organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-2-(4-Nitro­phen­yl)-3-[4-(pyridin-4-ylmeth­­oxy)phen­yl]acrylo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Anhui University, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, People's Republic of China, and cKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230601, People's Republic of China
*Correspondence e-mail: wu_zhichao63@sina.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 15 August 2018; accepted 18 September 2018; online 28 September 2018)

The title compound, C21H15N3O3, features an essentially planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.090 Å). An intra­molecular C—H⋯N hydrogen bond occurs. In the crystal, the mol­ecules are connected by C—H⋯N and C—H⋯O hydrogen bonds into layers parallel to (102).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We are inter­ested in the title compound as it is a potential aggregation-induced emission (AIE) material (Liu & Fujiki, 2016[Liu, B. & Fujiki, M. (2016). _Aggregation-Induced Emission: Materials and Applications, Vol. 1, edited by M. Fujiki, B. Liu and B. Z. Tang, ch. 1. ACS Symposium Series. Washington, DC: American Chemical Society.]). The mol­ecule (Fig. 1[link]) is almost planar (r.m.s. deviation for all non-H atoms = 0.090 Å). An intra­molecular C—H⋯N hydrogen bond occurs (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N2 0.93 2.58 3.417 (2) 149
C1—H1⋯N3i 0.93 2.97 3.468 (2) 115
C16—H16A⋯N2ii 0.97 2.83 3.261 (2) 107
C4—H4⋯O2iii 0.93 2.63 3.502 (3) 156
C18—H18⋯O1iv 0.93 2.47 3.362 (2) 162
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+2; (iii) -x+2, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The structure of title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular hydrogen bond is indicated by a dashed line.

In the crystal, the mol­ecules are connected by C—H⋯O and C—H⋯N hydrogen bonds into layers parallel to (102) (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
C—H⋯N and C—H⋯O hydrogen bonds connect the mol­ecules into layers parallel to (102).

Synthesis and crystallization

Firstly, 1.24 g (4.90 mmol) of 4-(bromo­meth­yl)pyridine hydro­bromide and 0.50 g (4.10 mmol) of 4-hy­droxy­benzaldehyde were added to a flask equipped with 50 ml aceto­nitrile. And then anhydrous potassium carbonate (3.24 g, 23.44 mmol) and 18-crown-6 (1 g) were added and refluxed at 353 K overnight. Subsequently, the mixture was filtered and the solvent was removed under reduced pressure. Finally, the white product was obtained by column chromatography with petroleum petroleum ether/ethyl acetate (2:1, v/v). Then, the white product (0.20 g, 0.94 mmol) of the previous step and 0.15 g (0.95 mmol) of 2-(4-nitro­phen­yl)aceto­nitrile were dissolved in 20 ml ethanol into a flask equipped with a magnetic stirrer for 5 h. Subsequently, the yellow solid was filtered. Yellow crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H15N3O3
Mr 357.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.1759 (15), 23.521 (4), 7.4038 (11)
β (°) 95.674 (2)
V3) 1763.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.21 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker SMART CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 12823, 3270, 2621
Rint 0.021
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.01
No. of reflections 3270
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.18
Computer programs: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Z)-2-(4-Nitrophenyl)-3-[4-(pyridin-4-ylmethoxy)phenyl]acrylonitrile top
Crystal data top
C21H15N3O3F(000) = 744
Mr = 357.36Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.1759 (15) ÅCell parameters from 4694 reflections
b = 23.521 (4) Åθ = 2.2–27.0°
c = 7.4038 (11) ŵ = 0.09 mm1
β = 95.674 (2)°T = 296 K
V = 1763.4 (5) Å3Block, yellow
Z = 40.21 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2621 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.5°, θmin = 1.7°
phi and ω scansh = 1212
12823 measured reflectionsk = 2828
3270 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3275P]
where P = (Fo2 + 2Fc2)/3
3270 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms were placed in geometrically calculated positions and refined using a riding model with C–H distances of 0.93 Å for all H atoms bound to C(sp2) atoms and 0.97 Å for H atoms bound to secondary C(sp3) atoms. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.90163 (15)0.59837 (8)0.5910 (2)0.0760 (5)
N20.26154 (15)0.56478 (6)0.8779 (2)0.0798 (5)
N30.40049 (15)0.17881 (7)1.0732 (2)0.0745 (4)
O10.90200 (15)0.65022 (7)0.5838 (2)0.1062 (5)
O20.99589 (15)0.56935 (8)0.5654 (3)0.1137 (6)
O30.00447 (10)0.29351 (4)0.96989 (17)0.0635 (3)
C10.55913 (15)0.57655 (6)0.7070 (2)0.0533 (4)
H10.48580.59870.72510.064*
C20.67248 (17)0.60273 (7)0.6613 (2)0.0613 (4)
H20.67580.64200.64860.074*
C30.77981 (15)0.57002 (7)0.6351 (2)0.0567 (4)
C40.77684 (15)0.51182 (7)0.6501 (2)0.0604 (4)
H40.85040.49020.62960.072*
C50.66288 (14)0.48595 (6)0.6962 (2)0.0539 (4)
H50.66020.44660.70700.065*
C60.55184 (13)0.51786 (6)0.72667 (18)0.0428 (3)
C70.42900 (13)0.49128 (6)0.78063 (18)0.0417 (3)
C80.33306 (14)0.53124 (6)0.8334 (2)0.0521 (4)
C90.40641 (13)0.43488 (6)0.78435 (18)0.0440 (3)
H90.47510.41280.74870.053*
C100.29350 (13)0.40227 (6)0.83428 (18)0.0440 (3)
C110.30583 (15)0.34322 (6)0.8376 (2)0.0597 (4)
H110.38420.32700.80770.072*
C120.20650 (16)0.30814 (6)0.8833 (3)0.0661 (5)
H120.21810.26890.88430.079*
C130.08860 (14)0.33152 (6)0.9280 (2)0.0500 (4)
C140.07328 (14)0.38986 (6)0.9266 (2)0.0530 (4)
H140.00510.40590.95730.064*
C150.17420 (14)0.42453 (6)0.8797 (2)0.0525 (4)
H150.16220.46370.87850.063*
C160.12520 (14)0.31518 (6)1.0222 (2)0.0525 (4)
H16A0.16320.34190.93170.063*
H16B0.10950.33501.13720.063*
C170.21847 (13)0.26665 (6)1.03973 (19)0.0446 (3)
C180.18182 (15)0.21070 (6)1.0301 (2)0.0548 (4)
H180.09520.20101.01360.066*
C190.27535 (18)0.16909 (7)1.0453 (3)0.0700 (5)
H190.24910.13141.03540.084*
C200.43400 (16)0.23323 (8)1.0816 (2)0.0667 (5)
H200.52110.24171.09940.080*
C210.34893 (15)0.27792 (7)1.0658 (2)0.0560 (4)
H210.37850.31521.07240.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0579 (10)0.0991 (13)0.0716 (10)0.0312 (9)0.0090 (7)0.0036 (9)
N20.0692 (9)0.0503 (8)0.1253 (14)0.0098 (7)0.0371 (9)0.0006 (8)
N30.0680 (9)0.0672 (10)0.0908 (11)0.0271 (7)0.0199 (8)0.0032 (8)
O10.0915 (11)0.0937 (11)0.1359 (14)0.0495 (9)0.0244 (9)0.0119 (10)
O20.0546 (8)0.1344 (14)0.1563 (16)0.0212 (9)0.0321 (9)0.0062 (11)
O30.0458 (6)0.0438 (6)0.1057 (9)0.0047 (4)0.0305 (6)0.0001 (5)
C10.0515 (8)0.0476 (8)0.0617 (10)0.0046 (6)0.0106 (7)0.0026 (7)
C20.0654 (10)0.0525 (9)0.0668 (10)0.0167 (8)0.0099 (8)0.0045 (7)
C30.0476 (8)0.0713 (11)0.0513 (9)0.0220 (7)0.0049 (7)0.0020 (7)
C40.0432 (8)0.0721 (11)0.0672 (10)0.0046 (7)0.0123 (7)0.0011 (8)
C50.0475 (8)0.0493 (8)0.0667 (10)0.0040 (6)0.0144 (7)0.0000 (7)
C60.0425 (7)0.0458 (8)0.0404 (7)0.0051 (6)0.0050 (6)0.0008 (6)
C70.0398 (7)0.0436 (7)0.0422 (7)0.0010 (5)0.0074 (6)0.0003 (6)
C80.0483 (8)0.0433 (8)0.0666 (10)0.0030 (6)0.0148 (7)0.0022 (7)
C90.0400 (7)0.0446 (7)0.0488 (8)0.0003 (5)0.0107 (6)0.0017 (6)
C100.0421 (7)0.0422 (7)0.0489 (8)0.0028 (6)0.0099 (6)0.0018 (6)
C110.0456 (8)0.0458 (8)0.0916 (12)0.0018 (6)0.0262 (8)0.0022 (8)
C120.0531 (9)0.0386 (8)0.1111 (15)0.0001 (7)0.0309 (9)0.0004 (8)
C130.0418 (7)0.0450 (8)0.0650 (9)0.0070 (6)0.0148 (7)0.0010 (7)
C140.0400 (7)0.0461 (8)0.0754 (10)0.0004 (6)0.0186 (7)0.0046 (7)
C150.0475 (8)0.0391 (7)0.0730 (10)0.0023 (6)0.0167 (7)0.0030 (7)
C160.0434 (8)0.0466 (8)0.0698 (10)0.0037 (6)0.0174 (7)0.0061 (7)
C170.0428 (7)0.0472 (8)0.0449 (8)0.0078 (6)0.0094 (6)0.0032 (6)
C180.0506 (8)0.0499 (9)0.0660 (10)0.0030 (7)0.0161 (7)0.0026 (7)
C190.0784 (12)0.0450 (9)0.0894 (13)0.0119 (8)0.0220 (10)0.0038 (8)
C200.0449 (9)0.0792 (12)0.0780 (12)0.0130 (8)0.0167 (8)0.0004 (9)
C210.0486 (8)0.0541 (9)0.0671 (10)0.0020 (7)0.0144 (7)0.0011 (7)
Geometric parameters (Å, º) top
O3—C131.3603 (17)C17—C181.372 (2)
O3—C161.4188 (17)C17—C211.386 (2)
C7—C91.3472 (19)C17—C161.4983 (19)
C7—C81.4370 (19)C11—C121.373 (2)
C7—C61.4873 (18)C11—H110.9300
C6—C11.391 (2)C18—C191.378 (2)
C6—C51.393 (2)C18—H180.9300
C10—C151.3935 (19)C16—H16A0.9700
C10—C111.395 (2)C16—H16B0.9700
C10—C91.4590 (18)C2—C11.379 (2)
C9—H90.9300C2—H20.9300
C14—C131.381 (2)C12—H120.9300
C14—C151.3822 (19)C4—H40.9300
C14—H140.9300C1—H10.9300
C5—C41.382 (2)N1—O21.208 (2)
C5—H50.9300N1—O11.221 (2)
C8—N21.1436 (19)N3—C201.328 (2)
C3—C21.366 (2)N3—C191.330 (2)
C3—C41.374 (2)C21—C201.374 (2)
C3—N11.4723 (19)C21—H210.9300
C15—H150.9300C20—H200.9300
C13—C121.389 (2)C19—H190.9300
C13—O3—C16117.86 (11)C17—C18—C19118.93 (15)
C9—C7—C8121.11 (12)C17—C18—H18120.5
C9—C7—C6124.69 (12)C19—C18—H18120.5
C8—C7—C6114.19 (11)O3—C16—C17108.85 (11)
C1—C6—C5117.73 (13)O3—C16—H16A109.9
C1—C6—C7120.02 (13)C17—C16—H16A109.9
C5—C6—C7122.25 (12)O3—C16—H16B109.9
C15—C10—C11116.68 (12)C17—C16—H16B109.9
C15—C10—C9126.19 (13)H16A—C16—H16B108.3
C11—C10—C9117.14 (12)C3—C2—C1118.92 (15)
C7—C9—C10131.53 (12)C3—C2—H2120.5
C7—C9—H9114.2C1—C2—H2120.5
C10—C9—H9114.2C11—C12—C13119.67 (14)
C13—C14—C15120.13 (13)C11—C12—H12120.2
C13—C14—H14119.9C13—C12—H12120.2
C15—C14—H14119.9C3—C4—C5118.97 (15)
C4—C5—C6121.10 (14)C3—C4—H4120.5
C4—C5—H5119.5C5—C4—H4120.5
C6—C5—H5119.5C2—C1—C6121.56 (15)
N2—C8—C7176.74 (17)C2—C1—H1119.2
C2—C3—C4121.71 (14)C6—C1—H1119.2
C2—C3—N1118.63 (16)O2—N1—O1123.50 (16)
C4—C3—N1119.66 (16)O2—N1—C3118.56 (18)
C14—C15—C10121.71 (13)O1—N1—C3117.94 (17)
C14—C15—H15119.1C20—N3—C19115.30 (14)
C10—C15—H15119.1C20—C21—C17119.06 (15)
O3—C13—C14125.04 (13)C20—C21—H21120.5
O3—C13—C12115.55 (13)C17—C21—H21120.5
C14—C13—C12119.41 (13)N3—C20—C21124.52 (16)
C18—C17—C21117.38 (13)N3—C20—H20117.7
C18—C17—C16123.27 (13)C21—C20—H20117.7
C21—C17—C16119.34 (13)N3—C19—C18124.79 (16)
C12—C11—C10122.39 (13)N3—C19—H19117.6
C12—C11—H11118.8C18—C19—H19117.6
C10—C11—H11118.8
C9—C7—C6—C1172.46 (14)C18—C17—C16—O38.2 (2)
C8—C7—C6—C18.53 (19)C21—C17—C16—O3171.38 (13)
C9—C7—C6—C58.3 (2)C4—C3—C2—C11.1 (2)
C8—C7—C6—C5170.74 (14)N1—C3—C2—C1178.40 (14)
C8—C7—C9—C100.6 (2)C10—C11—C12—C130.1 (3)
C6—C7—C9—C10179.53 (13)O3—C13—C12—C11179.45 (16)
C15—C10—C9—C75.0 (3)C14—C13—C12—C110.3 (3)
C11—C10—C9—C7174.82 (16)C2—C3—C4—C51.2 (3)
C1—C6—C5—C40.7 (2)N1—C3—C4—C5178.31 (14)
C7—C6—C5—C4178.54 (14)C6—C5—C4—C30.2 (2)
C9—C7—C8—N2152 (3)C3—C2—C1—C60.1 (2)
C6—C7—C8—N227 (3)C5—C6—C1—C20.8 (2)
C13—C14—C15—C100.5 (2)C7—C6—C1—C2178.46 (13)
C11—C10—C15—C140.3 (2)C2—C3—N1—O2178.99 (17)
C9—C10—C15—C14179.48 (14)C4—C3—N1—O21.5 (2)
C16—O3—C13—C142.2 (2)C2—C3—N1—O11.5 (2)
C16—O3—C13—C12178.05 (15)C4—C3—N1—O1177.97 (17)
C15—C14—C13—O3179.23 (15)C18—C17—C21—C200.4 (2)
C15—C14—C13—C120.5 (3)C16—C17—C21—C20179.94 (15)
C15—C10—C11—C120.1 (3)C19—N3—C20—C210.8 (3)
C9—C10—C11—C12179.69 (16)C17—C21—C20—N30.2 (3)
C21—C17—C18—C190.4 (2)C20—N3—C19—C181.7 (3)
C16—C17—C18—C19179.10 (15)C17—C18—C19—N31.6 (3)
C13—O3—C16—C17173.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N20.932.583.417 (2)149
C1—H1···N3i0.932.973.468 (2)115
C16—H16A···N2ii0.972.833.261 (2)107
C4—H4···O2iii0.932.633.502 (3)156
C18—H18···O1iv0.932.473.362 (2)162
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y+1, z+2; (iii) x+2, y+1, z+1; (iv) x+1, y1/2, z+3/2.
 

Funding information

This work was supported by the Undergraduate Research Training Program of Anhui University (KYXL2017019).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, B. & Fujiki, M. (2016). _Aggregation-Induced Emission: Materials and Applications, Vol. 1, edited by M. Fujiki, B. Liu and B. Z. Tang, ch. 1. ACS Symposium Series. Washington, DC: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds