organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-[(2,3,5,6-Tetra­methyl-1,4-phenyl­ene)bis­(methyl­ene)]di­piperidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Popes College affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627 012, India, bDepartment of Chemistry, Ponnaiyah Ramajayam Institute of Science and Technology, Vallam, Thanjavur 613 403, TamilNadu, India, and cUniversity of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
*Correspondence e-mail: bravidurai@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 21 August 2018; accepted 31 August 2018; online 7 September 2018)

The asymmetric unit of the title compound, C22H36N2, comprises one half-mol­ecule, the other half being generated by a center of inversion. The piperidine ring adopts a chair conformation, with the exocyclic N—C bond in an equatorial orientation. A short intra­molecular C—H⋯N hydrogen bond occurs and forms an S(6) motif. No directional inter­actions beyond van der Waals contacts are observed between the mol­ecules, which form a wave-like supra­molecular architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some piperidine derivatives possess significant biological and medicinal properties including insulin normalization, addiction therapeutics (Kozikowski et al., 1998[Kozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962-1969.]) and local anaesthesia (McElvain & Carney, 1946[McElvain, S. M. & Carney, T. P. (1946). J. Am. Chem. Soc. 68, 2592-2600.]). Here we report the synthesis and crystal structure of a new piperidine-substituted durene.

The asymmetric unit is made up of one half-mol­ecule, the other half being generated by inversion (symmetry code: 1 − x,1 − y,1 − z; see Fig. 1[link]). The piperidine rings adopt a chair conformation with puckering parameters Q = 0.5765 (16) Å, Θ =178.20 (15)° φ = 181 (5)°. The dihedral angle between the phenyl (C8/C9/C11/C8a/C9a/C11a) and piperidine (N1/C2–C6) rings is 73.66 (7)°. The weak intra­molecular C12—H12B⋯N1 hydrogen bond (Table 1[link]) forms an S(6) motif. In the crystal, adjacent mol­ecules are aggregated by weak van der Waals inter­actions, leading to a wave-like supra­molecular architecture (Fig. 2[link]) extending along b-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯N1 0.94 (2) 2.59 (2) 3.2204 (18) 124.8 (14)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level [symmetry code: (a) 1 − x, 1 − y, 1 − z].
[Figure 2]
Figure 2
Part of the crystal packing showing the wave-like architecture. View is along the a axis.

Synthesis and crystallization

A mixture of piperidine hydrochloride (0.242 g, 2 mmol) in sodium ethoxide solution and 1,4-bis­(bromo­meth­yl)durene (0.320 g, 1 mmol) in ethanol and water (15 ml) were heated at 333 K with continuous stirring for about 4 h. The mixture was kept aside for slow evaporation. After two weeks, colourless block-shaped crystals (m.p. 462 K) suitable for single-crystal X-ray diffraction were formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H36N2
Mr 328.53
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 5.6271 (4), 21.1764 (14), 8.2787 (5)
β (°) 105.860 (2)
V3) 948.95 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.45 × 0.17 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII
No. of measured, independent and observed [I > 2σ(I)] reflections 6578, 2237, 1779
Rint 0.027
(sin θ/λ)max−1) 0.655
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.03
No. of reflections 2237
No. of parameters 172
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), Mercury (Macrae et al. (2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POV-RAY for Windows (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. https://www.povray.org.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

1,1'-[(2,3,5,6-Tetramethyl-1,4-phenylene)bis(methylene)]dipiperidine top
Crystal data top
C22H36N2F(000) = 364
Mr = 328.53Dx = 1.150 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6271 (4) ÅCell parameters from 1751 reflections
b = 21.1764 (14) Åθ = 2.7–27.7°
c = 8.2787 (5) ŵ = 0.07 mm1
β = 105.860 (2)°T = 173 K
V = 948.95 (11) Å3Block, colourless
Z = 20.45 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEXII
diffractometer
1779 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.027
Graphite monochromatorθmax = 27.7°, θmin = 1.9°
CCD scanh = 76
6578 measured reflectionsk = 2716
2237 independent reflectionsl = 910
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.2324P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2237 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were added at positions obtained from difference Fourier maps and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.48878 (19)0.63789 (5)0.20943 (13)0.0239 (3)
C20.4075 (2)0.59637 (6)0.06304 (16)0.0268 (3)
H2A0.221 (3)0.6020 (6)0.0122 (18)0.029 (3)*
H2B0.434 (3)0.5516 (7)0.1021 (18)0.029 (3)*
C30.5439 (3)0.61062 (6)0.06807 (17)0.0305 (3)
H3A0.487 (3)0.5819 (8)0.166 (2)0.039 (3)*
H3B0.725 (3)0.6027 (7)0.018 (2)0.039 (3)*
C40.5071 (3)0.67927 (7)0.12320 (19)0.0363 (3)
H4A0.331 (3)0.6873 (8)0.179 (2)0.048 (3)*
H4B0.605 (3)0.6902 (8)0.201 (2)0.048 (3)*
C50.5808 (3)0.72219 (7)0.0303 (2)0.0380 (4)
H5A0.765 (3)0.7182 (8)0.083 (2)0.047 (3)*
H5B0.549 (3)0.7677 (9)0.003 (2)0.047 (3)*
C60.4436 (3)0.70403 (6)0.15832 (18)0.0320 (3)
H6A0.497 (3)0.7317 (7)0.262 (2)0.037 (3)*
H6B0.258 (3)0.7116 (7)0.1108 (19)0.037 (3)*
C70.3611 (2)0.62262 (6)0.33824 (16)0.0267 (3)
H7A0.178 (3)0.6271 (6)0.2908 (18)0.028 (2)*
H7B0.407 (3)0.6563 (7)0.4244 (18)0.028 (2)*
C80.4317 (2)0.55846 (6)0.41941 (15)0.0227 (3)
C90.2674 (2)0.50691 (6)0.38251 (14)0.0232 (3)
C100.0179 (3)0.51192 (7)0.25473 (18)0.0312 (3)
H10A0.015 (4)0.4889 (11)0.152 (3)0.088 (4)*
H10B0.024 (4)0.5535 (12)0.220 (3)0.088 (4)*
H10C0.114 (5)0.4943 (10)0.296 (3)0.088 (4)*
C110.6640 (2)0.55124 (6)0.53631 (15)0.0231 (3)
C120.8452 (3)0.60566 (7)0.57599 (18)0.0307 (3)
H12A0.882 (3)0.6199 (8)0.695 (2)0.056 (3)*
H12B0.791 (4)0.6411 (9)0.508 (2)0.056 (3)*
H12C1.002 (4)0.5941 (9)0.561 (2)0.056 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (5)0.0205 (5)0.0239 (5)0.0011 (4)0.0102 (4)0.0009 (4)
C20.0328 (7)0.0242 (6)0.0244 (6)0.0008 (5)0.0095 (5)0.0001 (5)
C30.0380 (7)0.0309 (7)0.0255 (7)0.0034 (6)0.0136 (6)0.0014 (5)
C40.0427 (8)0.0372 (8)0.0339 (8)0.0082 (6)0.0187 (7)0.0127 (6)
C50.0491 (9)0.0247 (7)0.0477 (9)0.0014 (6)0.0256 (7)0.0074 (6)
C60.0409 (8)0.0208 (6)0.0375 (8)0.0032 (5)0.0164 (6)0.0021 (5)
C70.0316 (7)0.0248 (6)0.0269 (7)0.0036 (5)0.0134 (5)0.0009 (5)
C80.0275 (6)0.0243 (6)0.0194 (6)0.0005 (5)0.0117 (5)0.0014 (4)
C90.0255 (6)0.0283 (6)0.0180 (6)0.0004 (5)0.0098 (5)0.0016 (5)
C100.0286 (7)0.0359 (7)0.0274 (7)0.0018 (5)0.0049 (5)0.0015 (6)
C110.0282 (6)0.0249 (6)0.0194 (6)0.0024 (5)0.0117 (5)0.0036 (4)
C120.0337 (7)0.0290 (7)0.0294 (7)0.0073 (5)0.0085 (6)0.0030 (5)
Geometric parameters (Å, º) top
N1—C61.4652 (16)C6—H6B1.024 (16)
N1—C21.4655 (16)C7—C81.5198 (17)
N1—C71.4753 (16)C7—H7A1.003 (15)
C2—C31.5207 (18)C7—H7B0.991 (15)
C2—H2A1.026 (15)C8—C111.4060 (17)
C2—H2B1.000 (14)C8—C91.4090 (17)
C3—C41.5209 (19)C9—C11i1.4055 (17)
C3—H3A0.991 (17)C9—C101.5131 (18)
C3—H3B1.003 (17)C10—H10A0.98 (2)
C4—C51.525 (2)C10—H10B0.94 (2)
C4—H4A0.987 (18)C10—H10C0.97 (2)
C4—H4B0.984 (18)C11—C121.5143 (17)
C5—C61.521 (2)C12—H12A0.996 (19)
C5—H5A1.013 (18)C12—H12B0.94 (2)
C5—H5B1.003 (18)C12—H12C0.957 (19)
C6—H6A1.017 (16)
C6—N1—C2110.14 (10)N1—C6—H6B109.9 (9)
C6—N1—C7109.74 (10)C5—C6—H6B110.6 (9)
C2—N1—C7111.27 (10)H6A—C6—H6B105.6 (12)
N1—C2—C3111.53 (11)N1—C7—C8113.30 (10)
N1—C2—H2A108.8 (8)N1—C7—H7A110.4 (8)
C3—C2—H2A110.1 (8)C8—C7—H7A112.0 (8)
N1—C2—H2B108.5 (8)N1—C7—H7B106.3 (8)
C3—C2—H2B111.0 (8)C8—C7—H7B109.8 (8)
H2A—C2—H2B106.7 (11)H7A—C7—H7B104.5 (11)
C2—C3—C4110.49 (11)C11—C8—C9119.77 (11)
C2—C3—H3A110.2 (9)C11—C8—C7118.88 (11)
C4—C3—H3A110.8 (9)C9—C8—C7121.33 (11)
C2—C3—H3B109.0 (9)C11i—C9—C8119.79 (11)
C4—C3—H3B108.9 (9)C11i—C9—C10118.48 (11)
H3A—C3—H3B107.5 (13)C8—C9—C10121.73 (11)
C3—C4—C5109.63 (12)C9—C10—H10A111.6 (14)
C3—C4—H4A109.9 (10)C9—C10—H10B112.8 (15)
C5—C4—H4A107.2 (10)H10A—C10—H10B104.8 (19)
C3—C4—H4B111.5 (10)C9—C10—H10C112.3 (14)
C5—C4—H4B109.5 (10)H10A—C10—H10C106.1 (19)
H4A—C4—H4B109.0 (14)H10B—C10—H10C108.6 (19)
C6—C5—C4110.83 (12)C9i—C11—C8120.44 (11)
C6—C5—H5A109.3 (9)C9i—C11—C12118.84 (11)
C4—C5—H5A109.0 (9)C8—C11—C12120.72 (11)
C6—C5—H5B110.2 (10)C11—C12—H12A113.1 (10)
C4—C5—H5B111.0 (10)C11—C12—H12B113.0 (12)
H5A—C5—H5B106.5 (13)H12A—C12—H12B107.0 (15)
N1—C6—C5111.19 (11)C11—C12—H12C111.5 (11)
N1—C6—H6A108.6 (9)H12A—C12—H12C104.8 (15)
C5—C6—H6A110.8 (9)H12B—C12—H12C106.8 (16)
C6—N1—C2—C359.72 (14)N1—C7—C8—C1174.54 (14)
C7—N1—C2—C3178.35 (10)N1—C7—C8—C9106.87 (13)
N1—C2—C3—C457.54 (15)C11—C8—C9—C11i0.46 (18)
C2—C3—C4—C553.97 (16)C7—C8—C9—C11i178.11 (10)
C3—C4—C5—C654.05 (17)C11—C8—C9—C10178.56 (11)
C2—N1—C6—C559.38 (15)C7—C8—C9—C102.87 (18)
C7—N1—C6—C5177.78 (12)C9—C8—C11—C9i0.46 (18)
C4—C5—C6—N157.25 (16)C7—C8—C11—C9i178.14 (10)
C6—N1—C7—C8170.47 (11)C9—C8—C11—C12179.05 (11)
C2—N1—C7—C867.37 (14)C7—C8—C11—C122.34 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···N10.94 (2)2.59 (2)3.2204 (18)124.8 (14)
 

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. https://www.povray.orgGoogle Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKozikowski, A. P., Araldi, G. L., Boja, J., Meil, W. M., Johnson, K. M., Flippen-Anderson, J. L., George, C. & Saiah, E. (1998). J. Med. Chem. 41, 1962–1969.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcElvain, S. M. & Carney, T. P. (1946). J. Am. Chem. Soc. 68, 2592–2600.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds