019 (3)
C110.036 (2)0.057 (3)0.027 (3)0.009 (2)0.008 (2)0.013 (2)
C120.036 (2)0.049 (3)0.031 (3)0.003 (2)0.0014 (19)0.011 (2)
C130.035 (2)0.039 (3)0.025 (3)0.0038 (19)0.0061 (18)0.008 (2)
C140.031 (2)0.037 (3)0.028 (3)0.0043 (18)0.0003 (19)0.003 (2)
C150.060 (3)0.086 (4)0.030 (3)0.003 (3)0.010 (2)0.025 (3)
O40.0445 (19)0.102 (3)0.031 (2)0.0038 (19)0.0030 (16)0.027 (2)
O50.0430 (19)0.082 (3)0.026 (2)0.0021 (17)0.0066 (15)0.0185 (18)
O60.0362 (16)0.0478 (19)0.0270 (19)0.0075 (14)0.0005 (13)0.0101 (15)
N50.0328 (19)0.042 (2)0.021 (2)0.0054 (16)0.0013 (16)0.0086 (17)
N60.038 (2)0.041 (2)0.019 (2)0.0029 (16)0.0004 (16)0.0102 (18)
N70.033 (2)0.068 (3)0.033 (2)0.0083 (19)0.0006 (17)0.015 (2)
N80.041 (2)0.071 (3)0.028 (2)0.003 (2)0.0023 (18)0.009 (2)
C160.039 (3)0.041 (3)0.024 (3)0.006 (2)0.007 (2)0.009 (2)
C170.056 (3)0.099 (5)0.035 (3)0.001 (3)0.011 (2)0.028 (3)
C180.034 (2)0.034 (3)0.022 (3)0.0071 (19)0.0039 (18)0.006 (2)
C190.030 (2)0.045 (3)0.023 (3)0.007 (2)0.0037 (18)0.009 (2)
C200.027 (2)0.035 (2)0.026 (3)0.0004 (18)0.0025 (18)0.007 (2)
C210.030 (2)0.028 (2)0.021 (2)0.0056 (17)0.0024 (17)0.0057 (18)
C220.029 (2)0.030 (2)0.027 (3)0.0055 (19)0.0018 (18)0.0025 (19)
C230.031 (2)0.030 (2)0.026 (3)0.0031 (18)0.0007 (18)0.004 (2)
C240.032 (2)0.033 (3)0.025 (2)0.0012 (18)0.0008 (18)0.003 (2)
C250.041 (3)0.087 (4)0.030 (3)0.007 (3)0.007 (2)0.021 (3)
C260.047 (3)0.074 (4)0.027 (3)0.001 (3)0.002 (2)0.015 (3)
C270.033 (2)0.051 (3)0.027 (3)0.002 (2)0.0041 (19)0.007 (2)
C280.040 (3)0.058 (3)0.037 (3)0.004 (2)0.002 (2)0.023 (2)
C290.028 (2)0.040 (3)0.023 (3)0.0053 (18)0.0037 (18)0.004 (2)
C300.029 (2)0.042 (3)0.024 (3)0.0025 (19)0.0037 (18)0.008 (2)
Geometric parameters (Å, º) top
O1—C11.339 (5)O4—C161.198 (5)
O1—C151.468 (5)O5—C161.335 (5)
O2—C11.204 (5)O5—C171.448 (5)
O3—C61.214 (4)O6—C221.231 (5)
N1—H10.8600N5—H50.8600
N1—N21.388 (4)N5—N61.393 (5)
N1—C61.358 (5)N5—C221.351 (5)
N2—C71.292 (5)N6—C231.287 (5)
N3—C81.343 (5)N7—C241.338 (5)
N3—C91.332 (5)N7—C251.336 (5)
N4—C101.343 (6)N8—C261.334 (6)
N4—C111.329 (5)N8—C271.334 (5)
C1—C21.488 (6)C16—C181.499 (6)
C2—C31.392 (6)C17—H17A0.9600
C2—C141.396 (6)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C3—C41.383 (6)C18—C191.392 (6)
C4—H40.9300C18—C301.384 (6)
C4—C51.392 (5)C19—H190.9300
C5—C61.509 (6)C19—C201.384 (5)
C5—C131.392 (6)C20—H200.9300
C7—C81.490 (5)C20—C211.394 (5)
C7—C121.488 (5)C21—C221.501 (6)
C8—C111.389 (6)C21—C291.395 (6)
C9—H90.9300C23—C241.487 (6)
C9—C101.366 (6)C23—C281.495 (6)
C10—H100.9300C24—C271.389 (6)
C11—H110.9300C25—H250.9300
C12—H12A0.9600C25—C261.369 (6)
C12—H12B0.9600C26—H260.9300
C12—H12C0.9600C27—H270.9300
C13—H130.9300C28—H28A0.9600
C13—C141.383 (6)C28—H28B0.9600
C14—H140.9300C28—H28C0.9600
C15—H15A0.9600C29—H290.9300
C15—H15B0.9600C29—C301.377 (6)
C15—H15C0.9600C30—H300.9300
C1—O1—C15115.6 (4)C16—O5—C17116.0 (3)
N2—N1—H1120.5N6—N5—H5119.6
C6—N1—H1120.5C22—N5—H5119.6
C6—N1—N2119.1 (3)C22—N5—N6120.7 (4)
C7—N2—N1115.2 (3)C23—N6—N5114.5 (3)
C9—N3—C8115.7 (4)C25—N7—C24116.3 (4)
C11—N4—C10115.4 (4)C26—N8—C27115.3 (4)
O1—C1—C2111.8 (4)O4—C16—O5123.9 (4)
O2—C1—O1123.5 (4)O4—C16—C18124.6 (4)
O2—C1—C2124.7 (4)O5—C16—C18111.5 (4)
C3—C2—C1118.4 (4)O5—C17—H17A109.5
C3—C2—C14119.0 (4)O5—C17—H17B109.5
C14—C2—C1122.5 (4)O5—C17—H17C109.5
C2—C3—H3119.8H17A—C17—H17B109.5
C4—C3—C2120.3 (4)H17A—C17—H17C109.5
C4—C3—H3119.8H17B—C17—H17C109.5
C3—C4—H4119.8C19—C18—C16118.4 (4)
C3—C4—C5120.4 (4)C30—C18—C16121.6 (4)
C5—C4—H4119.8C30—C18—C19120.0 (4)
C4—C5—C6118.9 (4)C18—C19—H19120.1
C4—C5—C13119.6 (4)C20—C19—C18119.8 (4)
C13—C5—C6121.3 (4)C20—C19—H19120.1
O3—C6—N1124.5 (4)C19—C20—H20119.7
O3—C6—C5121.5 (4)C19—C20—C21120.5 (4)
N1—C6—C5114.0 (3)C21—C20—H20119.7
N2—C7—C8114.6 (3)C20—C21—C22118.4 (4)
N2—C7—C12126.9 (4)C20—C21—C29118.9 (4)
C12—C7—C8118.6 (4)C29—C21—C22122.7 (4)
N3—C8—C7115.5 (3)O6—C22—N5123.6 (4)
N3—C8—C11120.7 (4)O6—C22—C21121.7 (4)
C11—C8—C7123.7 (4)N5—C22—C21114.7 (4)
N3—C9—H9118.4N6—C23—C24115.6 (4)
N3—C9—C10123.3 (4)N6—C23—C28125.5 (4)
C10—C9—H9118.4C24—C23—C28118.9 (4)
N4—C10—C9121.7 (4)N7—C24—C23116.1 (3)
N4—C10—H10119.2N7—C24—C27120.3 (4)
C9—C10—H10119.2C27—C24—C23123.6 (4)
N4—C11—C8123.1 (4)N7—C25—H25118.6
N4—C11—H11118.4N7—C25—C26122.7 (4)
C8—C11—H11118.4C26—C25—H25118.6
C7—C12—H12A109.5N8—C26—C25122.1 (4)
C7—C12—H12B109.5N8—C26—H26119.0
C7—C12—H12C109.5C25—C26—H26119.0
H12A—C12—H12B109.5N8—C27—C24123.4 (4)
H12A—C12—H12C109.5N8—C27—H27118.3
H12B—C12—H12C109.5C24—C27—H27118.3
C5—C13—H13120.1C23—C28—H28A109.5
C14—C13—C5119.8 (4)C23—C28—H28B109.5
C14—C13—H13120.1C23—C28—H28C109.5
C2—C14—H14119.6H28A—C28—H28B109.5
C13—C14—C2120.7 (4)H28A—C28—H28C109.5
C13—C14—H14119.6H28B—C28—H28C109.5
O1—C15—H15A109.5C21—C29—H29119.7
O1—C15—H15B109.5C30—C29—C21120.7 (4)
O1—C15—H15C109.5C30—C29—H29119.7
H15A—C15—H15B109.5C18—C30—H30119.9
H15A—C15—H15C109.5C29—C30—C18120.1 (4)
H15B—C15—H15C109.5C29—C30—H30119.9
O1—C1—C2—C3165.9 (4)O4—C16—C18—C199.4 (7)
O1—C1—C2—C1412.4 (6)O4—C16—C18—C30172.1 (5)
O2—C1—C2—C311.9 (7)O5—C16—C18—C19171.3 (4)
O2—C1—C2—C14169.9 (5)O5—C16—C18—C307.2 (6)
N1—N2—C7—C8179.4 (4)N5—N6—C23—C24178.8 (3)
N1—N2—C7—C121.0 (6)N5—N6—C23—C281.9 (6)
N2—N1—C6—O32.5 (7)N6—N5—C22—O62.3 (6)
N2—N1—C6—C5176.3 (4)N6—N5—C22—C21175.6 (3)
N2—C7—C8—N3154.8 (4)N6—C23—C24—N7156.3 (4)
N2—C7—C8—C1125.7 (6)N6—C23—C24—C2723.7 (6)
N3—C8—C11—N40.7 (7)N7—C24—C27—N80.6 (7)
N3—C9—C10—N40.7 (9)N7—C25—C26—N80.7 (9)
C1—C2—C3—C4177.5 (4)C16—C18—C19—C20178.7 (4)
C1—C2—C14—C13176.4 (4)C16—C18—C30—C29179.5 (4)
C2—C3—C4—C50.6 (6)C17—O5—C16—O40.5 (7)
C3—C2—C14—C131.8 (6)C17—O5—C16—C18179.8 (4)
C3—C4—C5—C6176.2 (4)C18—C19—C20—C211.5 (6)
C3—C4—C5—C131.0 (6)C19—C18—C30—C291.1 (6)
C4—C5—C6—O343.3 (6)C19—C20—C21—C22179.9 (4)
C4—C5—C6—N1137.9 (4)C19—C20—C21—C292.3 (6)
C4—C5—C13—C140.0 (6)C20—C21—C22—O621.9 (6)
C5—C13—C14—C21.4 (7)C20—C21—C22—N5160.2 (4)
C6—N1—N2—C7179.2 (4)C20—C21—C29—C301.4 (6)
C6—C5—C13—C14175.1 (4)C21—C29—C30—C180.3 (6)
C7—C8—C11—N4179.8 (4)C22—N5—N6—C23165.4 (4)
C8—N3—C9—C100.6 (7)C22—C21—C29—C30178.9 (4)
C9—N3—C8—C7179.3 (4)C23—C24—C27—N8179.4 (4)
C9—N3—C8—C111.2 (6)C24—N7—C25—C260.6 (8)
C10—N4—C11—C80.5 (7)C25—N7—C24—C23178.8 (4)
C11—N4—C10—C91.2 (8)C25—N7—C24—C271.2 (7)
C12—C7—C8—N323.8 (6)C26—N8—C27—C240.7 (7)
C12—C7—C8—C11155.8 (4)C27—N8—C26—C251.3 (8)
C13—C5—C6—O3131.8 (4)C28—C23—C24—N723.0 (6)
C13—C5—C6—N147.0 (6)C28—C23—C24—C27157.0 (4)
C14—C2—C3—C40.8 (6)C29—C21—C22—O6155.6 (4)
C15—O1—C1—O22.3 (7)C29—C21—C22—N522.3 (6)
C15—O1—C1—C2175.5 (4)C30—C18—C19—C200.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.313.063 (5)147
N5—H5···O3ii0.862.393.172 (5)151
C10—H10···O4iii0.932.513.440 (7)175
C12—H12A···O3iv0.962.383.327 (6)171
C12—H12C···O6i0.962.583.360 (6)139
C28—H28A···O3ii0.962.593.422 (6)145
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z; (iii) x1, y+1, z1; (iv) x+1, y, z.
 

Funding information

The authors would like to thank the major cultivation project of Chongqing University of Arts and Sciences (No. P2017CH10) for financial support.

References

First citationAlbelda, M. T., Frías, J. C., García-España, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859–3877.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19–30.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, X.-F., Zhao, X.-L., Zhang, L., Wu, W.-N. & Wang, Y. (2018). Chin. J. Inorg. Chem. 34, 201–205.  Google Scholar
First citationLi, C.-R., Liao, Z.-C., Qin, J.-C., Wang, B.-D. & Yang, Z.-Y. (2015). J. Lumin. 168, 330–333.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, H.-Q., Zhao, L., Lin, H.-F., Tang, J.-K. & Li, G.-S. (2013). Chem. Eur. J. 19, 13235–13241.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds