organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

L-Histidinium iodide

CROSSMARK_Color_square_no_text.svg

aPG and Research Department of Physics, Pachaiyappa's College, Chennai 600 030, Tamil Nadu, India, bDepartment of Physics, Presidency College, Chennai 600 005, Tamil Nadu, India, and cDepartment of Physics & Nano Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India
*Correspondence e-mail: ppkpresidency@gmail.com, phdguna@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 27 August 2018; accepted 5 September 2018; online 25 September 2018)

In the title salt, C6H10N3O2+·I, the cation is protonated at the imidazole ring and the amine group and deprotonated at the carboxylate group. The crystal packing features N—H⋯O and N—H⋯I hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

L-Histidine derivatives plays a major role in zinc metabolism, as a zinc binding moiety in serum (Casella & Gullotti, 1983[Casella, L. & Gullotti, M. (1983). J. Inorg. Biochem. 18, 19-31.]), and these derivatives exhibit anti­microbial activity (Garza-Ortiz et al., 2013[Garza-Ortiz, A., Camacho-Camacho, C., Sainz-Espunes, T., Rojas-Oviedo, I., Raul Gutierrez-Lucas, R., Gutierrez Carrillo, A. & Vera Ramirez, M. A. (2013). Bioinorg. Chem. Appl. pp. 1-12.]). The title compound comprises a protonated L-histidine cation and an iodide anion (Fig. 1[link]). The geometric parameters of the title cation agree well with those reported for similar structures (Gokul Raj et al., 2006[Gokul Raj, S., Kumar, G. R., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o5-o7.]; Johnson & Feeder, 2004[Johnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1273-o1274.]). The crystal packing (Fig. 2[link]) is controlled by N—H⋯O and N—H⋯I hydrogen bonds (Table 1[link]). The title compound is isostructural with the bromide and chloride salts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1 0.86 2.91 3.546 (3) 133
N2—H2A⋯O2i 0.86 1.91 2.693 (5) 151
N3—H3A⋯O1ii 0.89 1.94 2.819 (3) 168
N3—H3B⋯I1iii 0.89 2.70 3.546 (2) 160
N3—H3C⋯O1iv 0.89 1.98 2.855 (3) 167
N3—H3C⋯O2iv 0.89 2.56 3.214 (3) 131
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z-1; (iv) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for the non-H atoms.
[Figure 2]
Figure 2
Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms bonded to C atoms have been omitted for clarity.

Synthesis and crystallization

L-histidine (15.0 g, 0.0966 mol) and hydriodic acid (13.2150 ml mol−1) were dissolved in 50 ml of double-distilled water and stirred at 293 K for 4 h. The solution was filtered and allowed to dry at room temperature by slow evaporation. After 30 d, pale-yello block-shaped crystals were obtained in a yield of 95% (m.p. 370 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H10N3O2+·I
Mr 283.07
Crystal system, space group Monoclinic, P21
Temperature (K) 296
a, b, c (Å) 5.7363 (2), 8.2696 (3), 10.0169 (4)
β (°) 94.314 (1)
V3) 473.82 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.35
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.731, 0.851
No. of measured, independent and observed [I > 2σ(I)] reflections 9180, 3569, 3231
Rint 0.030
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.082, 1.20
No. of reflections 3569
No. of parameters 110
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.87
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1725 Friedel pairs
Absolute structure parameter 0.05 (3)
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

L-Histidinium iodide top
Crystal data top
C6H10N3O2+·IF(000) = 272
Mr = 283.07Dx = 1.984 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3626 reflections
a = 5.7363 (2) Åθ = 3.2–33.1°
b = 8.2696 (3) ŵ = 3.35 mm1
c = 10.0169 (4) ÅT = 296 K
β = 94.314 (1)°Block, pale yellow
V = 473.82 (3) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube3231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 33.2°, θmin = 3.2°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.731, Tmax = 0.851l = 1515
9180 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.0342P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.003
3569 reflectionsΔρmax = 0.40 e Å3
110 parametersΔρmin = 0.87 e Å3
1 restraintAbsolute structure: Flack (1983), with 1725 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Special details top

Refinement. H atoms were positioned geometrically and refined using riding model with C-H = 0.97Å and Uiso(H) = 1.2Ueq(C) for C-H2, C-H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic C-H, N-H = 0.89Å and Uiso(H) = 1.5Ueq(C) for N-H3, and N-H = 0.86Å and Uiso(H) = 1.2Ueq(C) for N-H.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.11212 (3)0.45507 (5)1.108570 (15)0.03755 (7)
O10.3126 (3)0.4108 (3)0.4822 (3)0.0346 (5)
O20.2046 (4)0.6389 (3)0.3852 (3)0.0316 (4)
N10.6300 (6)0.5429 (4)0.8774 (3)0.0322 (6)
H1A0.74170.58710.92660.039*
N20.4093 (5)0.3651 (3)0.7777 (3)0.0279 (5)
H2A0.35350.27300.75120.033*
C40.0921 (5)0.5337 (4)0.6622 (3)0.0297 (6)
H4A0.04610.64620.66790.036*
H4B0.02510.46980.70320.036*
N30.2571 (3)0.5839 (3)0.4421 (2)0.0221 (4)
H3A0.25320.68630.46910.033*
H3B0.21950.57900.35440.033*
H3C0.40030.54420.46000.033*
C30.5991 (7)0.3871 (5)0.8599 (4)0.0346 (7)
H30.69400.30590.89840.042*
C10.3171 (5)0.5127 (4)0.7421 (3)0.0262 (5)
C50.0875 (4)0.4873 (2)0.5136 (2)0.0193 (5)
H50.12720.37250.50680.023*
C60.1639 (4)0.5135 (3)0.4518 (3)0.0216 (4)
C20.4567 (6)0.6230 (4)0.8052 (4)0.0338 (6)
H20.43810.73460.80030.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04010 (10)0.03940 (10)0.03123 (9)0.00380 (11)0.01003 (6)0.00188 (11)
O10.0164 (8)0.0278 (10)0.0587 (14)0.0016 (6)0.0025 (8)0.0096 (9)
O20.0230 (9)0.0252 (9)0.0444 (12)0.0030 (7)0.0104 (8)0.0063 (9)
N10.0295 (12)0.0385 (15)0.0272 (13)0.0035 (11)0.0077 (10)0.0098 (11)
N20.0307 (12)0.0248 (11)0.0270 (11)0.0017 (9)0.0059 (10)0.0021 (9)
C40.0219 (11)0.0428 (16)0.0239 (12)0.0047 (11)0.0012 (9)0.0031 (11)
N30.0139 (8)0.0241 (9)0.0280 (10)0.0007 (7)0.0007 (7)0.0019 (8)
C30.0324 (16)0.0397 (17)0.0307 (16)0.0052 (14)0.0055 (12)0.0001 (13)
C10.0255 (11)0.0304 (12)0.0220 (11)0.0026 (10)0.0033 (9)0.0016 (9)
C50.0133 (8)0.0181 (13)0.0260 (10)0.0014 (6)0.0025 (7)0.0013 (7)
C60.0152 (9)0.0188 (9)0.0302 (12)0.0019 (8)0.0029 (8)0.0012 (9)
C20.0323 (14)0.0323 (15)0.0360 (15)0.0033 (12)0.0030 (11)0.0036 (12)
Geometric parameters (Å, º) top
O1—C61.258 (3)C4—H4B0.9700
O2—C61.245 (3)N3—C51.484 (3)
N1—C31.310 (5)N3—H3A0.8900
N1—C21.357 (5)N3—H3B0.8900
N1—H1A0.8600N3—H3C0.8900
N2—C31.327 (5)C3—H30.9300
N2—C11.367 (4)C1—C21.340 (5)
N2—H2A0.8600C5—C61.542 (3)
C4—C11.477 (4)C5—H50.9800
C4—C51.535 (4)C6—O21.245 (3)
C4—H4A0.9700C2—H20.9300
C3—N1—C2108.8 (3)N1—C3—H3125.8
C3—N1—H1A125.6N2—C3—H3125.8
C2—N1—H1A125.6C2—C1—N2106.2 (3)
C3—N2—C1108.8 (3)C2—C1—C4129.9 (3)
C3—N2—H2A125.6N2—C1—C4123.5 (3)
C1—N2—H2A125.6N3—C5—C4111.7 (2)
C1—C4—C5116.5 (2)N3—C5—C6110.96 (19)
C1—C4—H4A108.2C4—C5—C6107.6 (2)
C5—C4—H4A108.2N3—C5—H5108.9
C1—C4—H4B108.2C4—C5—H5108.9
C5—C4—H4B108.2C6—C5—H5108.9
H4A—C4—H4B107.3O2—C6—O1126.1 (2)
C5—N3—H3A109.5O2—C6—O1126.1 (2)
C5—N3—H3B109.5O2—C6—C5117.7 (2)
H3A—N3—H3B109.5O2—C6—C5117.7 (2)
C5—N3—H3C109.5O1—C6—C5116.0 (2)
H3A—N3—H3C109.5C1—C2—N1107.8 (3)
H3B—N3—H3C109.5C1—C2—H2126.1
N1—C3—N2108.3 (3)N1—C2—H2126.1
C2—N1—C3—N20.0 (5)N3—C5—C6—O221.5 (3)
C1—N2—C3—N10.0 (5)C4—C5—C6—O2100.9 (3)
C3—N2—C1—C20.0 (4)N3—C5—C6—O221.5 (3)
C3—N2—C1—C4173.7 (3)C4—C5—C6—O2100.9 (3)
C5—C4—C1—C2116.5 (4)N3—C5—C6—O1163.6 (2)
C5—C4—C1—N271.3 (4)C4—C5—C6—O174.0 (3)
C1—C4—C5—N359.8 (3)N2—C1—C2—N10.0 (4)
C1—C4—C5—C6178.2 (3)C4—C1—C2—N1173.2 (3)
O2—O2—C6—O10.0 (5)C3—N1—C2—C10.0 (5)
O2—O2—C6—C50.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.862.913.546 (3)133
N2—H2A···O2i0.861.912.693 (5)151
N3—H3A···O1ii0.891.942.819 (3)168
N3—H3B···I1iii0.892.703.546 (2)160
N3—H3C···O1iv0.891.982.855 (3)167
N3—H3C···O2iv0.892.563.214 (3)131
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x1, y, z1; (iv) x+1, y, z.
 

Acknowledgements

The authors acknowledge the SAIF, IIT Madras, Chennai.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Gullotti, M. (1983). J. Inorg. Biochem. 18, 19–31.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarza-Ortiz, A., Camacho-Camacho, C., Sainz-Espunes, T., Rojas-Oviedo, I., Raul Gutierrez-Lucas, R., Gutierrez Carrillo, A. & Vera Ramirez, M. A. (2013). Bioinorg. Chem. Appl. pp. 1–12.  Google Scholar
First citationGokul Raj, S., Kumar, G. R., Mohan, R. & Jayavel, R. (2006). Acta Cryst. E62, o5–o7.  CrossRef IUCr Journals Google Scholar
First citationJohnson, M. N. & Feeder, N. (2004). Acta Cryst. E60, o1273–o1274.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds