organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lahmidi_sanae@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 30 August 2018; accepted 11 September 2018; online 21 September 2018)

In the title mol­ecule, C13H16N4O2, the fused triazolo­pyrimidine ring system is planar. In the crystal, inversion-related C—H⋯O hydrogen bonds form dimers that are linked into chains extending along the a-axis direction by inversion-related C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among the various classes of nitro­gen-containing heterocyclic compounds, triazolo­pyrimidine derivatives display a broad spectrum of biological activities, including anti-inflammatory (Ashour et al., 2013[Ashour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. M. (2013). Eur. J. Med. Chem. 62, 341-351.]), anti­cancer (Hoffmann et al., 2017[Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34-45.]) and anti­bacterial properties (Mabkhot et al., 2016[Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al- Showiman, S. S. (2016). Molecules, 21, 1036-1045.]). The present work is a continuation of the investigation of the triazolo­pyrimidine derivatives published by our team (El Otmani et al., 2002[Elotmani, B., El Mahi, M. & Essassi, E. M. (2002). C. R. Chim. 5, 517-523.]; Lahmidi et al., 2016[Lahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.]).

The fused triazolo­pyrimidine ring system is planar to within 0.011 (1) Å (r.m.s. deviation = 0.001) while the pent-4-enoate unit is nearly orthogonal to this plane as indicated by the C3—C4—C7—H7 torsion angle of −6.5 (9)° (Fig. 1[link]). In the crystal, inversion-related C5—H5⋯O1 hydrogen bonds form dimers which are connected into chains running along the a-axis direction by inversion-related C10—H10BCg1 inter­actions, where Cg1 is the centroid of the C5/N2/C6/N4/N3 ring (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5/N2/C6/N4/N3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 1.000 (12) 2.532 (12) 3.4147 (19) 147.1 (9)
C10—H10BCg1ii 0.962 (17) 2.747 (18) 3.657 (3) 143.9 (13)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 50% probability ellipsoids. For the sake of clarity, disorder of methyl group C1 is not shown.
[Figure 2]
Figure 2
A portion of one chain viewed along the c-axis direction. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are shown, respectively, by black and green dashed lines.

Synthesis and crystallization

To a solution of ethyl 2-(5-methyl1,2,4-triazolo[1,5-a]pyrimidin-7-yl)acetate (1 g, 4.5 mmol) was added potassium hydroxide (0.3 g, 5.4 mmol) in acetone (20 ml). After 10 min of stirring, allyl bromide (0.94 ml, 10 mmol) was added dropwise. Upon disappearance of the starting material as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (50 ml), washed with water and brine, dried over MgSO4 and the solvent was evaporated in vacuo. The resulting residue was purified by column chromatography (EtOAc/hexane 2:8). The title compound was recrystallized from ethanol at room temperature giving colourless crystals (yield: 55%; m.p. 350–352 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl group based on C1 is rotationally disordered over two sites in approximately equal amounts.

Table 2
Experimental details

Crystal data
Chemical formula C13H16N4O2
Mr 260.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 9.069 (5), 13.319 (7), 11.851 (7)
β (°) 112.161 (7)
V3) 1325.8 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.97, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 24464, 3472, 2810
Rint 0.040
(sin θ/λ)max−1) 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.13
No. of reflections 3472
No. of parameters 225
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-(5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7-yl)pent-4-enoate top
Crystal data top
C13H16N4O2F(000) = 552
Mr = 260.30Dx = 1.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.069 (5) ÅCell parameters from 9961 reflections
b = 13.319 (7) Åθ = 2.4–29.0°
c = 11.851 (7) ŵ = 0.09 mm1
β = 112.161 (7)°T = 120 K
V = 1325.8 (13) Å3Block, colourless
Z = 40.28 × 0.26 × 0.23 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3472 independent reflections
Radiation source: fine-focus sealed tube2810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.4°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1718
Tmin = 0.97, Tmax = 0.98l = 1516
24464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.0365P]
where P = (Fo2 + 2Fc2)/3
3472 reflections(Δ/σ)max = 0.014
225 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group based on C1 is rotationally disordered over two sites in approximately equal amounts. The pertinent H-atoms were included as riding contributions with an AFIX 127 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.56233 (10)0.23682 (6)0.58967 (7)0.0344 (2)
O20.64639 (8)0.31664 (5)0.77039 (6)0.02493 (18)
N10.32526 (10)0.55771 (6)0.86016 (8)0.02209 (19)
N20.41823 (10)0.63445 (6)0.71457 (8)0.0239 (2)
N30.43853 (9)0.48972 (6)0.61662 (7)0.02074 (19)
N40.38663 (9)0.46935 (5)0.70826 (7)0.01672 (18)
C10.23525 (14)0.46863 (8)0.99890 (11)0.0300 (2)
H1A0.2728970.5294711.0478530.045*0.5
H1B0.2776160.4093561.0498480.045*0.5
H1C0.1186320.4668140.9669510.045*0.5
H1D0.1731990.4076230.9952480.045*0.5
H1E0.1684800.5277380.9932530.045*0.5
H1F0.3274640.4702811.0761510.045*0.5
C20.29106 (11)0.46900 (7)0.89531 (9)0.0209 (2)
C30.30429 (11)0.37708 (7)0.83846 (9)0.0196 (2)
H30.2757 (14)0.3120 (9)0.8652 (11)0.027 (3)*
C40.35412 (11)0.37704 (6)0.74367 (8)0.0176 (2)
C50.45486 (12)0.58899 (7)0.62636 (9)0.0231 (2)
H50.4937 (15)0.6272 (8)0.5704 (11)0.025 (3)*
C60.37471 (11)0.55701 (7)0.76663 (9)0.0188 (2)
C70.37022 (12)0.28654 (7)0.67375 (9)0.0199 (2)
H70.3497 (13)0.2254 (9)0.7171 (11)0.023 (3)*
C80.24441 (12)0.28407 (8)0.54242 (9)0.0230 (2)
H8A0.2732 (14)0.3346 (9)0.4912 (11)0.025 (3)*
H8B0.2499 (14)0.2163 (9)0.5127 (11)0.027 (3)*
C90.08070 (12)0.30597 (8)0.53659 (10)0.0258 (2)
H90.0388 (16)0.2663 (10)0.5872 (12)0.032 (3)*
C100.01043 (15)0.37689 (9)0.46752 (11)0.0348 (3)
H10A0.0325 (18)0.4190 (11)0.4135 (14)0.046 (4)*
H10B0.1163 (18)0.3876 (10)0.4648 (14)0.046 (4)*
C110.53584 (12)0.27690 (7)0.67105 (9)0.0227 (2)
C120.80941 (13)0.31869 (10)0.77462 (11)0.0321 (3)
H12A0.8249 (16)0.2611 (10)0.7309 (13)0.035 (3)*
H12B0.8722 (16)0.3147 (9)0.8617 (13)0.033 (3)*
C130.84073 (14)0.41573 (11)0.72326 (12)0.0384 (3)
H13A0.8213 (18)0.4730 (11)0.7691 (15)0.048 (4)*
H13B0.9544 (19)0.4119 (11)0.7269 (14)0.048 (4)*
H13C0.7697 (18)0.4231 (11)0.6367 (14)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0358 (4)0.0395 (4)0.0304 (4)0.0086 (3)0.0153 (3)0.0084 (3)
O20.0220 (4)0.0319 (4)0.0213 (4)0.0054 (3)0.0086 (3)0.0003 (3)
N10.0237 (4)0.0214 (4)0.0231 (4)0.0003 (3)0.0111 (3)0.0032 (3)
N20.0272 (4)0.0193 (4)0.0269 (5)0.0022 (3)0.0123 (4)0.0002 (3)
N30.0231 (4)0.0225 (4)0.0194 (4)0.0009 (3)0.0112 (3)0.0030 (3)
N40.0178 (4)0.0173 (4)0.0165 (4)0.0000 (3)0.0081 (3)0.0003 (3)
C10.0361 (6)0.0337 (6)0.0273 (6)0.0027 (5)0.0201 (5)0.0037 (4)
C20.0201 (4)0.0230 (5)0.0202 (5)0.0004 (4)0.0083 (4)0.0017 (3)
C30.0205 (4)0.0186 (4)0.0203 (5)0.0001 (3)0.0085 (4)0.0010 (3)
C40.0165 (4)0.0165 (4)0.0188 (5)0.0010 (3)0.0057 (3)0.0011 (3)
C50.0245 (5)0.0217 (5)0.0242 (5)0.0022 (4)0.0104 (4)0.0022 (4)
C60.0181 (4)0.0167 (4)0.0206 (5)0.0005 (3)0.0062 (4)0.0015 (3)
C70.0252 (5)0.0159 (4)0.0199 (5)0.0010 (4)0.0099 (4)0.0001 (3)
C80.0284 (5)0.0207 (5)0.0197 (5)0.0022 (4)0.0089 (4)0.0022 (4)
C90.0268 (5)0.0254 (5)0.0240 (5)0.0053 (4)0.0081 (4)0.0045 (4)
C100.0317 (6)0.0358 (6)0.0316 (6)0.0027 (5)0.0060 (5)0.0027 (5)
C110.0265 (5)0.0204 (4)0.0219 (5)0.0064 (4)0.0100 (4)0.0018 (4)
C120.0211 (5)0.0476 (7)0.0277 (6)0.0110 (5)0.0094 (4)0.0019 (5)
C130.0250 (6)0.0630 (9)0.0291 (6)0.0004 (6)0.0123 (5)0.0060 (6)
Geometric parameters (Å, º) top
O1—C111.2032 (13)C3—H30.990 (12)
O2—C111.3345 (13)C4—C71.5008 (14)
O2—C121.4605 (15)C5—H51.000 (12)
N1—C21.3279 (14)C7—C111.5198 (16)
N1—C61.3434 (14)C7—C81.5445 (15)
N2—C61.3357 (13)C7—H71.017 (12)
N2—C51.3535 (14)C8—C91.4889 (16)
N3—C51.3306 (15)C8—H8A1.005 (12)
N3—N41.3638 (12)C8—H8B0.977 (12)
N4—C41.3667 (13)C9—C101.3172 (17)
N4—C61.3820 (13)C9—H90.978 (14)
C1—C21.4940 (16)C10—H10A1.032 (15)
C1—H1A0.9800C10—H10B0.959 (15)
C1—H1B0.9800C12—C131.501 (2)
C1—H1C0.9800C12—H12A0.965 (14)
C1—H1D0.9800C12—H12B0.974 (14)
C1—H1E0.9800C13—H13A0.990 (16)
C1—H1F0.9800C13—H13B1.017 (16)
C2—C31.4241 (14)C13—H13C0.989 (15)
C3—C41.3599 (14)
C11—O2—C12116.85 (9)N3—C5—H5120.3 (7)
C2—N1—C6116.29 (8)N2—C5—H5122.4 (7)
C6—N2—C5102.29 (9)N2—C6—N1128.65 (9)
C5—N3—N4100.91 (8)N2—C6—N4109.18 (9)
N3—N4—C4127.07 (8)N1—C6—N4122.17 (9)
N3—N4—C6110.26 (8)C4—C7—C11112.47 (8)
C4—N4—C6122.65 (9)C4—C7—C8112.63 (8)
C2—C1—H1A109.5C11—C7—C8109.71 (9)
C2—C1—H1B109.5C4—C7—H7106.9 (7)
H1A—C1—H1B109.5C11—C7—H7108.3 (6)
C2—C1—H1C109.5C8—C7—H7106.6 (7)
H1A—C1—H1C109.5C9—C8—C7112.78 (9)
H1B—C1—H1C109.5C9—C8—H8A108.8 (7)
C2—C1—H1D109.5C7—C8—H8A109.5 (7)
H1A—C1—H1D141.1C9—C8—H8B110.5 (7)
H1B—C1—H1D56.3C7—C8—H8B105.3 (7)
H1C—C1—H1D56.3H8A—C8—H8B110.0 (10)
C2—C1—H1E109.5C10—C9—C8123.39 (11)
H1A—C1—H1E56.3C10—C9—H9118.1 (8)
H1B—C1—H1E141.1C8—C9—H9118.5 (8)
H1C—C1—H1E56.3C9—C10—H10A118.7 (8)
H1D—C1—H1E109.5C9—C10—H10B120.9 (9)
C2—C1—H1F109.5H10A—C10—H10B120.4 (12)
H1A—C1—H1F56.3O1—C11—O2124.92 (10)
H1B—C1—H1F56.3O1—C11—C7123.51 (9)
H1C—C1—H1F141.1O2—C11—C7111.56 (8)
H1D—C1—H1F109.5O2—C12—C13110.25 (9)
H1E—C1—H1F109.5O2—C12—H12A108.5 (8)
N1—C2—C3123.03 (10)C13—C12—H12A112.2 (8)
N1—C2—C1116.90 (9)O2—C12—H12B102.4 (8)
C3—C2—C1120.07 (9)C13—C12—H12B110.6 (8)
C4—C3—C2120.31 (9)H12A—C12—H12B112.3 (11)
C4—C3—H3118.2 (7)C12—C13—H13A110.0 (9)
C2—C3—H3121.5 (7)C12—C13—H13B106.5 (8)
C3—C4—N4115.52 (8)H13A—C13—H13B113.7 (12)
C3—C4—C7126.04 (9)C12—C13—H13C110.9 (9)
N4—C4—C7118.41 (9)H13A—C13—H13C108.1 (12)
N3—C5—N2117.37 (9)H13B—C13—H13C107.6 (12)
C5—N3—N4—C4177.92 (9)N3—N4—C6—N20.07 (10)
C5—N3—N4—C60.17 (10)C4—N4—C6—N2178.12 (8)
C6—N1—C2—C30.25 (14)N3—N4—C6—N1179.66 (8)
C6—N1—C2—C1179.75 (9)C4—N4—C6—N12.16 (14)
N1—C2—C3—C40.13 (15)C3—C4—C7—C11125.28 (10)
C1—C2—C3—C4179.61 (9)N4—C4—C7—C1157.08 (11)
C2—C3—C4—N40.91 (14)C3—C4—C7—C8110.12 (12)
C2—C3—C4—C7178.61 (8)N4—C4—C7—C867.52 (12)
N3—N4—C4—C3179.76 (8)C4—C7—C8—C946.69 (12)
C6—N4—C4—C31.90 (13)C11—C7—C8—C9172.79 (8)
N3—N4—C4—C72.35 (13)C7—C8—C9—C10125.75 (11)
C6—N4—C4—C7179.78 (8)C12—O2—C11—O15.43 (15)
N4—N3—C5—N20.23 (11)C12—O2—C11—C7175.66 (8)
C6—N2—C5—N30.19 (12)C4—C7—C11—O1151.70 (10)
C5—N2—C6—N1179.76 (10)C8—C7—C11—O125.51 (13)
C5—N2—C6—N40.07 (10)C4—C7—C11—O229.37 (11)
C2—N1—C6—N2179.11 (9)C8—C7—C11—O2155.55 (8)
C2—N1—C6—N41.22 (14)C11—O2—C12—C1391.48 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5/N2/C6/N4/N3 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i1.000 (12)2.532 (12)3.4147 (19)147.1 (9)
C10—H10B···Cg1ii0.962 (17)2.747 (18)3.657 (3)143.9 (13)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAshour, H., Shaaban, O., Rizk, O. & El-Ashmawy, I. M. (2013). Eur. J. Med. Chem. 62, 341–351.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElotmani, B., El Mahi, M. & Essassi, E. M. (2002). C. R. Chim. 5, 517–523.  Web of Science CrossRef CAS Google Scholar
First citationHoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLahmidi, S., Sebbar, N. K., Harmaoui, A., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161946.  Google Scholar
First citationMabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al- Showiman, S. S. (2016). Molecules, 21, 1036–1045.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds