organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Fluoro­phen­yl)-3-hy­dr­oxy-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 30 August 2018; accepted 18 September 2018; online 21 September 2018)

The asymmetric unit of the title compound, C15H9FO3, contains two independent mol­ecules in which the fluorine-substituted benzene ring is twisted by 47.64 (3) and 56.02 (4)° relative to the 4H-chromenon skeleton. The hydroxyl group in each mol­ecule is tilted from 4H-chromenon skeleton by 24.5 (1) and 16.1 (1)°, respectively. In the crystal, pairs of O—H⋯O hydrogen bonds form inversion dimers with an R22(10) graph-set motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavonoids, which include flavones, flavanone, flavonols and isoflavones, are one of the secondary metabolites in plants. Among the flavonoids, flavonols have an unique structure that has a hydroxyl group at the 3-position of the flavone backbone as an enol type. As a result of this characteristic structure, these mol­ecules show a broad spectrum of biological activities (Patel et al., 2018[Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V. & Shin, H. S. (2018). Eur. J. Med. Chem. 155, 889-904.]; Raffa et al., 2017[Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F. & Daidone, G. (2017). Eur. J. Med. Chem. 142, 213-228.]) and have applications as fluorescent probes for sensing and imaging (Serdiuk et al., 2016[Serdiuk, I. E., Reszka, M., Myszka, H., Krzymiński, K., Liberek, B. & Roshal, A. D. (2016). RSC Adv. 6, 42532-42536.]). As a part of our studies on flavonoid derivatives (Lee et al., 2014[Lee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129-132.]), the title compound was synthesized and its crystal structure was determined.

The title compound has two independent mol­ecules the asymmetric unit (Fig. 1[link]) in which the fluorine-substituted benzene rings are connected at the C8 and C23 positions of the 4H-chromenon skeleton. The dihedral angles between these rings and the 4H-chromenon skeleton are 47.64 (3) and 56.02 (4)°, respectively. As a consequence of the flavonol structure, the hydroxyl groups are attached at the C9 and C24 positions of the 4H-chromenon skeletons and are tilted from 4H-chromenon ring system by 24.5 (1)° (C1/C9/O3/H3A) and 16.1 (1)° (C61/C24/O6/H6A).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds form inversion dimers with R22(10) graph-set motifs (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.83 1.91 2.6813 (18) 154
O6—H6A⋯O1ii 0.83 2.04 2.8112 (18) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure with inter­molecular hydrogen bonds are shown as dashed lines. For clarity only those H atoms involved in hydrogen bonding are shown.

Examples of other flavonol structures have also been published recently, see Padgett et al. (2018[Padgett, C. W., Lynch, W. L., Sheriff, K., Dean, R. & Zingales, S. (2018). IUCrData, 3, x181138.]) and Narita et al. (2015[Narita, F., Takura, A. & Fujihara, T. (2015). Acta Cryst. E71, 824-826.]).

Synthesis and crystallization

The starting material, chalcone I, was prepared by previously reported methods (Yoo et al., 2014[Yoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, o999-o1000.]). The final flavonol product was obtained by oxidative cyclization of the I with H2O2 in an alkaline methanol medium (Fig. 3[link]).

[Figure 3]
Figure 3
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H9FO3
Mr 256.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 22.3701 (6), 6.8836 (2), 15.7987 (4)
β (°) 106.0575 (13)
V3) 2337.87 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.19 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.979, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 68936, 5842, 3646
Rint 0.086
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.03
No. of reflections 5842
No. of parameters 345
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2-(2-Fluorophenyl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C15H9FO3F(000) = 1056
Mr = 256.22Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9839 reflections
a = 22.3701 (6) Åθ = 2.6–27.2°
b = 6.8836 (2) ŵ = 0.11 mm1
c = 15.7987 (4) ÅT = 223 K
β = 106.0575 (13)°Block, yellow
V = 2337.87 (11) Å30.19 × 0.14 × 0.10 mm
Z = 8
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
5842 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
φ and ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker 2012)
h = 2929
Tmin = 0.979, Tmax = 0.989k = 99
68936 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.8816P]
where P = (Fo2 + 2Fc2)/3
5842 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25573 (8)0.8644 (2)0.03626 (11)0.0274 (4)
O10.21337 (5)0.85797 (19)0.03333 (8)0.0372 (3)
C20.24556 (7)0.8811 (2)0.12298 (10)0.0261 (3)
C30.18533 (8)0.8880 (2)0.13403 (12)0.0324 (4)
H30.15040.87910.08470.039*
C40.17746 (9)0.9077 (3)0.21655 (12)0.0372 (4)
H40.13710.91330.22370.045*
C50.22892 (9)0.9196 (3)0.28987 (13)0.0400 (5)
H50.22300.93120.34630.048*
C60.28829 (9)0.9144 (3)0.28110 (12)0.0367 (4)
H60.32300.92400.33070.044*
C70.29576 (8)0.8948 (2)0.19709 (11)0.0286 (4)
O20.35602 (5)0.88921 (18)0.19202 (7)0.0321 (3)
C80.36710 (8)0.8753 (2)0.11136 (11)0.0279 (4)
C90.32064 (8)0.8628 (2)0.03648 (11)0.0287 (4)
O30.33412 (6)0.8547 (2)0.04188 (8)0.0413 (3)
H3A0.30450.89870.08110.062*
C100.43386 (8)0.8899 (3)0.11802 (11)0.0324 (4)
C110.46360 (9)0.7656 (3)0.07444 (13)0.0412 (5)
F10.43134 (6)0.61549 (18)0.02827 (10)0.0632 (4)
C120.52522 (9)0.7845 (4)0.07719 (15)0.0533 (6)
H120.54380.69740.04620.064*
C130.55925 (10)0.9320 (4)0.12567 (15)0.0577 (6)
H130.60130.94810.12740.069*
C140.53195 (10)1.0561 (4)0.17168 (15)0.0596 (6)
H140.55561.15610.20560.072*
C150.46989 (9)1.0353 (3)0.16852 (13)0.0462 (5)
H150.45181.12050.20090.055*
C160.22946 (8)0.4205 (2)0.24636 (11)0.0308 (4)
O40.26839 (6)0.4421 (2)0.31850 (8)0.0430 (3)
C170.24559 (8)0.3890 (2)0.16460 (11)0.0291 (4)
C180.30774 (8)0.3875 (3)0.16103 (13)0.0362 (4)
H180.34020.40670.21280.043*
C190.32119 (9)0.3584 (3)0.08274 (13)0.0409 (5)
H190.36280.35830.08070.049*
C200.27342 (10)0.3288 (3)0.00602 (13)0.0431 (5)
H200.28320.30870.04750.052*
C210.21241 (9)0.3284 (3)0.00727 (12)0.0387 (4)
H210.18030.30770.04470.046*
C220.19908 (8)0.3595 (2)0.08723 (11)0.0311 (4)
O50.13760 (5)0.35843 (18)0.08520 (8)0.0358 (3)
C230.12074 (8)0.3917 (2)0.16077 (11)0.0312 (4)
C240.16363 (8)0.4237 (2)0.23858 (11)0.0316 (4)
O60.14504 (6)0.4531 (2)0.31246 (8)0.0426 (3)
H6A0.17450.49700.35200.064*
C250.05281 (8)0.3874 (3)0.14600 (12)0.0355 (4)
C260.01747 (9)0.2293 (3)0.10776 (13)0.0422 (5)
F20.04694 (6)0.07393 (19)0.08650 (10)0.0716 (4)
C270.04596 (9)0.2209 (3)0.09268 (14)0.0482 (5)
H270.06840.11030.06690.058*
C280.07580 (9)0.3772 (3)0.11595 (14)0.0487 (5)
H280.11930.37500.10530.058*
C290.04274 (10)0.5372 (4)0.15475 (15)0.0554 (6)
H290.06360.64350.17080.066*
C300.02118 (9)0.5420 (3)0.17027 (15)0.0490 (5)
H300.04350.65140.19760.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (9)0.0263 (8)0.0275 (9)0.0021 (7)0.0054 (7)0.0013 (7)
O10.0287 (7)0.0501 (8)0.0295 (6)0.0063 (6)0.0026 (5)0.0006 (6)
C20.0282 (9)0.0226 (8)0.0279 (8)0.0011 (7)0.0081 (7)0.0030 (7)
C30.0290 (9)0.0318 (9)0.0376 (10)0.0017 (7)0.0112 (8)0.0039 (8)
C40.0362 (10)0.0375 (10)0.0439 (11)0.0002 (8)0.0209 (9)0.0039 (8)
C50.0479 (12)0.0434 (11)0.0352 (10)0.0020 (9)0.0225 (9)0.0018 (8)
C60.0399 (11)0.0428 (11)0.0271 (9)0.0015 (8)0.0088 (8)0.0021 (8)
C70.0278 (9)0.0286 (8)0.0297 (9)0.0033 (7)0.0089 (7)0.0041 (7)
O20.0262 (6)0.0441 (7)0.0254 (6)0.0037 (5)0.0063 (5)0.0031 (5)
C80.0264 (9)0.0297 (9)0.0280 (9)0.0026 (7)0.0084 (7)0.0026 (7)
C90.0296 (9)0.0313 (9)0.0266 (8)0.0002 (7)0.0102 (7)0.0001 (7)
O30.0305 (7)0.0674 (9)0.0271 (6)0.0021 (6)0.0097 (5)0.0011 (6)
C100.0260 (9)0.0413 (10)0.0283 (9)0.0006 (7)0.0050 (7)0.0053 (8)
C110.0325 (10)0.0454 (11)0.0465 (11)0.0006 (9)0.0124 (9)0.0012 (9)
F10.0482 (8)0.0545 (8)0.0928 (10)0.0020 (6)0.0290 (7)0.0240 (7)
C120.0358 (11)0.0753 (16)0.0522 (13)0.0082 (11)0.0182 (10)0.0014 (12)
C130.0268 (10)0.0963 (19)0.0498 (13)0.0072 (12)0.0106 (10)0.0082 (13)
C140.0369 (12)0.0849 (18)0.0508 (13)0.0174 (12)0.0019 (10)0.0093 (12)
C150.0332 (11)0.0613 (13)0.0406 (11)0.0052 (10)0.0046 (9)0.0061 (10)
C160.0287 (9)0.0280 (9)0.0338 (10)0.0002 (7)0.0054 (8)0.0011 (7)
O40.0313 (7)0.0576 (9)0.0349 (7)0.0013 (6)0.0003 (6)0.0104 (6)
C170.0291 (9)0.0230 (8)0.0349 (9)0.0001 (7)0.0080 (7)0.0013 (7)
C180.0322 (10)0.0305 (9)0.0455 (11)0.0020 (7)0.0101 (8)0.0007 (8)
C190.0403 (11)0.0333 (10)0.0553 (12)0.0005 (8)0.0234 (10)0.0042 (9)
C200.0558 (13)0.0396 (11)0.0404 (11)0.0072 (9)0.0241 (10)0.0088 (9)
C210.0437 (11)0.0399 (10)0.0315 (10)0.0066 (9)0.0086 (8)0.0044 (8)
C220.0304 (9)0.0276 (9)0.0356 (9)0.0032 (7)0.0095 (8)0.0040 (7)
O50.0290 (7)0.0454 (7)0.0307 (6)0.0025 (5)0.0044 (5)0.0013 (6)
C230.0277 (9)0.0319 (9)0.0328 (9)0.0009 (7)0.0065 (7)0.0009 (7)
C240.0305 (9)0.0320 (9)0.0322 (9)0.0004 (7)0.0082 (8)0.0005 (7)
O60.0311 (7)0.0640 (9)0.0334 (7)0.0041 (6)0.0098 (6)0.0072 (6)
C250.0281 (9)0.0420 (10)0.0335 (10)0.0000 (8)0.0039 (8)0.0002 (8)
C260.0314 (10)0.0439 (11)0.0471 (11)0.0032 (8)0.0040 (9)0.0070 (9)
F20.0407 (7)0.0566 (8)0.1086 (12)0.0017 (6)0.0058 (7)0.0330 (8)
C270.0313 (11)0.0542 (13)0.0532 (13)0.0062 (9)0.0019 (9)0.0053 (10)
C280.0266 (10)0.0677 (14)0.0494 (12)0.0016 (10)0.0066 (9)0.0003 (11)
C290.0359 (12)0.0623 (15)0.0674 (15)0.0088 (10)0.0135 (11)0.0127 (12)
C300.0370 (11)0.0481 (12)0.0599 (13)0.0022 (9)0.0098 (10)0.0133 (10)
Geometric parameters (Å, º) top
C1—O11.238 (2)C16—O41.237 (2)
C1—C91.451 (2)C16—C241.444 (2)
C1—C21.454 (2)C16—C171.450 (2)
C2—C71.383 (2)C17—C221.384 (2)
C2—C31.406 (2)C17—C181.407 (2)
C3—C41.370 (2)C18—C191.366 (3)
C3—H30.9400C18—H180.9400
C4—C51.391 (3)C19—C201.391 (3)
C4—H40.9400C19—H190.9400
C5—C61.373 (3)C20—C211.370 (3)
C5—H50.9400C20—H200.9400
C6—C71.389 (2)C21—C221.392 (2)
C6—H60.9400C21—H210.9400
C7—O21.3728 (19)C22—O51.367 (2)
O2—C81.3671 (19)O5—C231.367 (2)
C8—C91.344 (2)C23—C241.352 (2)
C8—C101.471 (2)C23—C251.473 (2)
C9—O31.3539 (19)C24—O61.358 (2)
O3—H3A0.8300O6—H6A0.8300
C10—C111.379 (3)C25—C261.382 (3)
C10—C151.390 (3)C25—C301.390 (3)
C11—F11.353 (2)C26—F21.346 (2)
C11—C121.373 (3)C26—C271.374 (3)
C12—C131.369 (3)C27—C281.369 (3)
C12—H120.9400C27—H270.9400
C13—C141.370 (3)C28—C291.373 (3)
C13—H130.9400C28—H280.9400
C14—C151.383 (3)C29—C301.383 (3)
C14—H140.9400C29—H290.9400
C15—H150.9400C30—H300.9400
O1—C1—C9121.44 (15)O4—C16—C24121.22 (16)
O1—C1—C2123.96 (15)O4—C16—C17123.60 (16)
C9—C1—C2114.56 (14)C24—C16—C17115.19 (15)
C7—C2—C3118.29 (15)C22—C17—C18118.26 (16)
C7—C2—C1120.05 (14)C22—C17—C16119.82 (15)
C3—C2—C1121.64 (15)C18—C17—C16121.92 (16)
C4—C3—C2120.08 (17)C19—C18—C17120.32 (18)
C4—C3—H3120.0C19—C18—H18119.8
C2—C3—H3120.0C17—C18—H18119.8
C3—C4—C5120.24 (17)C18—C19—C20120.12 (18)
C3—C4—H4119.9C18—C19—H19119.9
C5—C4—H4119.9C20—C19—H19119.9
C6—C5—C4121.00 (17)C21—C20—C19121.04 (18)
C6—C5—H5119.5C21—C20—H20119.5
C4—C5—H5119.5C19—C20—H20119.5
C5—C6—C7118.29 (17)C20—C21—C22118.48 (18)
C5—C6—H6120.9C20—C21—H21120.8
C7—C6—H6120.9C22—C21—H21120.8
O2—C7—C2121.94 (14)O5—C22—C17121.83 (15)
O2—C7—C6115.97 (15)O5—C22—C21116.39 (16)
C2—C7—C6122.08 (15)C17—C22—C21121.78 (16)
C8—O2—C7119.38 (13)C22—O5—C23119.83 (13)
C9—C8—O2121.96 (14)C24—C23—O5121.57 (15)
C9—C8—C10126.14 (15)C24—C23—C25126.09 (16)
O2—C8—C10111.76 (14)O5—C23—C25112.33 (14)
C8—C9—O3119.60 (15)C23—C24—O6119.78 (15)
C8—C9—C1122.08 (15)C23—C24—C16121.71 (16)
O3—C9—C1118.28 (14)O6—C24—C16118.47 (15)
C9—O3—H3A109.5C24—O6—H6A109.5
C11—C10—C15116.74 (17)C26—C25—C30116.78 (17)
C11—C10—C8122.85 (17)C26—C25—C23121.72 (16)
C15—C10—C8120.40 (16)C30—C25—C23121.50 (17)
F1—C11—C12118.08 (18)F2—C26—C27118.48 (18)
F1—C11—C10118.95 (16)F2—C26—C25118.31 (16)
C12—C11—C10123.0 (2)C27—C26—C25123.19 (18)
C13—C12—C11119.1 (2)C28—C27—C26118.5 (2)
C13—C12—H12120.5C28—C27—H27120.7
C11—C12—H12120.5C26—C27—H27120.7
C12—C13—C14119.91 (19)C27—C28—C29120.53 (19)
C12—C13—H13120.0C27—C28—H28119.7
C14—C13—H13120.0C29—C28—H28119.7
C13—C14—C15120.4 (2)C28—C29—C30120.1 (2)
C13—C14—H14119.8C28—C29—H29119.9
C15—C14—H14119.8C30—C29—H29119.9
C14—C15—C10120.8 (2)C29—C30—C25120.9 (2)
C14—C15—H15119.6C29—C30—H30119.6
C10—C15—H15119.6C25—C30—H30119.6
O1—C1—C2—C7177.53 (16)O4—C16—C17—C22177.76 (16)
C9—C1—C2—C70.3 (2)C24—C16—C17—C221.7 (2)
O1—C1—C2—C31.0 (3)O4—C16—C17—C182.3 (3)
C9—C1—C2—C3178.91 (15)C24—C16—C17—C18178.18 (16)
C7—C2—C3—C40.1 (2)C22—C17—C18—C190.3 (3)
C1—C2—C3—C4178.66 (15)C16—C17—C18—C19179.66 (16)
C2—C3—C4—C50.5 (3)C17—C18—C19—C200.4 (3)
C3—C4—C5—C60.9 (3)C18—C19—C20—C210.1 (3)
C4—C5—C6—C70.8 (3)C19—C20—C21—C220.3 (3)
C3—C2—C7—O2179.99 (14)C18—C17—C22—O5179.88 (15)
C1—C2—C7—O21.4 (2)C16—C17—C22—O50.2 (2)
C3—C2—C7—C60.2 (2)C18—C17—C22—C210.2 (2)
C1—C2—C7—C6178.81 (16)C16—C17—C22—C21179.93 (16)
C5—C6—C7—O2179.60 (15)C20—C21—C22—O5179.81 (16)
C5—C6—C7—C20.2 (3)C20—C21—C22—C170.5 (3)
C2—C7—O2—C81.9 (2)C17—C22—O5—C231.6 (2)
C6—C7—O2—C8178.26 (15)C21—C22—O5—C23178.70 (15)
C7—O2—C8—C91.4 (2)C22—O5—C23—C240.8 (2)
C7—O2—C8—C10174.60 (14)C22—O5—C23—C25179.34 (14)
O2—C8—C9—O3178.22 (15)O5—C23—C24—O6178.93 (15)
C10—C8—C9—O32.8 (3)C25—C23—C24—O60.9 (3)
O2—C8—C9—C10.4 (3)O5—C23—C24—C161.3 (3)
C10—C8—C9—C1175.02 (16)C25—C23—C24—C16178.54 (16)
O1—C1—C9—C8178.06 (16)O4—C16—C24—C23177.03 (17)
C2—C1—C9—C80.1 (2)C17—C16—C24—C232.5 (2)
O1—C1—C9—O30.2 (3)O4—C16—C24—O60.7 (3)
C2—C1—C9—O3177.70 (14)C17—C16—C24—O6179.83 (15)
C9—C8—C10—C1149.9 (3)C24—C23—C25—C26124.8 (2)
O2—C8—C10—C11134.25 (17)O5—C23—C25—C2655.0 (2)
C9—C8—C10—C15128.9 (2)C24—C23—C25—C3054.9 (3)
O2—C8—C10—C1546.9 (2)O5—C23—C25—C30125.27 (19)
C15—C10—C11—F1176.51 (17)C30—C25—C26—F2177.54 (18)
C8—C10—C11—F14.6 (3)C23—C25—C26—F22.2 (3)
C15—C10—C11—C122.0 (3)C30—C25—C26—C270.6 (3)
C8—C10—C11—C12176.81 (19)C23—C25—C26—C27179.67 (19)
F1—C11—C12—C13178.09 (19)F2—C26—C27—C28178.68 (19)
C10—C11—C12—C130.5 (3)C25—C26—C27—C280.5 (3)
C11—C12—C13—C141.1 (3)C26—C27—C28—C291.0 (3)
C12—C13—C14—C150.9 (4)C27—C28—C29—C300.3 (4)
C13—C14—C15—C100.7 (3)C28—C29—C30—C250.9 (4)
C11—C10—C15—C142.1 (3)C26—C25—C30—C291.3 (3)
C8—C10—C15—C14176.75 (19)C23—C25—C30—C29179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.831.912.6813 (18)154
O6—H6A···O1ii0.832.042.8112 (18)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Funding information

The author acknowledges financial support from Dongduk Women's University.

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationLee, M. S., Yong, Y., Lee, J. M., Koh, D., Shin, S. Y. & Lee, Y. H. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 129–132.  Web of Science CrossRef CAS Google Scholar
First citationNarita, F., Takura, A. & Fujihara, T. (2015). Acta Cryst. E71, 824–826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPadgett, C. W., Lynch, W. L., Sheriff, K., Dean, R. & Zingales, S. (2018). IUCrData, 3, x181138.  Google Scholar
First citationPatel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V. & Shin, H. S. (2018). Eur. J. Med. Chem. 155, 889–904.  CrossRef Google Scholar
First citationRaffa, D., Maggio, B., Raimondi, M. V., Plescia, F. & Daidone, G. (2017). Eur. J. Med. Chem. 142, 213–228.  CrossRef Google Scholar
First citationSerdiuk, I. E., Reszka, M., Myszka, H., Krzymiński, K., Liberek, B. & Roshal, A. D. (2016). RSC Adv. 6, 42532–42536.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, o999–o1000.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds