organic compounds
Ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lahmidi_sanae@yahoo.fr
In the title molecule, C13H16N4O2, the fused triazolopyrimidine ring system is planar. In the crystal, inversion-related C—H⋯O hydrogen bonds form dimers that are linked into chains extending along the a-axis direction by inversion-related C—H⋯π(ring) interactions.
Keywords: crystal structure; triazole; pyrimidine; hydrogen bond; C—H⋯π(ring) interaction.
CCDC reference: 1866951
Structure description
Among the various classes of nitrogen-containing et al., 2013), anticancer (Hoffmann et al., 2017) and antibacterial properties (Mabkhot et al., 2016). The present work is a continuation of the investigation of the triazolopyrimidine derivatives published by our team (El Otmani et al., 2002; Lahmidi et al., 2016).
triazolopyrimidine derivatives display a broad spectrum of biological activities, including anti-inflammatory (AshourThe fused triazolopyrimidine ring system is planar to within 0.011 (1) Å (r.m.s. deviation = 0.001) while the pent-4-enoate unit is nearly orthogonal to this plane as indicated by the C3—C4—C7—H7 torsion angle of −6.5 (9)° (Fig. 1). In the crystal, inversion-related C5—H5⋯O1 hydrogen bonds form dimers which are connected into chains running along the a-axis direction by inversion-related C10—H10B⋯Cg1 interactions, where Cg1 is the centroid of the C5/N2/C6/N4/N3 ring (Table 1 and Fig. 2).
Synthesis and crystallization
To a solution of ethyl 2-(5-methyl1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetate (1 g, 4.5 mmol) was added potassium hydroxide (0.3 g, 5.4 mmol) in acetone (20 ml). After 10 min of stirring, allyl bromide (0.94 ml, 10 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by (EtOAc/hexane 2:8). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (yield: 55%; m.p. 350–352 K).
Refinement
Crystal data, data collection and structure . The methyl group based on C1 is rotationally disordered over two sites in approximately equal amounts.
details are summarized in Table 2Structural data
CCDC reference: 1866951
https://doi.org/10.1107/S2414314618012804/pk4019sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314618012804/pk4019Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618012804/pk4019Isup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618012804/pk4019Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H16N4O2 | F(000) = 552 |
Mr = 260.30 | Dx = 1.304 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.069 (5) Å | Cell parameters from 9961 reflections |
b = 13.319 (7) Å | θ = 2.4–29.0° |
c = 11.851 (7) Å | µ = 0.09 mm−1 |
β = 112.161 (7)° | T = 120 K |
V = 1325.8 (13) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.26 × 0.23 mm |
Bruker SMART APEX CCD diffractometer | 3472 independent reflections |
Radiation source: fine-focus sealed tube | 2810 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.1°, θmin = 2.4° |
ω and φ scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→18 |
Tmin = 0.97, Tmax = 0.98 | l = −15→16 |
24464 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.0365P] where P = (Fo2 + 2Fc2)/3 |
3472 reflections | (Δ/σ)max = 0.014 |
225 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group based on C1 is rotationally disordered over two sites in approximately equal amounts. The pertinent H-atoms were included as riding contributions with an AFIX 127 instruction. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.56233 (10) | 0.23682 (6) | 0.58967 (7) | 0.0344 (2) | |
O2 | 0.64639 (8) | 0.31664 (5) | 0.77039 (6) | 0.02493 (18) | |
N1 | 0.32526 (10) | 0.55771 (6) | 0.86016 (8) | 0.02209 (19) | |
N2 | 0.41823 (10) | 0.63445 (6) | 0.71457 (8) | 0.0239 (2) | |
N3 | 0.43853 (9) | 0.48972 (6) | 0.61662 (7) | 0.02074 (19) | |
N4 | 0.38663 (9) | 0.46935 (5) | 0.70826 (7) | 0.01672 (18) | |
C1 | 0.23525 (14) | 0.46863 (8) | 0.99890 (11) | 0.0300 (2) | |
H1A | 0.272897 | 0.529471 | 1.047853 | 0.045* | 0.5 |
H1B | 0.277616 | 0.409356 | 1.049848 | 0.045* | 0.5 |
H1C | 0.118632 | 0.466814 | 0.966951 | 0.045* | 0.5 |
H1D | 0.173199 | 0.407623 | 0.995248 | 0.045* | 0.5 |
H1E | 0.168480 | 0.527738 | 0.993253 | 0.045* | 0.5 |
H1F | 0.327464 | 0.470281 | 1.076151 | 0.045* | 0.5 |
C2 | 0.29106 (11) | 0.46900 (7) | 0.89531 (9) | 0.0209 (2) | |
C3 | 0.30429 (11) | 0.37708 (7) | 0.83846 (9) | 0.0196 (2) | |
H3 | 0.2757 (14) | 0.3120 (9) | 0.8652 (11) | 0.027 (3)* | |
C4 | 0.35412 (11) | 0.37704 (6) | 0.74367 (8) | 0.0176 (2) | |
C5 | 0.45486 (12) | 0.58899 (7) | 0.62636 (9) | 0.0231 (2) | |
H5 | 0.4937 (15) | 0.6272 (8) | 0.5704 (11) | 0.025 (3)* | |
C6 | 0.37471 (11) | 0.55701 (7) | 0.76663 (9) | 0.0188 (2) | |
C7 | 0.37022 (12) | 0.28654 (7) | 0.67375 (9) | 0.0199 (2) | |
H7 | 0.3497 (13) | 0.2254 (9) | 0.7171 (11) | 0.023 (3)* | |
C8 | 0.24441 (12) | 0.28407 (8) | 0.54242 (9) | 0.0230 (2) | |
H8A | 0.2732 (14) | 0.3346 (9) | 0.4912 (11) | 0.025 (3)* | |
H8B | 0.2499 (14) | 0.2163 (9) | 0.5127 (11) | 0.027 (3)* | |
C9 | 0.08070 (12) | 0.30597 (8) | 0.53659 (10) | 0.0258 (2) | |
H9 | 0.0388 (16) | 0.2663 (10) | 0.5872 (12) | 0.032 (3)* | |
C10 | −0.01043 (15) | 0.37689 (9) | 0.46752 (11) | 0.0348 (3) | |
H10A | 0.0325 (18) | 0.4190 (11) | 0.4135 (14) | 0.046 (4)* | |
H10B | −0.1163 (18) | 0.3876 (10) | 0.4648 (14) | 0.046 (4)* | |
C11 | 0.53584 (12) | 0.27690 (7) | 0.67105 (9) | 0.0227 (2) | |
C12 | 0.80941 (13) | 0.31869 (10) | 0.77462 (11) | 0.0321 (3) | |
H12A | 0.8249 (16) | 0.2611 (10) | 0.7309 (13) | 0.035 (3)* | |
H12B | 0.8722 (16) | 0.3147 (9) | 0.8617 (13) | 0.033 (3)* | |
C13 | 0.84073 (14) | 0.41573 (11) | 0.72326 (12) | 0.0384 (3) | |
H13A | 0.8213 (18) | 0.4730 (11) | 0.7691 (15) | 0.048 (4)* | |
H13B | 0.9544 (19) | 0.4119 (11) | 0.7269 (14) | 0.048 (4)* | |
H13C | 0.7697 (18) | 0.4231 (11) | 0.6367 (14) | 0.047 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0358 (4) | 0.0395 (4) | 0.0304 (4) | 0.0086 (3) | 0.0153 (3) | −0.0084 (3) |
O2 | 0.0220 (4) | 0.0319 (4) | 0.0213 (4) | 0.0054 (3) | 0.0086 (3) | 0.0003 (3) |
N1 | 0.0237 (4) | 0.0214 (4) | 0.0231 (4) | −0.0003 (3) | 0.0111 (3) | −0.0032 (3) |
N2 | 0.0272 (4) | 0.0193 (4) | 0.0269 (5) | −0.0022 (3) | 0.0123 (4) | 0.0002 (3) |
N3 | 0.0231 (4) | 0.0225 (4) | 0.0194 (4) | −0.0009 (3) | 0.0112 (3) | 0.0030 (3) |
N4 | 0.0178 (4) | 0.0173 (4) | 0.0165 (4) | 0.0000 (3) | 0.0081 (3) | −0.0003 (3) |
C1 | 0.0361 (6) | 0.0337 (6) | 0.0273 (6) | −0.0027 (5) | 0.0201 (5) | −0.0037 (4) |
C2 | 0.0201 (4) | 0.0230 (5) | 0.0202 (5) | 0.0004 (4) | 0.0083 (4) | −0.0017 (3) |
C3 | 0.0205 (4) | 0.0186 (4) | 0.0203 (5) | 0.0001 (3) | 0.0085 (4) | 0.0010 (3) |
C4 | 0.0165 (4) | 0.0165 (4) | 0.0188 (5) | 0.0010 (3) | 0.0057 (3) | 0.0011 (3) |
C5 | 0.0245 (5) | 0.0217 (5) | 0.0242 (5) | −0.0022 (4) | 0.0104 (4) | 0.0022 (4) |
C6 | 0.0181 (4) | 0.0167 (4) | 0.0206 (5) | 0.0005 (3) | 0.0062 (4) | −0.0015 (3) |
C7 | 0.0252 (5) | 0.0159 (4) | 0.0199 (5) | 0.0010 (4) | 0.0099 (4) | −0.0001 (3) |
C8 | 0.0284 (5) | 0.0207 (5) | 0.0197 (5) | −0.0022 (4) | 0.0089 (4) | −0.0022 (4) |
C9 | 0.0268 (5) | 0.0254 (5) | 0.0240 (5) | −0.0053 (4) | 0.0081 (4) | −0.0045 (4) |
C10 | 0.0317 (6) | 0.0358 (6) | 0.0316 (6) | 0.0027 (5) | 0.0060 (5) | −0.0027 (5) |
C11 | 0.0265 (5) | 0.0204 (4) | 0.0219 (5) | 0.0064 (4) | 0.0100 (4) | 0.0018 (4) |
C12 | 0.0211 (5) | 0.0476 (7) | 0.0277 (6) | 0.0110 (5) | 0.0094 (4) | 0.0019 (5) |
C13 | 0.0250 (6) | 0.0630 (9) | 0.0291 (6) | 0.0004 (6) | 0.0123 (5) | 0.0060 (6) |
O1—C11 | 1.2032 (13) | C3—H3 | 0.990 (12) |
O2—C11 | 1.3345 (13) | C4—C7 | 1.5008 (14) |
O2—C12 | 1.4605 (15) | C5—H5 | 1.000 (12) |
N1—C2 | 1.3279 (14) | C7—C11 | 1.5198 (16) |
N1—C6 | 1.3434 (14) | C7—C8 | 1.5445 (15) |
N2—C6 | 1.3357 (13) | C7—H7 | 1.017 (12) |
N2—C5 | 1.3535 (14) | C8—C9 | 1.4889 (16) |
N3—C5 | 1.3306 (15) | C8—H8A | 1.005 (12) |
N3—N4 | 1.3638 (12) | C8—H8B | 0.977 (12) |
N4—C4 | 1.3667 (13) | C9—C10 | 1.3172 (17) |
N4—C6 | 1.3820 (13) | C9—H9 | 0.978 (14) |
C1—C2 | 1.4940 (16) | C10—H10A | 1.032 (15) |
C1—H1A | 0.9800 | C10—H10B | 0.959 (15) |
C1—H1B | 0.9800 | C12—C13 | 1.501 (2) |
C1—H1C | 0.9800 | C12—H12A | 0.965 (14) |
C1—H1D | 0.9800 | C12—H12B | 0.974 (14) |
C1—H1E | 0.9800 | C13—H13A | 0.990 (16) |
C1—H1F | 0.9800 | C13—H13B | 1.017 (16) |
C2—C3 | 1.4241 (14) | C13—H13C | 0.989 (15) |
C3—C4 | 1.3599 (14) | ||
C11—O2—C12 | 116.85 (9) | N3—C5—H5 | 120.3 (7) |
C2—N1—C6 | 116.29 (8) | N2—C5—H5 | 122.4 (7) |
C6—N2—C5 | 102.29 (9) | N2—C6—N1 | 128.65 (9) |
C5—N3—N4 | 100.91 (8) | N2—C6—N4 | 109.18 (9) |
N3—N4—C4 | 127.07 (8) | N1—C6—N4 | 122.17 (9) |
N3—N4—C6 | 110.26 (8) | C4—C7—C11 | 112.47 (8) |
C4—N4—C6 | 122.65 (9) | C4—C7—C8 | 112.63 (8) |
C2—C1—H1A | 109.5 | C11—C7—C8 | 109.71 (9) |
C2—C1—H1B | 109.5 | C4—C7—H7 | 106.9 (7) |
H1A—C1—H1B | 109.5 | C11—C7—H7 | 108.3 (6) |
C2—C1—H1C | 109.5 | C8—C7—H7 | 106.6 (7) |
H1A—C1—H1C | 109.5 | C9—C8—C7 | 112.78 (9) |
H1B—C1—H1C | 109.5 | C9—C8—H8A | 108.8 (7) |
C2—C1—H1D | 109.5 | C7—C8—H8A | 109.5 (7) |
H1A—C1—H1D | 141.1 | C9—C8—H8B | 110.5 (7) |
H1B—C1—H1D | 56.3 | C7—C8—H8B | 105.3 (7) |
H1C—C1—H1D | 56.3 | H8A—C8—H8B | 110.0 (10) |
C2—C1—H1E | 109.5 | C10—C9—C8 | 123.39 (11) |
H1A—C1—H1E | 56.3 | C10—C9—H9 | 118.1 (8) |
H1B—C1—H1E | 141.1 | C8—C9—H9 | 118.5 (8) |
H1C—C1—H1E | 56.3 | C9—C10—H10A | 118.7 (8) |
H1D—C1—H1E | 109.5 | C9—C10—H10B | 120.9 (9) |
C2—C1—H1F | 109.5 | H10A—C10—H10B | 120.4 (12) |
H1A—C1—H1F | 56.3 | O1—C11—O2 | 124.92 (10) |
H1B—C1—H1F | 56.3 | O1—C11—C7 | 123.51 (9) |
H1C—C1—H1F | 141.1 | O2—C11—C7 | 111.56 (8) |
H1D—C1—H1F | 109.5 | O2—C12—C13 | 110.25 (9) |
H1E—C1—H1F | 109.5 | O2—C12—H12A | 108.5 (8) |
N1—C2—C3 | 123.03 (10) | C13—C12—H12A | 112.2 (8) |
N1—C2—C1 | 116.90 (9) | O2—C12—H12B | 102.4 (8) |
C3—C2—C1 | 120.07 (9) | C13—C12—H12B | 110.6 (8) |
C4—C3—C2 | 120.31 (9) | H12A—C12—H12B | 112.3 (11) |
C4—C3—H3 | 118.2 (7) | C12—C13—H13A | 110.0 (9) |
C2—C3—H3 | 121.5 (7) | C12—C13—H13B | 106.5 (8) |
C3—C4—N4 | 115.52 (8) | H13A—C13—H13B | 113.7 (12) |
C3—C4—C7 | 126.04 (9) | C12—C13—H13C | 110.9 (9) |
N4—C4—C7 | 118.41 (9) | H13A—C13—H13C | 108.1 (12) |
N3—C5—N2 | 117.37 (9) | H13B—C13—H13C | 107.6 (12) |
C5—N3—N4—C4 | −177.92 (9) | N3—N4—C6—N2 | −0.07 (10) |
C5—N3—N4—C6 | 0.17 (10) | C4—N4—C6—N2 | 178.12 (8) |
C6—N1—C2—C3 | −0.25 (14) | N3—N4—C6—N1 | 179.66 (8) |
C6—N1—C2—C1 | −179.75 (9) | C4—N4—C6—N1 | −2.16 (14) |
N1—C2—C3—C4 | 0.13 (15) | C3—C4—C7—C11 | −125.28 (10) |
C1—C2—C3—C4 | 179.61 (9) | N4—C4—C7—C11 | 57.08 (11) |
C2—C3—C4—N4 | −0.91 (14) | C3—C4—C7—C8 | 110.12 (12) |
C2—C3—C4—C7 | −178.61 (8) | N4—C4—C7—C8 | −67.52 (12) |
N3—N4—C4—C3 | 179.76 (8) | C4—C7—C8—C9 | −46.69 (12) |
C6—N4—C4—C3 | 1.90 (13) | C11—C7—C8—C9 | −172.79 (8) |
N3—N4—C4—C7 | −2.35 (13) | C7—C8—C9—C10 | 125.75 (11) |
C6—N4—C4—C7 | 179.78 (8) | C12—O2—C11—O1 | 5.43 (15) |
N4—N3—C5—N2 | −0.23 (11) | C12—O2—C11—C7 | −175.66 (8) |
C6—N2—C5—N3 | 0.19 (12) | C4—C7—C11—O1 | −151.70 (10) |
C5—N2—C6—N1 | −179.76 (10) | C8—C7—C11—O1 | −25.51 (13) |
C5—N2—C6—N4 | −0.07 (10) | C4—C7—C11—O2 | 29.37 (11) |
C2—N1—C6—N2 | −179.11 (9) | C8—C7—C11—O2 | 155.55 (8) |
C2—N1—C6—N4 | 1.22 (14) | C11—O2—C12—C13 | 91.48 (12) |
Cg1 is the centroid of the C5/N2/C6/N4/N3 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 1.000 (12) | 2.532 (12) | 3.4147 (19) | 147.1 (9) |
C10—H10B···Cg1ii | 0.962 (17) | 2.747 (18) | 3.657 (3) | 143.9 (13) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Ashour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. M. (2013). Eur. J. Med. Chem. 62, 341–351. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Elotmani, B., El Mahi, M. & Essassi, E. M. (2002). C. R. Chim. 5, 517–523. Web of Science CrossRef CAS Google Scholar
Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946. Google Scholar
Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al- Showiman, S. S. (2016). Molecules, 21, 1036–1045. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.