organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Meth­­oxy-2-(2-meth­­oxy­naphthalen-1-yl)-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 September 2018; accepted 10 September 2018; online 14 September 2018)

In the title compound, C21H16O4, the meth­oxy-substituted naphthalene ring system (r.m.s. deviation = 0.007 Å) is almost orthogonal to the 4H-chromenone skeleton (r.m.s. deviation = 0.012 Å) with a dihedral angle of 83.16 (4)° between them. In the crystal, inversion dimers are linked by pairs of C—H⋯O hydrogen bonds that generate R22(18) loops and additional C—H⋯O inter­actions connect the dimers into double chains of mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavones have a 2-phenyl­chromen-4-one skeletal structure and are a sub-class of the flavonoids. Common flavones include Apigenin, Chrysin, Zapotin, and Wogonin, depending on the placement of the hy­droxy or meth­oxy group substituents at different positions on the flavone backbone (Fig. 1[link]). A recent review described their broad spectrum of biological activities and pharmaceutical applications (Singh et al., 2014[Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206-239.]). Naphthyl flavones result from the replacement of the phenyl ring at the 2-position of a flavone with a naphthyl ring system, and the resulting compounds also show versatile biological activities (Ahn et al., 2017[Ahn, S., Ahn, E., Sung, J., Koh, D., Lim, Y. & Park, S. (2017). J. Ind. Engineering Chem. 56, 258-269.]; Lee et al., 2016[Lee, Y., Kim, B., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, H. (2016). Bioorg. Chem. 68, 166-176.]).

[Figure 1]
Figure 1
The flavone skeleton and some common naturally occurring flavones.

The mol­ecular structure of the title compound, C21H16O4, is shown in Fig. 2[link]. The dihedral angle formed between the plane of the meth­oxy-substituted naphthalene ring system (r.m.s. deviation = 0.007 Å) and the plane of the 4H-chromenone skeleton (r.m.s. deviation = 0.012 Å) is 83.16 (4)°. This contrasts sharply with the situation found for 5,6-dihy­droxy-7,8-di­meth­oxy­flavone (Goyal et al., 2018[Goyal, N., Do, C., Donahue, J. P., Mague, J. T. & Foroozesh, M. (2018). IUCrData, 3, x180993.]) and ethyl 2-[2-(4-oxo-4H-chromen-2-yl)phen­oxy]acetate (Jing et al., 2013[Jing, L.-L., Fan, X.-F., Fan, P.-C., He, L. & Jia, Z.-P. (2013). Acta Cryst. E69, o1096.]), which have substituted benzene or phenyl substit­uents at the 2-positions of the chromenone units, where the corresponding dihedral angles are 4.9 (1) and 1.89 (6)°, respectively. The meth­oxy groups are almost coplanar with the benzene ring and naphthalene ring system to which they are connected [torsion angles C8—C7—O4—C21 = −2.7 (3)°; C12—C11—O3—C20 = −1.8 (3)°].

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, inversion dimers form through pairs of C17—H17⋯O2 hydrogen bonds and generate R22(18) loops (Table 1[link], Fig. 3[link]). Inversion dimers also result from C8—H8⋯O2 and C21—H21C⋯O2 hydrogen bonds enclosing R22(10) and R22(16) rings, respectively. These contacts combine to form double chains of mol­ecules along [010] (Table 1[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.94 2.46 3.350 (2) 157
C21—H21C⋯O2i 0.97 2.49 3.266 (3) 137
C17—H17⋯O2ii 0.94 2.59 3.425 (3) 149
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y, -z+2.
[Figure 3]
Figure 3
A view of an inversion dimer formed by pair of C17—H17⋯O2 hydrogen bonds (dashed lines) in the crystal structure of the title compound. For clarity only those H atoms involved in hydrogen bonding are shown.
[Figure 4]
Figure 4
A partial view of the crystal structure of the title compound showing double chains of mol­ecules formed along [010]. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

To a mixture of 2-hy­droxy-5-meth­oxy­aceto­phenone (498 mg, 3 mmol) and 2-meth­oxy-1-naphthaldehyde (558 mg, 3 mmol) in 30 ml of ethanol, 3 ml of aq. KOH (50%) were added and stirred at room temperature for 48 h. (Fig. 5[link]). After the completion of the reaction, the reaction mixture was poured into ice water (50 ml) and acidified with 3 M HCl (pH = 3). The resulting solid was filtered, washed with water and purified from ethanol to give the inter­mediate chalcone I (Fig. 5[link]). To a solution of compound I (334 mg, 1 mmol) in 5 ml of DMSO, a catalytic amount of iodine (I2, 0.25 eq.) was added as an oxidant and the mixture was refluxed for 2 h at 413 K, and then was cooled to room temperature. The reaction mixture was poured into crushed ice–water (50 ml) and the resulting solid was separated by filtration and washed with water. Recrystallization of the solid from ethanol solution gave crystals of the title compound.

[Figure 5]
Figure 5
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H16O4
Mr 332.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 7.9937 (5), 9.3819 (6), 12.2131 (8)
α, β, γ (°) 72.552 (3), 86.895 (3), 67.288 (3)
V3) 804.06 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.19 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.693, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22094, 4000, 2036
Rint 0.108
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 1.02
No. of reflections 4000
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Methoxy-2-(2-methoxynaphthalen-1-yl)-4H-chromen-4-one top
Crystal data top
C21H16O4Z = 2
Mr = 332.34F(000) = 348
Triclinic, P1Dx = 1.373 Mg m3
a = 7.9937 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3819 (6) ÅCell parameters from 2767 reflections
c = 12.2131 (8) Åθ = 2.6–24.7°
α = 72.552 (3)°µ = 0.10 mm1
β = 86.895 (3)°T = 223 K
γ = 67.288 (3)°Block, yellow
V = 804.06 (9) Å30.19 × 0.10 × 0.05 mm
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
2036 reflections with I > 2σ(I)
φ and ω scansRint = 0.108
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.693, Tmax = 0.746h = 1010
22094 measured reflectionsk = 1212
4000 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4000 reflectionsΔρmax = 0.23 e Å3
228 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1945 (3)0.3234 (2)0.87676 (18)0.0298 (5)
C20.3261 (3)0.2885 (3)0.79292 (18)0.0314 (5)
H20.41780.32950.78530.038*
C30.3232 (3)0.2003 (2)0.72571 (18)0.0282 (5)
O10.19798 (18)0.13238 (17)0.73275 (12)0.0306 (4)
C40.0659 (3)0.1606 (2)0.81089 (17)0.0264 (5)
C50.0605 (3)0.0921 (3)0.81328 (19)0.0331 (5)
H50.05370.02950.76450.040*
C60.1957 (3)0.1172 (3)0.88803 (19)0.0334 (5)
H60.28130.07030.89100.040*
C70.2078 (3)0.2119 (3)0.95984 (18)0.0305 (5)
C80.0830 (3)0.2807 (3)0.95611 (18)0.0294 (5)
H80.09170.34531.00370.035*
C90.0575 (3)0.2545 (2)0.88118 (17)0.0250 (5)
O20.1948 (2)0.4058 (2)0.93853 (14)0.0459 (5)
C100.4467 (3)0.1712 (2)0.63266 (18)0.0276 (5)
C110.4075 (3)0.2897 (3)0.52793 (19)0.0344 (5)
C120.5218 (3)0.2689 (3)0.43725 (19)0.0397 (6)
H120.49440.35050.36600.048*
C130.6723 (3)0.1296 (3)0.4537 (2)0.0383 (6)
H130.74740.11610.39260.046*
C140.7191 (3)0.0050 (3)0.55912 (19)0.0309 (5)
C150.8762 (3)0.1391 (3)0.5769 (2)0.0404 (6)
H150.95230.15340.51630.049*
C160.9197 (3)0.2574 (3)0.6798 (2)0.0450 (6)
H161.02600.35170.69020.054*
C170.8055 (3)0.2389 (3)0.7707 (2)0.0393 (6)
H170.83510.32140.84160.047*
C180.6521 (3)0.1019 (3)0.75662 (19)0.0318 (5)
H180.57710.09110.81810.038*
C190.6037 (3)0.0250 (2)0.65053 (18)0.0274 (5)
O30.2527 (2)0.4243 (2)0.51847 (14)0.0512 (5)
C200.2052 (4)0.5532 (3)0.4130 (2)0.0562 (8)
H20A0.29670.59960.39970.084*
H20B0.08810.63610.41720.084*
H20C0.19860.51170.35020.084*
O40.3469 (2)0.22502 (19)1.03115 (14)0.0433 (4)
C210.3570 (3)0.3119 (3)1.1107 (2)0.0519 (7)
H21A0.24750.25751.16190.078*
H21B0.46190.31591.15530.078*
H21C0.36830.42131.06900.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (11)0.0288 (12)0.0336 (13)0.0125 (10)0.0065 (10)0.0123 (11)
C20.0271 (11)0.0381 (13)0.0366 (13)0.0178 (10)0.0085 (10)0.0161 (11)
C30.0260 (11)0.0274 (12)0.0289 (12)0.0092 (9)0.0023 (9)0.0072 (10)
O10.0307 (8)0.0356 (9)0.0316 (9)0.0161 (7)0.0077 (6)0.0154 (7)
C40.0256 (11)0.0265 (11)0.0253 (12)0.0090 (9)0.0039 (9)0.0070 (10)
C50.0354 (12)0.0337 (13)0.0358 (14)0.0157 (10)0.0036 (10)0.0153 (11)
C60.0307 (12)0.0347 (13)0.0402 (14)0.0183 (10)0.0024 (10)0.0113 (11)
C70.0263 (11)0.0321 (12)0.0333 (13)0.0140 (10)0.0072 (9)0.0077 (11)
C80.0310 (11)0.0297 (12)0.0287 (12)0.0122 (10)0.0047 (9)0.0105 (10)
C90.0267 (11)0.0228 (11)0.0220 (11)0.0081 (9)0.0017 (9)0.0038 (9)
O20.0468 (10)0.0592 (11)0.0583 (11)0.0333 (9)0.0239 (8)0.0413 (10)
C100.0274 (11)0.0293 (12)0.0279 (12)0.0111 (9)0.0049 (9)0.0115 (10)
C110.0327 (12)0.0334 (13)0.0339 (14)0.0087 (10)0.0031 (10)0.0115 (11)
C120.0460 (14)0.0421 (15)0.0271 (13)0.0162 (12)0.0066 (11)0.0069 (11)
C130.0379 (13)0.0499 (15)0.0323 (14)0.0190 (12)0.0138 (10)0.0190 (12)
C140.0288 (11)0.0360 (13)0.0332 (13)0.0146 (10)0.0054 (10)0.0158 (11)
C150.0330 (12)0.0447 (15)0.0479 (16)0.0129 (11)0.0119 (11)0.0246 (14)
C160.0336 (13)0.0376 (14)0.0581 (18)0.0040 (11)0.0010 (12)0.0191 (14)
C170.0396 (13)0.0332 (13)0.0430 (15)0.0131 (11)0.0044 (11)0.0084 (12)
C180.0329 (12)0.0349 (13)0.0332 (13)0.0167 (10)0.0033 (10)0.0137 (11)
C190.0281 (11)0.0316 (12)0.0288 (12)0.0158 (10)0.0032 (9)0.0128 (10)
O30.0486 (10)0.0410 (10)0.0371 (10)0.0043 (8)0.0052 (8)0.0035 (8)
C200.0662 (18)0.0378 (15)0.0396 (16)0.0009 (13)0.0063 (13)0.0010 (13)
O40.0384 (9)0.0541 (11)0.0532 (11)0.0287 (8)0.0218 (8)0.0272 (9)
C210.0562 (16)0.0625 (18)0.0593 (18)0.0370 (14)0.0330 (14)0.0361 (15)
Geometric parameters (Å, º) top
C1—O21.232 (2)C12—C131.360 (3)
C1—C21.442 (3)C12—H120.9400
C1—C91.463 (3)C13—C141.405 (3)
C2—C31.335 (3)C13—H130.9400
C2—H20.9400C14—C151.413 (3)
C3—O11.366 (2)C14—C191.419 (3)
C3—C101.482 (3)C15—C161.358 (3)
O1—C41.386 (2)C15—H150.9400
C4—C91.385 (3)C16—C171.407 (3)
C4—C51.387 (3)C16—H160.9400
C5—C61.372 (3)C17—C181.363 (3)
C5—H50.9400C17—H170.9400
C6—C71.399 (3)C18—C191.421 (3)
C6—H60.9400C18—H180.9400
C7—O41.365 (2)O3—C201.425 (3)
C7—C81.375 (3)C20—H20A0.9700
C8—C91.403 (3)C20—H20B0.9700
C8—H80.9400C20—H20C0.9700
C10—C111.375 (3)O4—C211.425 (3)
C10—C191.423 (3)C21—H21A0.9700
C11—O31.364 (2)C21—H21B0.9700
C11—C121.408 (3)C21—H21C0.9700
O2—C1—C2123.39 (19)C11—C12—H12120.3
O2—C1—C9122.48 (18)C12—C13—C14122.2 (2)
C2—C1—C9114.13 (18)C12—C13—H13118.9
C3—C2—C1122.8 (2)C14—C13—H13118.9
C3—C2—H2118.6C13—C14—C15122.3 (2)
C1—C2—H2118.6C13—C14—C19118.63 (19)
C2—C3—O1122.70 (18)C15—C14—C19119.0 (2)
C2—C3—C10124.79 (19)C16—C15—C14121.4 (2)
O1—C3—C10112.45 (17)C16—C15—H15119.3
C3—O1—C4118.21 (15)C14—C15—H15119.3
C9—C4—O1122.29 (18)C15—C16—C17119.9 (2)
C9—C4—C5121.54 (18)C15—C16—H16120.0
O1—C4—C5116.16 (18)C17—C16—H16120.0
C6—C5—C4118.83 (19)C18—C17—C16120.4 (2)
C6—C5—H5120.6C18—C17—H17119.8
C4—C5—H5120.6C16—C17—H17119.8
C5—C6—C7120.9 (2)C17—C18—C19121.1 (2)
C5—C6—H6119.6C17—C18—H18119.5
C7—C6—H6119.6C19—C18—H18119.5
O4—C7—C8125.22 (19)C14—C19—C18118.15 (19)
O4—C7—C6114.82 (18)C14—C19—C10118.8 (2)
C8—C7—C6119.94 (19)C18—C19—C10123.00 (18)
C7—C8—C9119.92 (19)C11—O3—C20118.98 (18)
C7—C8—H8120.0O3—C20—H20A109.5
C9—C8—H8120.0O3—C20—H20B109.5
C4—C9—C8118.91 (18)H20A—C20—H20B109.5
C4—C9—C1119.84 (17)O3—C20—H20C109.5
C8—C9—C1121.25 (18)H20A—C20—H20C109.5
C11—C10—C19120.18 (18)H20B—C20—H20C109.5
C11—C10—C3118.58 (18)C7—O4—C21116.54 (17)
C19—C10—C3121.24 (19)O4—C21—H21A109.5
O3—C11—C10115.91 (19)O4—C21—H21B109.5
O3—C11—C12123.3 (2)H21A—C21—H21B109.5
C10—C11—C12120.79 (19)O4—C21—H21C109.5
C13—C12—C11119.4 (2)H21A—C21—H21C109.5
C13—C12—H12120.3H21B—C21—H21C109.5
O2—C1—C2—C3179.3 (2)C19—C10—C11—O3179.00 (18)
C9—C1—C2—C30.3 (3)C3—C10—C11—O31.5 (3)
C1—C2—C3—O11.7 (3)C19—C10—C11—C120.3 (3)
C1—C2—C3—C10175.3 (2)C3—C10—C11—C12179.1 (2)
C2—C3—O1—C41.9 (3)O3—C11—C12—C13179.1 (2)
C10—C3—O1—C4175.43 (17)C10—C11—C12—C130.2 (3)
C3—O1—C4—C90.0 (3)C11—C12—C13—C140.5 (3)
C3—O1—C4—C5178.68 (18)C12—C13—C14—C15179.3 (2)
C9—C4—C5—C60.6 (3)C12—C13—C14—C190.9 (3)
O1—C4—C5—C6179.32 (19)C13—C14—C15—C16179.5 (2)
C4—C5—C6—C70.8 (3)C19—C14—C15—C160.7 (3)
C5—C6—C7—O4179.0 (2)C14—C15—C16—C171.0 (4)
C5—C6—C7—C80.1 (3)C15—C16—C17—C180.7 (4)
O4—C7—C8—C9178.1 (2)C16—C17—C18—C190.0 (3)
C6—C7—C8—C90.7 (3)C13—C14—C19—C18179.83 (19)
O1—C4—C9—C8178.45 (18)C15—C14—C19—C180.1 (3)
C5—C4—C9—C80.2 (3)C13—C14—C19—C101.0 (3)
O1—C4—C9—C11.9 (3)C15—C14—C19—C10179.25 (19)
C5—C4—C9—C1179.5 (2)C17—C18—C19—C140.3 (3)
C7—C8—C9—C40.8 (3)C17—C18—C19—C10178.8 (2)
C7—C8—C9—C1178.8 (2)C11—C10—C19—C140.7 (3)
O2—C1—C9—C4179.0 (2)C3—C10—C19—C14178.74 (19)
C2—C1—C9—C42.0 (3)C11—C10—C19—C18179.9 (2)
O2—C1—C9—C80.7 (3)C3—C10—C19—C180.4 (3)
C2—C1—C9—C8178.37 (19)C10—C11—O3—C20178.9 (2)
C2—C3—C10—C1180.7 (3)C12—C11—O3—C201.8 (3)
O1—C3—C10—C1196.5 (2)C8—C7—O4—C212.7 (3)
C2—C3—C10—C1998.8 (3)C6—C7—O4—C21176.17 (19)
O1—C3—C10—C1984.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.942.463.350 (2)157
C21—H21C···O2i0.972.493.266 (3)137
C17—H17···O2ii0.942.593.425 (3)149
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

This work was supported by a Dongduk Women's University grant.

Funding information

Funding for this research was provided by: Dongduk Women's University.

References

First citationAhn, S., Ahn, E., Sung, J., Koh, D., Lim, Y. & Park, S. (2017). J. Ind. Engineering Chem. 56, 258–269.  Web of Science CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationGoyal, N., Do, C., Donahue, J. P., Mague, J. T. & Foroozesh, M. (2018). IUCrData, 3, x180993.  Google Scholar
First citationJing, L.-L., Fan, X.-F., Fan, P.-C., He, L. & Jia, Z.-P. (2013). Acta Cryst. E69, o1096.  CrossRef IUCr Journals Google Scholar
First citationLee, Y., Kim, B., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, H. (2016). Bioorg. Chem. 68, 166–176.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–239.  Web of Science CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds