organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3E)-3-{(2E)-3-[4-(Di­methyl­amino)­phen­yl]prop-2-enyl­­idene}-3,4-di­hydro-2H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bharathi Women's College, Chennai-108, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, Tamilnadu, India, and cPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by R. J. Butcher, Howard University, USA (Received 6 August 2018; accepted 8 September 2018; online 14 September 2018)

In the title compound, C20H19NO2, the (di­methyl­amino)­phenyl ring and the chromanone ring system are linked via an α-β unsaturated carbon bridge. The dihedral angle between the two terminal phenyl rings is 29.66 (6)°. The tetra­hydro-4H-pyran-4 one ring in the chromanone moiety adopts a sofa conformation. The crystal packing is stabilized only by van der Waals forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are open chain flavonoids having a variety of biological activities, including anti­oxidant, anti-inflammation, anti­microbial, anti­protozoal and anti­ulcer properties (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). More importantly, chalcones have also shown anti­cancer activity as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005[Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479-3486.]). The Claisen–Schmidt condensation reaction between substituted aceto­phenones and aryl aldehydes under basic conditions has been widely used to synthesize chalcone derivatives (Robinson et al., 2013[Robinson, S. J., Petzer, J. P., Petzer, A., Bergh, J. J. & Lourens, A. C. U. (2013). Bioorg. Med. Chem. Lett. 23, 4985-4989.]; Tiwari et al., 2010[Tiwari, B., Pratapwar, A. S., Tapas, A. R. & Butle, S. R. (2010). Int. J. ChemTech Res. 2, 499-503.]). As part of our studies in this area, the title compound (Fig. 1[link]) was synthesized and its crystal structure determined.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small circles of arbitrary radii.

The C—N distances in the (di­methyl­amino)­phenyl moiety are in the range 1.366 (2) to 1.447 (2) Å and are comparable with the values reported for a similar structure (Adam et al., 2015[Adam, F., Samshuddin, S., Ameram, N., Subramaya & Samartha, L. (2015). Acta Cryst. E71, o1031-o1032.]). The C—O and C=O distances in the chromanone moiety [1.365 (2)–1.441 (2) Å and 1.227 (2) Å, respectively] are typical of those in reported structures (Gopaul et al., 2012[Gopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, o1972.]). In the mol­ecule, neither the α-β unsaturated carbon bridge nor the di­methyl­amino substituent are coplanar with their attached phenyl ring; the dihedral angle between the phenyl ring and the di­methyl­amino group is 10.3 (2)° while that between the α-β unsaturated carbon bridge and the phenyl ring is 8.58 (9)°. This is also true of the phenyl and tetra­hydro-4H-pyran-4-one rings of the chromanone ring system, which make a dihedral angle of 6.2 (1)°. As a result of these dihedral angles which are all in the same direction, even though most of the title compound makes up a single conjugated system, there is a significant twist between the two end phenyl rings, which make a dihedral angle of 29.66 (6)°. The sum of the angles around the N atom is 359.61°, indicating sp2 hybridization. The tetra­hydro-4H-pyran-4-one ring in the chromanone moiety adopts a sofa conformation with atom C13 displaced from the other ring atoms by 0.5656 (15) Å and with puckering parameters of q2 = 0.3795 (15) Å, φ2 = 71.43 (2)°, q3 = 0.1835 (15) Å, QT = 0.4216 (14) Å and θ2 = 64.20 (2)°.

It is well known that the ketone atom in chalcones is usually an active participant in hydrogen-bond formation or C—H⋯O inter­actions. However, in the present compound this is not the case and the crystal structure is stabilized only by van der Waals forces (Fig. 2[link]).

[Figure 2]
Figure 2
The packing of the mol­ecules in the unit cell.

Synthesis and crystallization

In a 250 ml round-bottomed flask, 4-chromanone (0.9 g, 0.006 mol) and 4-di­methyl­amino­cinnamaldehyde (1 g, 0.006 mol) were added to absolute alcohol and stirred for 5 min. Then a solution of NaOH (0.3 g,10 ml) was added and stirred for 2 h. The mixture was kept overnight at room temperature and the precipitate was generated by adding a sufficient amount of crushed ice. The yield was filtered and washed with distilled water several times to remove any trace of NaOH remaining in the product. The crude chalcone derivative was recrystallized twice from ethyl methyl­ketone to give red block-shaped diffraction-quality crystals of the title compound (yield 70%; m.p. 175°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H19NO2
Mr 305.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.3620 (4), 11.6073 (5), 15.0732 (7)
β (°) 98.859 (2)
V3) 1618.43 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 12086, 3331, 2487
Rint 0.037
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.05
No. of reflections 3275
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.14
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

(3E)-3-{(2E)-3-[4-(Dimethylamino)phenyl]prop-2-enylidene}-3,4-dihydro-2H-chromen-4-one top
Crystal data top
C20H19NO2F(000) = 648
Mr = 305.36Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3620 (4) ÅCell parameters from 5210 reflections
b = 11.6073 (5) Åθ = 3.2–26.4°
c = 15.0732 (7) ŵ = 0.08 mm1
β = 98.859 (2)°T = 296 K
V = 1618.43 (12) Å3Block, red
Z = 40.20 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2487 reflections with I > 2σ(I)
ω and φ scanRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 26.4°, θmin = 3.7°
Tmin = 0.984, Tmax = 0.988h = 1011
12086 measured reflectionsk = 1414
3331 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.2609P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3275 reflectionsΔρmax = 0.16 e Å3
210 parametersΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distances of 0.93–0.97 Å, with Uiso(H) = 1.5 Ueq(CH3), and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0964 (2)0.68888 (17)0.79247 (11)0.0640 (5)
H1A0.08380.73060.84570.096*
H1B0.17270.63350.80670.096*
H1C0.00820.64970.76930.096*
C20.0885 (2)0.88711 (17)0.73183 (13)0.0720 (5)
H2A0.03610.89540.78140.108*
H2B0.02750.90860.67720.108*
H2C0.17230.93600.74090.108*
C30.19368 (15)0.73066 (12)0.65409 (9)0.0419 (3)
C40.21389 (15)0.61255 (12)0.63836 (9)0.0433 (3)
H40.18590.55830.67770.052*
C50.27444 (15)0.57621 (12)0.56564 (9)0.0416 (3)
H50.28420.49750.55660.050*
C60.32198 (15)0.65288 (11)0.50480 (9)0.0395 (3)
C70.30258 (16)0.77064 (12)0.52103 (9)0.0438 (3)
H70.33310.82450.48230.053*
C80.24020 (16)0.80844 (12)0.59197 (9)0.0459 (3)
H80.22800.88710.59960.055*
C90.38700 (15)0.60951 (12)0.43012 (9)0.0430 (3)
H90.38570.53000.42270.052*
C100.44891 (16)0.67015 (12)0.37032 (9)0.0437 (3)
H100.45700.74970.37670.052*
C110.50278 (16)0.61550 (12)0.29683 (9)0.0427 (3)
H110.49340.53580.29350.051*
C120.56533 (15)0.66574 (11)0.23197 (8)0.0394 (3)
C130.58723 (16)0.79282 (12)0.22502 (10)0.0444 (3)
H13A0.50890.82470.18250.053*
H13B0.58300.82780.28300.053*
C140.74836 (15)0.76685 (12)0.12115 (9)0.0425 (3)
C150.68871 (16)0.65880 (12)0.09684 (9)0.0428 (3)
C160.60480 (16)0.59667 (12)0.15718 (9)0.0432 (3)
C170.7188 (2)0.60855 (15)0.01730 (11)0.0606 (4)
H170.67780.53780.00100.073*
C180.8080 (2)0.66229 (17)0.03405 (13)0.0723 (5)
H180.82620.62840.08710.087*
C190.8709 (2)0.76745 (17)0.00662 (13)0.0667 (5)
H190.93420.80240.04030.080*
C200.84022 (17)0.81996 (15)0.06980 (11)0.0553 (4)
H200.88100.89110.08710.066*
N10.13334 (15)0.76841 (12)0.72573 (9)0.0556 (4)
O10.72288 (11)0.82258 (9)0.19689 (7)0.0509 (3)
O20.57429 (15)0.49431 (9)0.14612 (8)0.0648 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0704 (11)0.0793 (12)0.0468 (9)0.0040 (9)0.0230 (8)0.0043 (8)
C20.0828 (13)0.0659 (11)0.0727 (12)0.0152 (9)0.0286 (10)0.0171 (9)
C30.0403 (7)0.0463 (8)0.0395 (7)0.0012 (6)0.0078 (6)0.0048 (6)
C40.0474 (8)0.0423 (7)0.0416 (7)0.0044 (6)0.0115 (6)0.0035 (6)
C50.0483 (8)0.0347 (7)0.0423 (7)0.0006 (5)0.0088 (6)0.0003 (5)
C60.0444 (7)0.0382 (7)0.0361 (7)0.0009 (5)0.0067 (6)0.0003 (5)
C70.0531 (8)0.0384 (7)0.0413 (7)0.0019 (6)0.0114 (6)0.0030 (6)
C80.0554 (9)0.0352 (7)0.0485 (8)0.0007 (6)0.0126 (7)0.0032 (6)
C90.0523 (8)0.0385 (7)0.0390 (7)0.0036 (6)0.0094 (6)0.0009 (5)
C100.0532 (8)0.0376 (7)0.0416 (7)0.0033 (6)0.0109 (6)0.0006 (6)
C110.0545 (8)0.0351 (7)0.0397 (7)0.0060 (6)0.0107 (6)0.0020 (5)
C120.0461 (8)0.0350 (7)0.0377 (7)0.0058 (5)0.0081 (6)0.0000 (5)
C130.0515 (8)0.0366 (7)0.0477 (8)0.0020 (6)0.0162 (6)0.0028 (6)
C140.0393 (7)0.0449 (7)0.0438 (7)0.0050 (6)0.0079 (6)0.0015 (6)
C150.0475 (8)0.0417 (7)0.0406 (7)0.0078 (6)0.0112 (6)0.0004 (6)
C160.0548 (8)0.0360 (7)0.0402 (7)0.0049 (6)0.0112 (6)0.0002 (5)
C170.0826 (12)0.0519 (9)0.0526 (9)0.0027 (8)0.0271 (8)0.0065 (7)
C180.0941 (14)0.0718 (12)0.0598 (10)0.0076 (10)0.0401 (10)0.0050 (9)
C190.0667 (11)0.0730 (12)0.0680 (11)0.0031 (9)0.0346 (9)0.0088 (9)
C200.0487 (9)0.0566 (9)0.0633 (10)0.0017 (7)0.0171 (7)0.0027 (7)
N10.0654 (8)0.0558 (8)0.0507 (7)0.0001 (6)0.0251 (6)0.0083 (6)
O10.0528 (6)0.0498 (6)0.0527 (6)0.0102 (5)0.0164 (5)0.0122 (5)
O20.1039 (10)0.0350 (6)0.0621 (7)0.0063 (5)0.0341 (7)0.0080 (5)
Geometric parameters (Å, º) top
C1—N11.446 (2)C10—C111.4338 (19)
C1—H1A0.9600C10—H100.9300
C1—H1B0.9600C11—C121.3474 (19)
C1—H1C0.9600C11—H110.9300
C2—N11.447 (2)C12—C161.4759 (18)
C2—H2A0.9600C12—C131.4951 (18)
C2—H2B0.9600C13—O11.4414 (18)
C2—H2C0.9600C13—H13A0.9700
C3—N11.3658 (18)C13—H13B0.9700
C3—C41.409 (2)C14—O11.3647 (17)
C3—C81.417 (2)C14—C201.387 (2)
C4—C51.376 (2)C14—C151.399 (2)
C4—H40.9300C15—C171.400 (2)
C5—C61.3988 (19)C15—C161.478 (2)
C5—H50.9300C16—O21.2272 (17)
C6—C71.4054 (19)C17—C181.373 (2)
C6—C91.4499 (19)C17—H170.9300
C7—C81.367 (2)C18—C191.390 (3)
C7—H70.9300C18—H180.9300
C8—H80.9300C19—C201.372 (2)
C9—C101.3434 (19)C19—H190.9300
C9—H90.9300C20—H200.9300
N1—C1—H1A109.5C12—C11—H11116.1
N1—C1—H1B109.5C10—C11—H11116.1
H1A—C1—H1B109.5C11—C12—C16120.46 (12)
N1—C1—H1C109.5C11—C12—C13123.88 (12)
H1A—C1—H1C109.5C16—C12—C13115.42 (12)
H1B—C1—H1C109.5O1—C13—C12113.18 (11)
N1—C2—H2A109.5O1—C13—H13A108.9
N1—C2—H2B109.5C12—C13—H13A108.9
H2A—C2—H2B109.5O1—C13—H13B108.9
N1—C2—H2C109.5C12—C13—H13B108.9
H2A—C2—H2C109.5H13A—C13—H13B107.8
H2B—C2—H2C109.5O1—C14—C20117.34 (13)
N1—C3—C4121.86 (13)O1—C14—C15122.01 (13)
N1—C3—C8121.65 (13)C20—C14—C15120.61 (14)
C4—C3—C8116.49 (13)C14—C15—C17118.23 (14)
C5—C4—C3120.99 (13)C14—C15—C16120.32 (12)
C5—C4—H4119.5C17—C15—C16121.31 (13)
C3—C4—H4119.5O2—C16—C12123.32 (13)
C4—C5—C6122.62 (13)O2—C16—C15121.56 (13)
C4—C5—H5118.7C12—C16—C15115.10 (12)
C6—C5—H5118.7C18—C17—C15120.89 (16)
C5—C6—C7116.23 (12)C18—C17—H17119.6
C5—C6—C9120.14 (12)C15—C17—H17119.6
C7—C6—C9123.63 (12)C17—C18—C19119.88 (16)
C8—C7—C6122.04 (13)C17—C18—H18120.1
C8—C7—H7119.0C19—C18—H18120.1
C6—C7—H7119.0C20—C19—C18120.36 (16)
C7—C8—C3121.62 (13)C20—C19—H19119.8
C7—C8—H8119.2C18—C19—H19119.8
C3—C8—H8119.2C19—C20—C14119.94 (16)
C10—C9—C6127.97 (13)C19—C20—H20120.0
C10—C9—H9116.0C14—C20—H20120.0
C6—C9—H9116.0C3—N1—C1121.17 (14)
C9—C10—C11121.74 (13)C3—N1—C2120.99 (14)
C9—C10—H10119.1C1—N1—C2117.45 (14)
C11—C10—H10119.1C14—O1—C13114.07 (11)
C12—C11—C10127.81 (13)
N1—C3—C4—C5179.78 (13)C11—C12—C16—O25.5 (2)
C8—C3—C4—C50.6 (2)C13—C12—C16—O2169.17 (14)
C3—C4—C5—C61.4 (2)C11—C12—C16—C15172.74 (12)
C4—C5—C6—C71.0 (2)C13—C12—C16—C1512.58 (18)
C4—C5—C6—C9179.05 (12)C14—C15—C16—O2166.30 (14)
C5—C6—C7—C80.3 (2)C17—C15—C16—O29.4 (2)
C9—C6—C7—C8179.70 (13)C14—C15—C16—C1211.97 (19)
C6—C7—C8—C31.1 (2)C17—C15—C16—C12172.32 (13)
N1—C3—C8—C7179.00 (13)C14—C15—C17—C181.9 (3)
C4—C3—C8—C70.6 (2)C16—C15—C17—C18173.87 (15)
C5—C6—C9—C10173.96 (14)C15—C17—C18—C190.7 (3)
C7—C6—C9—C106.1 (2)C17—C18—C19—C202.4 (3)
C6—C9—C10—C11176.87 (13)C18—C19—C20—C141.4 (3)
C9—C10—C11—C12179.21 (14)O1—C14—C20—C19179.38 (14)
C10—C11—C12—C16175.39 (13)C15—C14—C20—C191.3 (2)
C10—C11—C12—C131.2 (2)C4—C3—N1—C14.3 (2)
C11—C12—C13—O1141.69 (13)C8—C3—N1—C1175.22 (14)
C16—C12—C13—O143.83 (17)C4—C3—N1—C2168.28 (15)
O1—C14—C15—C17179.08 (13)C8—C3—N1—C212.2 (2)
C20—C14—C15—C172.9 (2)C20—C14—O1—C13154.73 (13)
O1—C14—C15—C165.1 (2)C15—C14—O1—C1327.24 (18)
C20—C14—C15—C16172.89 (13)C12—C13—O1—C1451.19 (16)
 

Acknowledgements

The authors thank Central Instrumentation Facility, Queen Mary's College, Chennai-4 for computing facilities and SAIF, IIT, Madras, for the X-ray data collection.

References

First citationAdam, F., Samshuddin, S., Ameram, N., Subramaya & Samartha, L. (2015). Acta Cryst. E71, o1031–o1032.  Google Scholar
First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, o1972.  CSD CrossRef IUCr Journals Google Scholar
First citationRobinson, S. J., Petzer, J. P., Petzer, A., Bergh, J. J. & Lourens, A. C. U. (2013). Bioorg. Med. Chem. Lett. 23, 4985–4989.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiwari, B., Pratapwar, A. S., Tapas, A. R. & Butle, S. R. (2010). Int. J. ChemTech Res. 2, 499–503.  Google Scholar
First citationZi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds