organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

8,9-Di­meth­­oxy­benzo[b]naphtho­[2,3-d]thio­phene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: ksakthimurugesan2492@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2018; accepted 5 September 2018; online 21 September 2018)

In the title compound, C18H14O2S, the system of four fused rings is almost planar (r.m.s. deviation = 0.022 Å). The C atoms of the meth­oxy groups deviate from the mean plane of the ring system by 0.373 (2) and −0.104 (2) Å. In the crystal, very weak aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.9286 (10) Å] may help to establish the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­phene and thia­zole derivatives are known to possess inter­esting biological properties, such as anti­cancer activity (Bondock et al., 2010[Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692-3701.]; Al-Said et al., 2011[Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137-141.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

As expected, the thio­phene system is essentially planar and subtends dihedral angles with respect to the mean planes through the naphthalene ring system, i.e. the C7–C18 and C1–C6 phenyl rings, of 1.05 (9) and 1.53 (7)°, respectively. The C atoms of the meth­oxy groups are slightly displaced from their attached benzene ring, as indicated by the C15—C14—O1—C13 and C10—C11—O2—C12 torsion angles of −4.5 (2) and −9.1 (3)°, respectively. In the crystal, very weak aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.9286 (10) Å between inversion-related C7–C9/C16–C18 rings] may help to establish the packing.

Synthesis and crystallization

To a solution of diethyl 2-[(2-(bromo­meth­yl)benzo[b]thio­phen-3-yl)methyl­idene]mal­on­ate (0.20 g, 0.50 mmol) and veratrole (1,2-di­meth­oxy­benzene) (0.08 g, 0.55 mmol) in dry di­chloro­ethane (5 ml) was added ZnBr2 (0.03 g, 0.10 mmol). The reaction mixture was then stirred at room temperature under a nitro­gen atmosphere for 4 h. After completion of the reaction (monitored by TLC), it was poured into ice water (30 ml). The organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined organic layer was washed with water (2 × 20 ml) and dried (Na2SO4). Removal of the solvent followed by work-up and column chromatography (silica gel; 4% ethyl acetate in hexa­ne) furnished the title compound (0.10 g, 30%) as a colourless solid (m.p. 463–465 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C18H14O2S
Mr 294.35
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 13.0062 (9), 5.9631 (4), 18.3801 (14)
β (°) 104.019 (7)
V3) 1383.05 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.30 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan
Tmin, Tmax 0.932, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 6823, 3192, 2344
Rint 0.028
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.07
No. of reflections 3192
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.44
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

8,9-Dimethoxybenzo[b]naphtho[2,3-d]thiophene top
Crystal data top
C18H14O2SF(000) = 616
Mr = 294.35Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.0062 (9) ÅCell parameters from 2344 reflections
b = 5.9631 (4) Åθ = 3.8–29.1°
c = 18.3801 (14) ŵ = 0.24 mm1
β = 104.019 (7)°T = 293 K
V = 1383.05 (17) Å3Colourless, block
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2344 reflections with I > 2σ(I)
ω and φ scansRint = 0.028
Absorption correction: multi-scanθmax = 29.1°, θmin = 3.8°
Tmin = 0.932, Tmax = 0.943h = 1717
6823 measured reflectionsk = 87
3192 independent reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.0382P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3192 reflectionsΔρmax = 0.26 e Å3
192 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.71269 (4)0.65668 (8)0.07885 (3)0.04428 (18)
C70.63867 (13)1.0145 (3)0.13423 (9)0.0299 (4)
C80.56269 (13)1.1552 (3)0.15027 (9)0.0307 (4)
H80.5833311.2862990.1772660.037*
O10.13171 (9)0.9465 (2)0.05384 (7)0.0436 (3)
O20.18546 (9)1.2955 (2)0.13568 (8)0.0448 (3)
C160.42315 (13)0.9019 (3)0.08384 (9)0.0306 (4)
C60.75384 (13)1.0333 (3)0.15487 (9)0.0311 (4)
C170.50106 (13)0.7594 (3)0.06797 (10)0.0361 (4)
H170.4815040.6279750.0409080.043*
C150.31383 (13)0.8491 (3)0.05877 (10)0.0344 (4)
H150.2936030.7201260.0304840.041*
C140.23822 (13)0.9833 (3)0.07530 (9)0.0321 (4)
C90.45404 (13)1.1018 (3)0.12604 (9)0.0296 (4)
C100.37291 (13)1.2380 (3)0.14356 (9)0.0322 (4)
H100.3915531.3682530.1714570.039*
C180.60588 (13)0.8151 (3)0.09257 (10)0.0324 (4)
C110.26907 (14)1.1807 (3)0.12021 (10)0.0324 (4)
C10.80319 (13)0.8525 (3)0.12815 (10)0.0352 (4)
C40.92672 (15)1.1857 (3)0.20944 (11)0.0456 (5)
H40.9688981.2964380.2374310.055*
C20.91295 (14)0.8391 (3)0.14075 (11)0.0442 (5)
H20.9446540.7184090.1226550.053*
C50.81721 (14)1.1985 (3)0.19670 (10)0.0387 (4)
H50.7862161.3176390.2161490.046*
C130.09704 (14)0.7594 (3)0.00580 (11)0.0457 (5)
H13A0.1270270.7682900.0369750.069*
H13B0.0211310.7609510.0105920.069*
H13C0.1196510.6229210.0326470.069*
C120.21008 (15)1.4723 (3)0.18900 (12)0.0471 (5)
H12A0.2512381.4143000.2357420.071*
H12B0.1456321.5362650.1963760.071*
H12C0.2499931.5856950.1708610.071*
C30.97356 (15)1.0083 (4)0.18057 (11)0.0475 (5)
H31.0468851.0036890.1882400.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0379 (3)0.0404 (3)0.0547 (3)0.0074 (2)0.0116 (2)0.0117 (2)
C70.0330 (9)0.0315 (9)0.0252 (8)0.0021 (7)0.0070 (7)0.0002 (7)
C80.0342 (9)0.0275 (8)0.0298 (9)0.0006 (7)0.0067 (7)0.0033 (7)
O10.0292 (6)0.0453 (7)0.0542 (8)0.0016 (5)0.0062 (6)0.0118 (6)
O20.0354 (7)0.0431 (7)0.0573 (9)0.0049 (6)0.0137 (6)0.0145 (6)
C160.0314 (9)0.0294 (8)0.0309 (9)0.0008 (7)0.0074 (7)0.0027 (7)
C60.0319 (9)0.0365 (9)0.0252 (8)0.0014 (7)0.0078 (7)0.0023 (7)
C170.0375 (10)0.0306 (9)0.0390 (10)0.0019 (8)0.0067 (8)0.0104 (8)
C150.0347 (9)0.0319 (9)0.0353 (9)0.0012 (7)0.0063 (8)0.0081 (7)
C140.0307 (9)0.0327 (9)0.0316 (9)0.0003 (7)0.0053 (7)0.0016 (7)
C90.0339 (9)0.0283 (8)0.0269 (8)0.0011 (7)0.0079 (7)0.0015 (7)
C100.0360 (9)0.0288 (9)0.0321 (9)0.0021 (7)0.0088 (7)0.0044 (7)
C180.0337 (9)0.0308 (9)0.0330 (9)0.0048 (7)0.0090 (7)0.0025 (7)
C110.0347 (9)0.0313 (9)0.0327 (9)0.0063 (7)0.0110 (7)0.0008 (7)
C10.0349 (9)0.0383 (10)0.0332 (9)0.0045 (7)0.0099 (8)0.0035 (8)
C40.0376 (10)0.0595 (13)0.0368 (10)0.0082 (9)0.0033 (8)0.0015 (9)
C20.0377 (10)0.0525 (12)0.0444 (11)0.0104 (9)0.0138 (9)0.0041 (9)
C50.0364 (10)0.0482 (11)0.0311 (9)0.0016 (8)0.0074 (8)0.0031 (8)
C130.0369 (10)0.0452 (11)0.0494 (11)0.0032 (9)0.0007 (9)0.0052 (10)
C120.0516 (12)0.0414 (11)0.0515 (12)0.0096 (9)0.0185 (10)0.0096 (9)
C30.0324 (9)0.0685 (14)0.0403 (11)0.0019 (10)0.0066 (8)0.0068 (10)
Geometric parameters (Å, º) top
S1—C11.7475 (18)C15—H150.9300
S1—C181.7481 (17)C14—C111.438 (2)
C7—C81.382 (2)C9—C101.429 (2)
C7—C181.422 (2)C10—C111.358 (2)
C7—C61.458 (2)C10—H100.9300
C8—C91.411 (2)C1—C21.392 (2)
C8—H80.9300C4—C51.388 (2)
O1—C141.3631 (19)C4—C31.389 (3)
O1—C131.427 (2)C4—H40.9300
O2—C111.3720 (19)C2—C31.377 (3)
O2—C121.422 (2)C2—H20.9300
C16—C171.406 (2)C5—H50.9300
C16—C151.420 (2)C13—H13A0.9600
C16—C91.426 (2)C13—H13B0.9600
C6—C51.391 (2)C13—H13C0.9600
C6—C11.403 (2)C12—H12A0.9600
C17—C181.369 (2)C12—H12B0.9600
C17—H170.9300C12—H12C0.9600
C15—C141.358 (2)C3—H30.9300
C1—S1—C1891.32 (8)C7—C18—S1112.60 (12)
C8—C7—C18119.06 (15)C10—C11—O2125.90 (15)
C8—C7—C6129.84 (15)C10—C11—C14120.35 (15)
C18—C7—C6111.08 (14)O2—C11—C14113.74 (14)
C7—C8—C9120.59 (15)C2—C1—C6121.58 (17)
C7—C8—H8119.7C2—C1—S1125.64 (14)
C9—C8—H8119.7C6—C1—S1112.78 (13)
C14—O1—C13116.85 (13)C5—C4—C3120.30 (18)
C11—O2—C12117.09 (13)C5—C4—H4119.9
C17—C16—C15120.92 (15)C3—C4—H4119.9
C17—C16—C9119.72 (15)C3—C2—C1118.58 (17)
C15—C16—C9119.35 (15)C3—C2—H2120.7
C5—C6—C1118.54 (16)C1—C2—H2120.7
C5—C6—C7129.23 (15)C4—C5—C6120.05 (17)
C1—C6—C7112.22 (15)C4—C5—H5120.0
C18—C17—C16119.64 (15)C6—C5—H5120.0
C18—C17—H17120.2O1—C13—H13A109.5
C16—C17—H17120.2O1—C13—H13B109.5
C14—C15—C16121.27 (15)H13A—C13—H13B109.5
C14—C15—H15119.4O1—C13—H13C109.5
C16—C15—H15119.4H13A—C13—H13C109.5
C15—C14—O1125.49 (15)H13B—C13—H13C109.5
C15—C14—C11119.62 (15)O2—C12—H12A109.5
O1—C14—C11114.88 (14)O2—C12—H12B109.5
C8—C9—C16119.28 (15)H12A—C12—H12B109.5
C8—C9—C10122.57 (14)O2—C12—H12C109.5
C16—C9—C10118.13 (15)H12A—C12—H12C109.5
C11—C10—C9121.20 (15)H12B—C12—H12C109.5
C11—C10—H10119.4C2—C3—C4120.91 (18)
C9—C10—H10119.4C2—C3—H3119.5
C17—C18—C7121.70 (15)C4—C3—H3119.5
C17—C18—S1125.70 (13)
C18—C7—C8—C90.3 (2)C8—C7—C18—S1179.18 (12)
C6—C7—C8—C9178.41 (16)C6—C7—C18—S10.24 (18)
C8—C7—C6—C50.4 (3)C1—S1—C18—C17179.24 (17)
C18—C7—C6—C5178.38 (17)C1—S1—C18—C70.07 (14)
C8—C7—C6—C1179.31 (17)C9—C10—C11—O2178.01 (15)
C18—C7—C6—C10.5 (2)C9—C10—C11—C141.7 (3)
C15—C16—C17—C18179.70 (16)C12—O2—C11—C109.1 (3)
C9—C16—C17—C180.6 (3)C12—O2—C11—C14170.64 (15)
C17—C16—C15—C14178.51 (16)C15—C14—C11—C102.6 (2)
C9—C16—C15—C141.1 (3)O1—C14—C11—C10178.48 (16)
C16—C15—C14—O1179.95 (16)C15—C14—C11—O2177.11 (15)
C16—C15—C14—C111.2 (3)O1—C14—C11—O21.8 (2)
C13—O1—C14—C154.5 (2)C5—C6—C1—C21.9 (3)
C13—O1—C14—C11176.69 (15)C7—C6—C1—C2179.11 (15)
C7—C8—C9—C160.8 (2)C5—C6—C1—S1178.45 (13)
C7—C8—C9—C10177.72 (15)C7—C6—C1—S10.57 (18)
C17—C16—C9—C81.0 (2)C18—S1—C1—C2179.29 (16)
C15—C16—C9—C8179.36 (15)C18—S1—C1—C60.37 (14)
C17—C16—C9—C10177.62 (15)C6—C1—C2—C30.1 (3)
C15—C16—C9—C102.0 (2)S1—C1—C2—C3179.73 (14)
C8—C9—C10—C11179.17 (16)C3—C4—C5—C60.0 (3)
C16—C9—C10—C110.6 (2)C1—C6—C5—C41.8 (3)
C16—C17—C18—C70.1 (3)C7—C6—C5—C4179.37 (17)
C16—C17—C18—S1179.24 (13)C1—C2—C3—C41.8 (3)
C8—C7—C18—C170.0 (3)C5—C4—C3—C21.8 (3)
C6—C7—C18—C17178.97 (16)
 

Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, India, for X-ray intensity data collection.

References

First citationAl-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141.  Web of Science CAS PubMed Google Scholar
First citationBondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds