organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Phenyl-2,5,5a,6,7,8,9,9a-hexa­hydro-1H-1,5-benzodiazepine-2-thione ethanol monosolvate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: awedad17@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 September 2018; accepted 10 September 2018; online 14 September 2018)

In the solvated title compound, C15H18N2S·C2H5OH, the seven-membered ring has a twisted envelope conformation and the cyclo­hexyl ring has a chair conformation. In the crystal, N—H⋯O and O—H⋯S hydrogen bonds as well as C—H⋯π(ring) inter­actions form helical chains in which the thione and solvent ethanol mol­ecules alternate. These chains are formed into layers parallel to (101) by inversion-related pairs of N—H⋯S hydrogen bonds. The ethanol solvent mol­ecule is disordered over two sets of sites [occupancy ratio 0.880 (8): 0.120 (8)] with the oxygen atom in common.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzodiazepine derivatives have attracted significant attention because of their biological and therapeutic activities. They are used as sedatives, hypnotics, anxiolytics, anti­convulsants, analgesic, anti­depressants, hypnotic, anti-inflammatory and muscle relaxant agents (Pasha & Jayashankara, 2006[Pasha, M. A. & Jayashankara, V. P. (2006). Ind. J. Chem, 45B, 2716-2719.]; Radatz et al. 2011[Radatz, C. S., Silva, R. B., Perin, G., Lenardão, E. J., Jacob, R. G. & Alves, D. (2011). Tetrahedron Lett. 52, 4132-4136.]; Naga Prashant & Ravi Kuma, 2015[Naga Prashant, K. & Ravi Kumar, K. (2015). Int. J. Pharm Tech Res, 8, 60-68.]). As a continuation of our research into 1,5-benzodiazepine derivatives (Al Garadi et al., 2018[Al Garadi, W., Ramli, Y., El Ghayati, L., Moussaif, A., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181011.]), we prepared the title compound (Fig. 1[link]) and characterized it by X-ray diffraction.

[Figure 1]
Figure 1
The title mol­ecule with 30% probability ellipsoids. The disordered solvent mol­ecule is omitted.

From the C8—C7—C10—C11 torsion angle of 44.3 (3)°, the pendant phenyl ring is inclined to the approximately planar portion of the seven-membered ring. This ring adopts a twisted envelope conformation with C1 at the flap and a Cremer–Pople puckering analysis gave the parameters Q(2) = 0.5165 (19) Å, Q(3) = 0.3634 (19) Å, φ(2) = 301.7 (2)° and φ(3) = 217.2 (2)° with a total puckering amplitude of 0.632 (2) Å. The cyclo­hexyl ring adopts a chair conformation with puckering parameters Q = 0.550 (3) Å, θ = 9.4 (2)° and φ = 142.2 (16)°.

In the crystal, each mol­ecule is connected to an ethanol solvent mol­ecule by an N1—H1A⋯O1 hydrogen bond and these units are formed into helical chains extending along the b-axis direction by O1—H1B⋯S1 hydrogen bonds and C6—H6⋯Cg2 inter­actions (Table 1[link] and Fig. 2[link]). The chains are connected by inversion-related pairs of N2—H2⋯S1 hydrogen bonds, forming layers parallel to (101) (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.91 2.13 3.030 (2) 173
N2—H2⋯S1i 0.91 2.53 3.4312 (15) 171
O1—H1B⋯S1ii 0.87 2.42 3.2886 (18) 173
C6—H6⋯Cg2ii 0.98 2.54 3.516 (2) 177
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Portion of one chain viewed along the c-axis direction. N—H⋯O and O—H⋯S hydrogen bonds and the C—H⋯π(ring) inter­actions are shown, respectively, by blue, orange and green dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with the N—H⋯S hydrogen bonds linking chains shown by purple dashed lines. Other inter­molecular inter­ations are depicted as in Fig. 2[link].

Synthesis and crystallization

Phospho­rus penta­sulfide (5.55 g, 0.025 mol) was added to a solution of 4-phenyl-5a,6,7,8,9,9a-hexa­hydro-1H-1,5-benzodiazepin-2(5H)-one (4.84 g, 0.02 mol) in 100 ml of pyridine. The mixture was refluxed for 3 h and the solvent was then evaporated under reduced pressure. The precipitate formed was washed with hot water. The residue obtained was crystallized from ethanol solution to afford colourless plates of the title compound.

Refinement

Crystal and refinement details are presented in Table 2[link]. Hydrogen atoms attached to carbon were placed in idealized positions while those attached to nitro­gen and oxygen were located in difference maps and their coordinates adjusted to give N—H = 0.91 Å and O—H = 0.87 Å. All were included as riding contributions. The ethanol solvent mol­ecule is disordered over two sets of sites [occupancy ratio 0.880 (8): 0.120 (8)] with the oxygen atom in common. The components of the disorder were refined with restraints that their geometries be comparable.

Table 2
Experimental details

Crystal data
Chemical formula C15H18N2S·C2H6O
Mr 304.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 12.0255 (2), 8.9303 (2), 15.8822 (3)
β (°) 95.813 (1)
V3) 1696.84 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.69
Crystal size (mm) 0.22 × 0.13 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.71, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 12459, 3209, 2613
Rint 0.032
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.07
No. of reflections 3209
No. of parameters 199
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-Phenyl-2,5,5a,6,7,8,9,9a-hexahydro-1H-1,5-benzodiazepine-2-thione ethanol monosolvate top
Crystal data top
C15H18N2S·C2H6OF(000) = 656
Mr = 304.44Dx = 1.192 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.0255 (2) ÅCell parameters from 8452 reflections
b = 8.9303 (2) Åθ = 4.9–70.1°
c = 15.8822 (3) ŵ = 1.69 mm1
β = 95.813 (1)°T = 298 K
V = 1696.84 (6) Å3Plate, colourless
Z = 40.22 × 0.13 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2613 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS micro-focus sourceRint = 0.032
ω scansθmax = 70.1°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.71, Tmax = 0.93k = 1010
12459 measured reflectionsl = 1917
3209 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.125H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.7241P]
where P = (Fo2 + 2Fc2)/3
3209 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
26 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 %A. and O—H = 0.87 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The lattice ethanol is disordered over two sites with the oxygen atom in common. The components of the disorder were refined with restraints that their geometries be comparable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.04411 (5)0.33255 (6)0.41909 (4)0.0606 (2)
N10.35246 (13)0.63053 (17)0.34690 (10)0.0464 (4)
H1A0.4154250.6682870.3275930.056*
N20.16991 (13)0.56183 (17)0.46634 (9)0.0470 (4)
H20.1099000.5788650.4956020.056*
C10.26404 (17)0.6658 (2)0.47957 (12)0.0484 (5)
H10.3297050.6117650.5055240.058*
C20.2299 (2)0.7841 (3)0.54160 (14)0.0638 (6)
H2A0.1571570.8236750.5208500.077*
H2B0.2230270.7368590.5958370.077*
C30.3128 (2)0.9130 (3)0.55427 (15)0.0740 (7)
H3A0.2867070.9851670.5934740.089*
H3B0.3848580.8754860.5781800.089*
C40.3246 (2)0.9874 (3)0.47095 (15)0.0664 (6)
H4A0.3767711.0702530.4791420.080*
H4B0.2528631.0268990.4476560.080*
C50.3667 (2)0.8748 (2)0.40967 (16)0.0630 (6)
H5A0.4414430.8432680.4311490.076*
H5B0.3716570.9236030.3556040.076*
C60.29211 (16)0.7361 (2)0.39586 (12)0.0453 (4)
H60.2223560.7647150.3624340.054*
C70.32591 (15)0.4872 (2)0.33075 (11)0.0402 (4)
C80.23849 (16)0.4073 (2)0.35782 (12)0.0461 (4)
H80.2299050.3117770.3347930.055*
C90.15903 (16)0.4448 (2)0.41463 (11)0.0440 (4)
C100.39812 (14)0.4097 (2)0.27311 (11)0.0417 (4)
C110.43429 (17)0.2639 (2)0.28946 (13)0.0521 (5)
H110.4152500.2148900.3376370.062*
C120.49857 (19)0.1908 (3)0.23445 (16)0.0640 (6)
H120.5225410.0932520.2459100.077*
C130.52694 (18)0.2624 (3)0.16295 (15)0.0636 (6)
H130.5692930.2128460.1257780.076*
C140.49280 (18)0.4067 (3)0.14656 (14)0.0586 (5)
H140.5129290.4550740.0985180.070*
C150.42842 (16)0.4814 (2)0.20098 (12)0.0478 (4)
H150.4055200.5793520.1892690.057*
O10.55130 (14)0.7823 (2)0.28035 (11)0.0695 (4)
H1B0.5275200.8045510.2282970.083*
C160.6566 (3)0.7119 (5)0.2791 (2)0.0730 (10)0.880 (8)
H16A0.7145340.7864800.2754710.088*0.880 (8)
H16B0.6559330.6459810.2305500.088*0.880 (8)
C170.6787 (3)0.6240 (6)0.3592 (4)0.1058 (17)0.880 (8)
H17A0.6200710.5520210.3627830.159*0.880 (8)
H17B0.6812200.6906180.4068170.159*0.880 (8)
H17C0.7489860.5729680.3594680.159*0.880 (8)
C16A0.6613 (11)0.734 (3)0.308 (2)0.0730 (10)0.120 (8)
H16C0.6781360.7689010.3653710.088*0.120 (8)
H16D0.7110800.7877840.2736740.088*0.120 (8)
C17A0.694 (3)0.573 (3)0.306 (3)0.1058 (17)0.120 (8)
H17D0.7686100.5609420.3322350.159*0.120 (8)
H17E0.6891510.5383660.2486870.159*0.120 (8)
H17F0.6435140.5151410.3367880.159*0.120 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0667 (3)0.0529 (3)0.0685 (4)0.0219 (2)0.0373 (3)0.0206 (2)
N10.0516 (9)0.0382 (8)0.0527 (9)0.0079 (7)0.0223 (7)0.0065 (7)
N20.0554 (9)0.0428 (8)0.0464 (8)0.0098 (7)0.0230 (7)0.0088 (7)
C10.0574 (11)0.0449 (10)0.0446 (10)0.0076 (8)0.0127 (8)0.0047 (8)
C20.0852 (16)0.0587 (13)0.0515 (11)0.0194 (12)0.0257 (11)0.0165 (10)
C30.0958 (18)0.0668 (15)0.0605 (13)0.0214 (13)0.0133 (12)0.0239 (12)
C40.0845 (16)0.0473 (12)0.0701 (14)0.0178 (11)0.0210 (12)0.0161 (10)
C50.0766 (14)0.0470 (11)0.0702 (14)0.0181 (10)0.0305 (11)0.0142 (10)
C60.0518 (10)0.0390 (9)0.0471 (10)0.0035 (8)0.0145 (8)0.0050 (8)
C70.0450 (9)0.0378 (9)0.0394 (9)0.0009 (7)0.0121 (7)0.0000 (7)
C80.0538 (10)0.0369 (9)0.0506 (10)0.0051 (8)0.0203 (8)0.0074 (8)
C90.0543 (10)0.0380 (9)0.0422 (9)0.0044 (8)0.0168 (8)0.0010 (7)
C100.0430 (9)0.0409 (9)0.0425 (9)0.0020 (7)0.0109 (7)0.0039 (7)
C110.0605 (12)0.0456 (11)0.0515 (11)0.0078 (9)0.0129 (9)0.0008 (9)
C120.0637 (13)0.0555 (13)0.0734 (15)0.0176 (10)0.0092 (11)0.0094 (11)
C130.0520 (11)0.0755 (15)0.0661 (14)0.0061 (10)0.0210 (10)0.0197 (12)
C140.0576 (12)0.0697 (14)0.0524 (11)0.0101 (10)0.0243 (9)0.0083 (10)
C150.0517 (10)0.0457 (10)0.0483 (10)0.0049 (8)0.0165 (8)0.0027 (8)
O10.0703 (10)0.0719 (11)0.0691 (10)0.0013 (8)0.0199 (8)0.0040 (8)
C160.0624 (14)0.087 (2)0.071 (2)0.0080 (13)0.0133 (14)0.0089 (17)
C170.083 (2)0.120 (3)0.110 (3)0.015 (2)0.007 (2)0.048 (3)
C16A0.0624 (14)0.087 (2)0.071 (2)0.0080 (13)0.0133 (14)0.0089 (17)
C17A0.083 (2)0.120 (3)0.110 (3)0.015 (2)0.007 (2)0.048 (3)
Geometric parameters (Å, º) top
S1—C91.7143 (18)C10—C111.389 (3)
N1—C71.338 (2)C10—C151.393 (3)
N1—C61.461 (2)C11—C121.387 (3)
N1—H1A0.9100C11—H110.9300
N2—C91.328 (2)C12—C131.376 (3)
N2—C11.463 (2)C12—H120.9300
N2—H20.9099C13—C141.369 (3)
C1—C21.528 (3)C13—H130.9300
C1—C61.538 (3)C14—C151.388 (3)
C1—H10.9800C14—H140.9300
C2—C31.523 (3)C15—H150.9300
C2—H2A0.9700O1—C161.416 (3)
C2—H2B0.9700O1—C16A1.416 (4)
C3—C41.501 (3)O1—H1B0.8700
C3—H3A0.9700C16—C171.495 (5)
C3—H3B0.9700C16—H16A0.9700
C4—C51.521 (3)C16—H16B0.9700
C4—H4A0.9700C17—H17A0.9600
C4—H4B0.9700C17—H17B0.9600
C5—C61.532 (3)C17—H17C0.9600
C5—H5A0.9700C16A—C17A1.495 (6)
C5—H5B0.9700C16A—H16C0.9700
C6—H60.9800C16A—H16D0.9700
C7—C81.375 (2)C17A—H17D0.9600
C7—C101.494 (2)C17A—H17E0.9600
C8—C91.419 (2)C17A—H17F0.9600
C8—H80.9300
C7—N1—C6126.71 (15)N2—C9—C8123.24 (16)
C7—N1—H1A118.7N2—C9—S1117.65 (13)
C6—N1—H1A114.5C8—C9—S1119.09 (14)
C9—N2—C1127.96 (15)C11—C10—C15118.79 (17)
C9—N2—H2114.5C11—C10—C7120.66 (16)
C1—N2—H2117.6C15—C10—C7120.53 (16)
N2—C1—C2106.07 (16)C12—C11—C10120.5 (2)
N2—C1—C6111.68 (15)C12—C11—H11119.8
C2—C1—C6111.82 (16)C10—C11—H11119.8
N2—C1—H1109.1C13—C12—C11120.1 (2)
C2—C1—H1109.1C13—C12—H12119.9
C6—C1—H1109.1C11—C12—H12119.9
C3—C2—C1113.13 (19)C14—C13—C12119.97 (19)
C3—C2—H2A109.0C14—C13—H13120.0
C1—C2—H2A109.0C12—C13—H13120.0
C3—C2—H2B109.0C13—C14—C15120.6 (2)
C1—C2—H2B109.0C13—C14—H14119.7
H2A—C2—H2B107.8C15—C14—H14119.7
C4—C3—C2109.73 (19)C14—C15—C10120.0 (2)
C4—C3—H3A109.7C14—C15—H15120.0
C2—C3—H3A109.7C10—C15—H15120.0
C4—C3—H3B109.7C16—O1—H1B107.3
C2—C3—H3B109.7C16A—O1—H1B124.5
H3A—C3—H3B108.2O1—C16—C17107.7 (3)
C3—C4—C5109.8 (2)O1—C16—H16A110.2
C3—C4—H4A109.7C17—C16—H16A110.2
C5—C4—H4A109.7O1—C16—H16B110.2
C3—C4—H4B109.7C17—C16—H16B110.2
C5—C4—H4B109.7H16A—C16—H16B108.5
H4A—C4—H4B108.2C16—C17—H17A109.5
C4—C5—C6113.44 (17)C16—C17—H17B109.5
C4—C5—H5A108.9H17A—C17—H17B109.5
C6—C5—H5A108.9C16—C17—H17C109.5
C4—C5—H5B108.9H17A—C17—H17C109.5
C6—C5—H5B108.9H17B—C17—H17C109.5
H5A—C5—H5B107.7O1—C16A—C17A122 (2)
N1—C6—C5106.42 (15)O1—C16A—H16C107.0
N1—C6—C1111.14 (16)C17A—C16A—H16C107.0
C5—C6—C1112.51 (16)O1—C16A—H16D107.0
N1—C6—H6108.9C17A—C16A—H16D107.0
C5—C6—H6108.9H16C—C16A—H16D106.7
C1—C6—H6108.9C16A—C17A—H17D109.5
N1—C7—C8127.71 (16)C16A—C17A—H17E109.5
N1—C7—C10114.72 (15)H17D—C17A—H17E109.5
C8—C7—C10117.50 (16)C16A—C17A—H17F109.5
C7—C8—C9131.47 (17)H17D—C17A—H17F109.5
C7—C8—H8114.3H17E—C17A—H17F109.5
C9—C8—H8114.3
C9—N2—C1—C2176.7 (2)C10—C7—C8—C9176.8 (2)
C9—N2—C1—C654.7 (3)C1—N2—C9—C84.3 (3)
N2—C1—C2—C3172.9 (2)C1—N2—C9—S1174.38 (15)
C6—C1—C2—C350.9 (3)C7—C8—C9—N213.8 (4)
C1—C2—C3—C458.6 (3)C7—C8—C9—S1167.52 (18)
C2—C3—C4—C560.0 (3)N1—C7—C10—C11138.34 (19)
C3—C4—C5—C656.8 (3)C8—C7—C10—C1144.4 (3)
C7—N1—C6—C5169.86 (19)N1—C7—C10—C1543.0 (2)
C7—N1—C6—C147.0 (3)C8—C7—C10—C15134.25 (19)
C4—C5—C6—N1171.3 (2)C15—C10—C11—C120.6 (3)
C4—C5—C6—C149.4 (3)C7—C10—C11—C12178.09 (19)
N2—C1—C6—N176.6 (2)C10—C11—C12—C130.1 (3)
C2—C1—C6—N1164.69 (17)C11—C12—C13—C140.8 (4)
N2—C1—C6—C5164.15 (17)C12—C13—C14—C150.8 (3)
C2—C1—C6—C545.5 (2)C13—C14—C15—C100.1 (3)
C6—N1—C7—C81.6 (3)C11—C10—C15—C140.6 (3)
C6—N1—C7—C10175.40 (17)C7—C10—C15—C14178.09 (18)
N1—C7—C8—C96.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.912.133.030 (2)173
N2—H2···S1i0.912.533.4312 (15)171
O1—H1B···S1ii0.872.423.2886 (18)173
C6—H6···Cg2ii0.982.543.516 (2)177
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF-MRI Grant #1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAl Garadi, W., Ramli, Y., El Ghayati, L., Moussaif, A., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181011.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaga Prashant, K. & Ravi Kumar, K. (2015). Int. J. Pharm Tech Res, 8, 60–68.  Google Scholar
First citationPasha, M. A. & Jayashankara, V. P. (2006). Ind. J. Chem, 45B, 2716–2719.  Google Scholar
First citationRadatz, C. S., Silva, R. B., Perin, G., Lenardão, E. J., Jacob, R. G. & Alves, D. (2011). Tetrahedron Lett. 52, 4132–4136.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds