organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Acetyl-7-[2-(morpholin-4-yl)eth­­oxy]chromen-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, bInstitute of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China, cCollege of Chemistry and Chemical Engineering, Anhui University, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, People's Republic of China, and dSchool of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, People's Republic of China
*Correspondence e-mail: youthmd98@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2018; accepted 18 September 2018; online 21 September 2018)

In the title compound, C17H19NO5, the morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. In the crystal, the mol­ecules are linked by C—H⋯O and weak aromatic ππ stacking inter­actions, thereby generating a layered structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarin derivatives display many biological activities, such as anti­viral, anti-HIV, anti-neoplasm and are used as fluorescent dyes (Bai & Dong, 2016[Bai, J.-H. & Dong, J.-L. (2016). IUCrData, 1, x160598.]). We have reported good luminescent properties and excellent cell biocompatibility (Jiao et al., 2018[Jiao, S., Wang, X., Sun, Y., Zhang, L., Sun, W., Sun, Y., Wang, X., Ma, P. & Song, D. (2018). Sens. Actuators B Chem. 262, 188-194.]) in coumarin derivatives. In the title compound, a morpholine ring, a typical lysosome-targeting moiety (Li et al., 2018[Li, C., Wang, Y., Huang, S., Zhang, X., Kang, X., Sun, Y., Hu, Z., Han, L., Du, L. & Liu, Y. (2018). Talanta, 188, 316-324.]), is linked to a 7-hy­droxy-3-acetyl­coumarin unit via a flexible-chain (–O–CH2–).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The coumarin ring system is essentially planar with a dihedral angle of 0.24 (5)° between the fused rings. The morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation.

[Figure 1]
Figure 1
The mol­ecular structure of title compound, showing displacement ellipsoids drawn at the 30% probability level.

In the crystal, a one-dimensional chain-like structure is consolidated by C17—H17A⋯O4 and C17—H17B⋯O1 hydrogen bonds (Table 1[link]) and weak aromatic ππ stacking [centroid–centroid separation = 3.6422 (10) Å] (Fig. 2[link]). The chains are connected through very weak C18—H18B⋯O1 inter­actions (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O4i 0.97 2.60 3.383 (2) 138
C17—H17B⋯O1ii 0.97 2.46 3.4136 (19) 167
C18—H18B⋯O1iii 0.97 2.68 3.459 (2) 137
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+2, -z+2; (iii) x, y, z-1.
[Figure 2]
Figure 2
The crystal packing of the title compound. The weak C—H⋯O hydrogen bonds are shown as yellow and turquoise dashed lines, and the weak ππ stacking contacts are drawn as red dashed lines. H atoms not involved in this network have been omitted.
[Figure 3]
Figure 3
The sheets generated by C18—H18B⋯O1 (purple dashed lines) inter­actions. H atoms not involved in directional inter­actions have been omitted.

Synthesis and crystallization

To a solution of 3-acetyl-7-hy­droxy-chromen-2-one (0.50 g, 2.47 mmol) in aceto­nitrile (15 ml) were added potassium carbonate (1.02 g, 7.41 mmol) and 4-(2-chloro-eth­yl)-morpholine (0.55 g, 2.97 mmol). The mixture was refluxed for 6 h. After completion of the reaction, the solvent was evaporated under reduced pressure. The crude compound was purified on a silica gel column (petroleum ether: ethyl acetate = 1:1 v/v) giving a yellow solid (0.65 g, 83%) and yellow block-shaped crystals were recrystallized from a petroleum ether–ethyl acetate solvent mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO5
Mr 317.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4620 (14), 16.243 (3), 11.477 (2)
β (°) 93.091 (2)
V3) 1575.2 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 11443, 2916, 2427
Rint 0.038
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.03
No. of reflections 2916
No. of parameters 209
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.30
Computer programs: SMART and SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Acetyl-7-[2-(morpholin-4-yl)ethoxy]chromen-2-one top
Crystal data top
C17H19NO5F(000) = 672
Mr = 317.33Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4620 (14) ÅCell parameters from 5468 reflections
b = 16.243 (3) Åθ = 2.5–27.1°
c = 11.477 (2) ŵ = 0.10 mm1
β = 93.091 (2)°T = 296 K
V = 1575.2 (5) Å3Block, yellow
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD
diffractometer
2427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ω scansh = 1010
11443 measured reflectionsk = 1919
2916 independent reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.2289P]
where P = (Fo2 + 2Fc2)/3
2916 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.78260 (11)1.00250 (6)1.05321 (8)0.0496 (3)
C20.62360 (15)1.09671 (8)1.16169 (12)0.0462 (3)
C30.71768 (15)1.03229 (8)0.94956 (11)0.0420 (3)
C40.60334 (15)1.09440 (8)0.94933 (12)0.0446 (3)
O60.73725 (13)0.99507 (6)0.63799 (8)0.0571 (3)
C60.55908 (16)1.12462 (8)1.05895 (12)0.0476 (3)
H60.48221.16551.06010.057*
C70.74346 (16)1.03202 (9)1.16160 (12)0.0479 (3)
C80.76948 (15)0.99760 (8)0.84890 (11)0.0449 (3)
H80.84680.95680.85180.054*
C90.70248 (16)1.02551 (8)0.74304 (12)0.0466 (3)
O10.81172 (13)0.99990 (7)1.24383 (9)0.0643 (3)
N10.94110 (13)0.82784 (7)0.49385 (10)0.0480 (3)
O40.46331 (15)1.18477 (7)1.26493 (11)0.0730 (4)
O21.02784 (15)0.67139 (7)0.40415 (11)0.0727 (4)
C140.54063 (18)1.12231 (9)0.84065 (13)0.0535 (4)
H140.46531.16400.83750.064*
C150.56956 (17)1.13410 (9)1.27201 (13)0.0541 (4)
C160.58914 (18)1.08882 (9)0.73952 (13)0.0558 (4)
H160.54701.10800.66800.067*
C170.84068 (16)0.92492 (9)0.63441 (12)0.0508 (3)
H17A0.80350.88090.68300.061*
H17B0.94730.93970.66190.061*
C180.83778 (18)0.89834 (10)0.50911 (12)0.0559 (4)
H18A0.73040.88400.48300.067*
H18B0.87160.94370.46150.067*
C190.8765 (2)0.75130 (9)0.53613 (15)0.0635 (4)
H19A0.77830.73860.49230.076*
H19B0.85380.75710.61770.076*
C200.6433 (2)1.11053 (14)1.38787 (15)0.0812 (6)
H20A0.59491.14121.44790.122*
H20B0.75451.12251.38990.122*
H20C0.62811.05271.40050.122*
C210.9933 (2)0.68219 (10)0.52273 (17)0.0733 (5)
H21A1.09020.69440.56850.088*
H21B0.94980.63150.55230.088*
C220.9760 (2)0.81673 (11)0.37205 (15)0.0721 (5)
H22A1.02340.86650.34290.087*
H22B0.87870.80630.32580.087*
C231.0882 (2)0.74535 (11)0.36046 (16)0.0733 (5)
H23A1.10900.73800.27880.088*
H23B1.18790.75800.40230.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0526 (5)0.0503 (6)0.0454 (5)0.0114 (4)0.0014 (4)0.0040 (4)
C20.0437 (7)0.0437 (7)0.0516 (7)0.0062 (5)0.0063 (5)0.0074 (6)
C30.0411 (7)0.0383 (7)0.0464 (7)0.0002 (5)0.0004 (5)0.0005 (5)
C40.0433 (7)0.0388 (7)0.0516 (8)0.0021 (5)0.0035 (6)0.0021 (6)
O60.0705 (7)0.0564 (6)0.0450 (5)0.0185 (5)0.0066 (5)0.0004 (4)
C60.0440 (7)0.0402 (7)0.0591 (7)0.0026 (5)0.0070 (6)0.0055 (6)
C70.0466 (7)0.0495 (8)0.0475 (8)0.0036 (6)0.0022 (6)0.0048 (6)
C80.0433 (7)0.0404 (7)0.0511 (8)0.0062 (5)0.0025 (6)0.0026 (6)
C90.0503 (7)0.0435 (7)0.0464 (7)0.0011 (6)0.0063 (6)0.0006 (6)
O10.0696 (7)0.0736 (7)0.0489 (6)0.0128 (6)0.0047 (5)0.0008 (5)
N10.0522 (6)0.0453 (6)0.0472 (6)0.0026 (5)0.0087 (5)0.0012 (5)
O40.0785 (8)0.0678 (7)0.0741 (8)0.0116 (6)0.0158 (6)0.0191 (6)
O20.0882 (8)0.0531 (7)0.0777 (8)0.0008 (6)0.0135 (6)0.0180 (5)
C140.0559 (8)0.0464 (7)0.0584 (8)0.0143 (6)0.0045 (6)0.0032 (6)
C150.0514 (8)0.0526 (8)0.0593 (9)0.0098 (7)0.0114 (6)0.0127 (7)
C160.0636 (9)0.0535 (8)0.0503 (8)0.0139 (7)0.0017 (6)0.0072 (6)
C170.0499 (8)0.0516 (8)0.0510 (8)0.0085 (6)0.0041 (6)0.0037 (6)
C180.0613 (9)0.0596 (9)0.0471 (8)0.0132 (7)0.0070 (6)0.0000 (7)
C190.0688 (10)0.0562 (9)0.0672 (10)0.0113 (7)0.0190 (8)0.0057 (7)
C200.0825 (12)0.1098 (15)0.0519 (9)0.0095 (11)0.0090 (8)0.0199 (10)
C210.0969 (13)0.0463 (9)0.0784 (12)0.0018 (8)0.0191 (10)0.0012 (8)
C220.0938 (13)0.0686 (10)0.0565 (9)0.0241 (9)0.0272 (8)0.0052 (8)
C230.0868 (12)0.0658 (10)0.0699 (10)0.0166 (9)0.0282 (9)0.0022 (8)
Geometric parameters (Å, º) top
O3—C31.3714 (15)C14—C161.365 (2)
O3—C71.3898 (16)C14—H140.9300
C2—C61.351 (2)C15—C201.488 (2)
C2—C71.4603 (19)C16—H160.9300
C2—C151.4979 (19)C17—C181.5003 (19)
C3—C81.3780 (18)C17—H17A0.9700
C3—C41.3978 (18)C17—H17B0.9700
C4—C141.404 (2)C18—H18A0.9700
C4—C61.4195 (19)C18—H18B0.9700
O6—C91.3502 (16)C19—C211.509 (2)
O6—C171.4388 (16)C19—H19A0.9700
C6—H60.9300C19—H19B0.9700
C7—O11.1991 (17)C20—H20A0.9600
C8—C91.3888 (19)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—C161.4053 (19)C21—H21A0.9700
N1—C191.4519 (19)C21—H21B0.9700
N1—C221.4555 (19)C22—C231.509 (2)
N1—C181.4571 (17)C22—H22A0.9700
O4—C151.2184 (18)C22—H22B0.9700
O2—C231.408 (2)C23—H23A0.9700
O2—C211.418 (2)C23—H23B0.9700
C3—O3—C7123.44 (11)O6—C17—H17B110.5
C6—C2—C7119.27 (12)C18—C17—H17B110.5
C6—C2—C15118.31 (13)H17A—C17—H17B108.7
C7—C2—C15122.42 (13)N1—C18—C17111.25 (11)
O3—C3—C8116.89 (11)N1—C18—H18A109.4
O3—C3—C4120.08 (11)C17—C18—H18A109.4
C8—C3—C4123.03 (12)N1—C18—H18B109.4
C3—C4—C14117.59 (12)C17—C18—H18B109.4
C3—C4—C6117.62 (12)H18A—C18—H18B108.0
C14—C4—C6124.79 (12)N1—C19—C21110.06 (13)
C9—O6—C17118.54 (11)N1—C19—H19A109.6
C2—C6—C4122.96 (13)C21—C19—H19A109.6
C2—C6—H6118.5N1—C19—H19B109.6
C4—C6—H6118.5C21—C19—H19B109.6
O1—C7—O3115.23 (12)H19A—C19—H19B108.2
O1—C7—C2128.14 (13)C15—C20—H20A109.5
O3—C7—C2116.62 (12)C15—C20—H20B109.5
C3—C8—C9117.81 (12)H20A—C20—H20B109.5
C3—C8—H8121.1C15—C20—H20C109.5
C9—C8—H8121.1H20A—C20—H20C109.5
O6—C9—C8124.29 (12)H20B—C20—H20C109.5
O6—C9—C16115.06 (12)O2—C21—C19111.09 (15)
C8—C9—C16120.65 (12)O2—C21—H21A109.4
C19—N1—C22108.32 (12)C19—C21—H21A109.4
C19—N1—C18113.20 (11)O2—C21—H21B109.4
C22—N1—C18111.54 (11)C19—C21—H21B109.4
C23—O2—C21109.50 (12)H21A—C21—H21B108.0
C16—C14—C4120.67 (13)N1—C22—C23109.95 (14)
C16—C14—H14119.7N1—C22—H22A109.7
C4—C14—H14119.7C23—C22—H22A109.7
O4—C15—C20120.38 (14)N1—C22—H22B109.7
O4—C15—C2118.38 (14)C23—C22—H22B109.7
C20—C15—C2121.24 (14)H22A—C22—H22B108.2
C14—C16—C9120.22 (13)O2—C23—C22112.45 (14)
C14—C16—H16119.9O2—C23—H23A109.1
C9—C16—H16119.9C22—C23—H23A109.1
O6—C17—C18106.06 (11)O2—C23—H23B109.1
O6—C17—H17A110.5C22—C23—H23B109.1
C18—C17—H17A110.5H23A—C23—H23B107.8
C7—O3—C3—C8179.24 (11)C3—C4—C14—C160.8 (2)
C7—O3—C3—C41.41 (19)C6—C4—C14—C16179.21 (13)
O3—C3—C4—C14179.79 (12)C6—C2—C15—O44.1 (2)
C8—C3—C4—C140.5 (2)C7—C2—C15—O4176.30 (13)
O3—C3—C4—C60.20 (19)C6—C2—C15—C20175.74 (14)
C8—C3—C4—C6179.51 (12)C7—C2—C15—C203.8 (2)
C7—C2—C6—C40.6 (2)C4—C14—C16—C90.2 (2)
C15—C2—C6—C4179.04 (11)O6—C9—C16—C14177.72 (14)
C3—C4—C6—C20.8 (2)C8—C9—C16—C141.6 (2)
C14—C4—C6—C2179.25 (13)C9—O6—C17—C18171.99 (12)
C3—O3—C7—O1179.41 (12)C19—N1—C18—C1774.45 (16)
C3—O3—C7—C21.58 (18)C22—N1—C18—C17163.10 (14)
C6—C2—C7—O1179.44 (14)O6—C17—C18—N1179.07 (11)
C15—C2—C7—O11.0 (2)C22—N1—C19—C2158.51 (18)
C6—C2—C7—O30.59 (18)C18—N1—C19—C21177.26 (13)
C15—C2—C7—O3179.84 (11)C23—O2—C21—C1957.98 (19)
O3—C3—C8—C9178.49 (11)N1—C19—C21—O259.95 (19)
C4—C3—C8—C90.8 (2)C19—N1—C22—C2357.02 (18)
C17—O6—C9—C85.1 (2)C18—N1—C22—C23177.77 (14)
C17—O6—C9—C16174.15 (12)C21—O2—C23—C2257.3 (2)
C3—C8—C9—O6177.39 (12)N1—C22—C23—O257.8 (2)
C3—C8—C9—C161.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O4i0.972.603.383 (2)138
C17—H17B···O1ii0.972.463.4136 (19)167
C18—H18B···O1iii0.972.683.459 (2)137
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+2, z+2; (iii) x, y, z1.
 

Funding information

This work was supported by the Students Innovative and Entrepreneurial Program of Anhui University (201810357273), the Natural Science Foundation of Anhui Province (1508085MB34) the Educational Commission of Anhui Province (KJ2016JD14) and the Anhui Province Postdoctoral Science Foundation (2017B159).

References

First citationBai, J.-H. & Dong, J.-L. (2016). IUCrData, 1, x160598.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiao, S., Wang, X., Sun, Y., Zhang, L., Sun, W., Sun, Y., Wang, X., Ma, P. & Song, D. (2018). Sens. Actuators B Chem. 262, 188–194.  CrossRef Google Scholar
First citationLi, C., Wang, Y., Huang, S., Zhang, X., Kang, X., Sun, Y., Hu, Z., Han, L., Du, L. & Liu, Y. (2018). Talanta, 188, 316–324.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds