organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(4-Amino­phen­yl)-3-[3,4-bis­­(pyridin-2-ylmeth­­oxy)phen­yl]acrylo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei 230601, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Anhui University and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei 230601, People's Republic of China
*Correspondence e-mail: iu_jh@163.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 13 August 2018; accepted 18 September 2018; online 21 September 2018)

The crystal structure of C27H22N4O2 is characterized by N—H⋯N hydrogen bonds, which connect the mol­ecules into zigzag chains running along the b-axis direction. The central ring subtends dihedral angles of 17.89 (6)° with the amino­phenyl ring and of 8.75 (9) and 28.77 (7)° with the two pyridyl rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A DπA structure formed from aniline and benzene­nacrylo­nitrile has excellent lumin­escence properties (Zhang et al., 2018[Zhang, H., Wei, Z., Xia, Y., Fang, M., Zhu, W., Yang, X., Li, F., Tian, Y., Zhang, X. & Zhou, H. (2018). Spectrochim. Acta Part A, 196, 256-261.]). We report here the crystal structure of 2-(4-amino­phen­yl)-3-[3,4-bis­(pyridin-2-ylmeth­oxy)phen­yl]acrylo­nitrile (Fig. 1[link]). The central ring subtends dihedral angles of 17.89 (6)° with the amino­phenyl ring and 28.77 (7) and 8.75 (9)° with the N1- and N2-containing pyridyl rings.

[Figure 1]
Figure 1
The structure of title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the mol­ecules are connected by N—H⋯N hydrogen bonds, forming zigzag chains running along the b-axis direction (Table 1[link], Fig. 2[link]). Weak C—H⋯O interactions are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N1i 0.95 (2) 2.35 (2) 3.293 (3) 172.8 (18)
N4—H4A⋯N3i 0.89 (2) 2.52 (2) 3.390 (3) 165.5 (19)
C6—H6⋯N3 0.93 2.59 3.431 (2) 151
C26—H26⋯N2ii 0.93 2.65 3.339 (3) 131
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
Hydrogen bonds in the crystal packing of the title compound. N—H⋯N hydrogen bonds are drawn with dashed lines.

Synthesis and crystallization

To a solution of 3,4-dihy­droxy-benzaldehyde (1.38 g, 10 mmol) in aceto­nitrile (50 ml) was added potassium carbonate (1.38 g, 10 mmol) and 2-bromo­methyl-pyridine (3.44 g, 20 mmol). After the reaction mixture had been refluxed for 6 h, all the volatile components had completely evaporated and the residue was partitioned between di­chloro­methane and water. The organic phase was washed with water, then dried over calcium chloride, and concentrated in vacuo. The crude solid was recrystallized from petroleum ether–ethyl acetate (v/v= 1:1) solution to give a white solid. The white solid (0.5 g, 3.8 mmol) and (4-amino­phen­yl)aceto­nitrile (0.21 g, 3.8 mmol) were added to ethyl alcohol. The mixture solution was refluxed for 8 h, and the resulting yellow residue was collected by filtration and then purified by silica gel column chromatography (petroleum ether: ethyl acetate = 2:1, v/v) to afford the title compound (0.29 g, 43%). Yellow single crystals were obtained by slow evaporation from aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H22N4O2
Mr 434.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.0233 (15), 16.877 (3), 17.013 (3)
β (°) 101.021 (2)
V3) 2261.2 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.21 × 0.19
 
Data collection
Diffractometer Bruker SMART CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 16528, 4222, 3016
Rint 0.025
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.07
No. of reflections 4222
No. of parameters 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.13, −0.12
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXS, SHELXL and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(4-Aminophenyl)-3-[3,4-bis(pyridin-2-ylmethoxy)phenyl]acrylonitrile top
Crystal data top
C27H22N4O2F(000) = 912
Mr = 434.49Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0233 (15) ÅCell parameters from 4649 reflections
b = 16.877 (3) Åθ = 2.4–24.8°
c = 17.013 (3) ŵ = 0.08 mm1
β = 101.021 (2)°T = 296 K
V = 2261.2 (7) Å3Block, yellow
Z = 40.21 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.5°, θmin = 1.7°
phi and ω scansh = 99
16528 measured reflectionsk = 2020
4222 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.1757P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4222 reflectionsΔρmax = 0.13 e Å3
306 parametersΔρmin = 0.12 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H-atom positions were taken from a Fourier map. The H atoms were refined using a riding model with Uiso(H) = 1.2Ueq(C,N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49999 (13)0.35393 (6)0.60726 (6)0.0624 (3)
O20.64442 (13)0.43936 (6)0.72240 (6)0.0640 (3)
N10.5073 (2)0.18016 (8)0.49938 (9)0.0793 (4)
N20.9308 (2)0.45055 (9)0.90889 (9)0.0839 (5)
N30.08360 (19)0.41255 (8)0.36157 (8)0.0721 (4)
N40.3243 (2)0.75632 (11)0.17390 (10)0.0807 (5)
H4B0.383 (3)0.7318 (13)0.1266 (14)0.114 (8)*
H4A0.276 (3)0.8029 (14)0.1678 (13)0.115 (8)*
C10.44974 (17)0.43157 (8)0.60235 (8)0.0484 (3)
C20.53138 (17)0.47891 (8)0.66594 (8)0.0502 (3)
C30.49239 (19)0.55817 (9)0.66679 (9)0.0560 (4)
H30.5451970.5900990.7087990.067*
C40.37400 (19)0.59051 (9)0.60481 (8)0.0555 (4)
H40.3491640.6442690.6059850.067*
C50.29154 (17)0.54486 (8)0.54107 (8)0.0484 (3)
C60.33223 (17)0.46381 (8)0.54156 (8)0.0501 (4)
H60.2786380.4315420.5000060.060*
C110.4137 (2)0.30045 (9)0.55064 (9)0.0644 (4)
H11A0.4156320.3189920.4968580.077*
H11B0.2963360.2954680.5566040.077*
C120.50242 (19)0.22186 (9)0.56499 (9)0.0592 (4)
C130.5746 (3)0.19608 (10)0.64029 (11)0.0829 (6)
H130.5646350.2260120.6850470.099*
C140.6619 (3)0.12559 (12)0.64889 (13)0.0966 (7)
H140.7135110.1076700.6993800.116*
C150.6716 (3)0.08249 (12)0.58249 (15)0.1040 (7)
H150.7317510.0351050.5861480.125*
C160.5897 (3)0.11113 (13)0.50989 (14)0.1060 (7)
H160.5918190.0802870.4647900.127*
C210.7269 (2)0.47956 (9)0.79186 (9)0.0609 (4)
H21A0.6438970.5044350.8185320.073*
H21B0.8011090.5203610.7777630.073*
C220.82829 (19)0.41938 (9)0.84601 (8)0.0566 (4)
C230.8152 (2)0.33945 (10)0.83217 (10)0.0700 (5)
H230.7420200.3196530.7874310.084*
C240.9128 (3)0.28889 (11)0.88595 (12)0.0837 (5)
H240.9082670.2344290.8774540.100*
C251.0158 (3)0.31990 (13)0.95159 (12)0.0909 (6)
H251.0804980.2870130.9894610.109*
C261.0221 (3)0.39952 (14)0.96067 (12)0.1004 (7)
H261.0939620.4201981.0053790.120*
C310.17363 (17)0.58435 (8)0.47739 (8)0.0517 (4)
H310.1576690.6377140.4873890.062*
C320.08303 (17)0.55909 (8)0.40689 (8)0.0482 (3)
C330.08525 (18)0.47669 (9)0.38329 (9)0.0537 (4)
C340.02236 (17)0.61078 (8)0.34649 (8)0.0491 (3)
C350.0004 (2)0.69284 (9)0.34669 (9)0.0625 (4)
H350.0826260.7159720.3855500.075*
C360.0996 (2)0.74018 (9)0.29030 (10)0.0697 (5)
H360.0834830.7947670.2924610.084*
C370.2235 (2)0.70805 (9)0.23018 (9)0.0601 (4)
C380.24557 (19)0.62686 (9)0.22986 (9)0.0609 (4)
H380.3284220.6036940.1909330.073*
C390.14660 (19)0.57983 (9)0.28634 (9)0.0565 (4)
H390.1636160.5253050.2841170.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0689 (7)0.0464 (6)0.0622 (6)0.0023 (5)0.0119 (5)0.0040 (5)
O20.0697 (7)0.0587 (6)0.0540 (6)0.0053 (5)0.0127 (5)0.0048 (5)
N10.0970 (11)0.0676 (9)0.0737 (9)0.0127 (8)0.0175 (8)0.0085 (8)
N20.0964 (11)0.0797 (10)0.0616 (9)0.0045 (8)0.0206 (8)0.0027 (7)
N30.0823 (10)0.0548 (8)0.0724 (9)0.0021 (7)0.0020 (7)0.0032 (7)
N40.0973 (12)0.0680 (10)0.0690 (10)0.0147 (9)0.0039 (9)0.0166 (8)
C10.0481 (8)0.0462 (8)0.0500 (8)0.0017 (6)0.0071 (6)0.0014 (6)
C20.0483 (8)0.0537 (9)0.0462 (8)0.0004 (7)0.0033 (6)0.0021 (6)
C30.0580 (9)0.0552 (9)0.0515 (8)0.0027 (7)0.0020 (7)0.0073 (7)
C40.0599 (9)0.0491 (8)0.0564 (9)0.0032 (7)0.0086 (7)0.0023 (7)
C50.0466 (8)0.0514 (8)0.0475 (8)0.0001 (6)0.0101 (6)0.0023 (6)
C60.0502 (8)0.0508 (8)0.0469 (8)0.0024 (6)0.0031 (7)0.0013 (6)
C110.0672 (10)0.0542 (9)0.0643 (10)0.0010 (8)0.0063 (8)0.0083 (7)
C120.0614 (10)0.0494 (9)0.0646 (10)0.0062 (7)0.0063 (8)0.0049 (7)
C130.1142 (16)0.0580 (11)0.0711 (12)0.0086 (10)0.0041 (11)0.0004 (8)
C140.1231 (18)0.0708 (13)0.0920 (15)0.0152 (12)0.0106 (13)0.0205 (11)
C150.1274 (19)0.0717 (13)0.1205 (19)0.0357 (13)0.0428 (16)0.0181 (13)
C160.144 (2)0.0806 (14)0.0999 (16)0.0316 (14)0.0405 (15)0.0108 (12)
C210.0706 (10)0.0601 (9)0.0474 (8)0.0004 (8)0.0008 (7)0.0050 (7)
C220.0592 (9)0.0615 (9)0.0468 (8)0.0004 (7)0.0044 (7)0.0006 (7)
C230.0766 (11)0.0638 (11)0.0662 (10)0.0003 (8)0.0051 (9)0.0025 (8)
C240.0921 (14)0.0663 (11)0.0924 (14)0.0089 (10)0.0166 (11)0.0132 (10)
C250.0896 (14)0.0964 (16)0.0806 (13)0.0255 (12)0.0008 (11)0.0244 (12)
C260.1075 (17)0.1034 (17)0.0730 (13)0.0144 (13)0.0259 (11)0.0026 (12)
C310.0526 (9)0.0480 (8)0.0542 (9)0.0032 (6)0.0098 (7)0.0021 (7)
C320.0468 (8)0.0485 (8)0.0499 (8)0.0014 (6)0.0111 (6)0.0042 (6)
C330.0517 (9)0.0554 (9)0.0511 (8)0.0011 (7)0.0025 (7)0.0063 (7)
C340.0495 (8)0.0502 (8)0.0482 (8)0.0012 (6)0.0112 (7)0.0051 (6)
C350.0755 (11)0.0532 (9)0.0546 (9)0.0027 (8)0.0021 (8)0.0021 (7)
C360.0951 (13)0.0473 (9)0.0635 (10)0.0031 (8)0.0073 (9)0.0056 (7)
C370.0675 (10)0.0580 (9)0.0541 (9)0.0096 (8)0.0097 (8)0.0102 (7)
C380.0578 (9)0.0624 (10)0.0585 (9)0.0032 (8)0.0006 (7)0.0073 (7)
C390.0579 (9)0.0493 (8)0.0601 (9)0.0031 (7)0.0059 (7)0.0078 (7)
Geometric parameters (Å, º) top
O1—C11.3688 (16)C14—H140.9300
O1—C111.4023 (17)C15—C161.371 (3)
O2—C21.3630 (16)C15—H150.9300
O2—C211.4128 (17)C16—H160.9300
N1—C121.3264 (19)C21—C221.502 (2)
N1—C161.335 (2)C21—H21A0.9700
N2—C221.3271 (19)C21—H21B0.9700
N2—C261.345 (2)C22—C231.370 (2)
N3—C331.1431 (18)C23—C241.380 (2)
N4—C371.392 (2)C23—H230.9300
N4—H4B0.95 (2)C24—C251.360 (3)
N4—H4A0.89 (2)C24—H240.9300
C1—C61.3718 (18)C25—C261.352 (3)
C1—C21.4025 (19)C25—H250.9300
C2—C31.374 (2)C26—H260.9300
C3—C41.389 (2)C31—C321.3473 (19)
C3—H30.9300C31—H310.9300
C4—C51.3903 (19)C32—C331.448 (2)
C4—H40.9300C32—C341.4831 (18)
C5—C61.4060 (19)C34—C391.3870 (19)
C5—C311.4564 (19)C34—C351.396 (2)
C6—H60.9300C35—C361.379 (2)
C11—C121.503 (2)C35—H350.9300
C11—H11A0.9700C36—C371.393 (2)
C11—H11B0.9700C36—H360.9300
C12—C131.372 (2)C37—C381.382 (2)
C13—C141.374 (3)C38—C391.376 (2)
C13—H130.9300C38—H380.9300
C14—C151.358 (3)C39—H390.9300
C1—O1—C11118.25 (11)O2—C21—C22107.48 (12)
C2—O2—C21119.76 (11)O2—C21—H21A110.2
C12—N1—C16116.36 (16)C22—C21—H21A110.2
C22—N2—C26116.77 (17)O2—C21—H21B110.2
C37—N4—H4B117.3 (13)C22—C21—H21B110.2
C37—N4—H4A112.7 (15)H21A—C21—H21B108.5
H4B—N4—H4A116.4 (19)N2—C22—C23122.97 (15)
O1—C1—C6125.29 (12)N2—C22—C21113.95 (14)
O1—C1—C2114.18 (12)C23—C22—C21123.08 (14)
C6—C1—C2120.53 (13)C22—C23—C24118.67 (17)
O2—C2—C3126.26 (13)C22—C23—H23120.7
O2—C2—C1114.47 (12)C24—C23—H23120.7
C3—C2—C1119.27 (13)C25—C24—C23119.00 (18)
C2—C3—C4119.90 (13)C25—C24—H24120.5
C2—C3—H3120.1C23—C24—H24120.5
C4—C3—H3120.1C26—C25—C24118.67 (18)
C3—C4—C5121.93 (14)C26—C25—H25120.7
C3—C4—H4119.0C24—C25—H25120.7
C5—C4—H4119.0N2—C26—C25123.89 (19)
C4—C5—C6117.33 (13)N2—C26—H26118.1
C4—C5—C31118.12 (13)C25—C26—H26118.1
C6—C5—C31124.52 (13)C32—C31—C5132.90 (14)
C1—C6—C5121.04 (13)C32—C31—H31113.6
C1—C6—H6119.5C5—C31—H31113.6
C5—C6—H6119.5C31—C32—C33121.16 (13)
O1—C11—C12107.47 (12)C31—C32—C34124.73 (13)
O1—C11—H11A110.2C33—C32—C34114.10 (12)
C12—C11—H11A110.2N3—C33—C32177.17 (16)
O1—C11—H11B110.2C39—C34—C35116.61 (13)
C12—C11—H11B110.2C39—C34—C32121.59 (13)
H11A—C11—H11B108.5C35—C34—C32121.80 (13)
N1—C12—C13122.85 (15)C36—C35—C34121.17 (15)
N1—C12—C11114.88 (14)C36—C35—H35119.4
C13—C12—C11122.27 (15)C34—C35—H35119.4
C12—C13—C14119.32 (18)C35—C36—C37121.43 (15)
C12—C13—H13120.3C35—C36—H36119.3
C14—C13—H13120.3C37—C36—H36119.3
C15—C14—C13118.96 (19)C38—C37—N4121.36 (16)
C15—C14—H14120.5C38—C37—C36117.52 (14)
C13—C14—H14120.5N4—C37—C36121.09 (16)
C14—C15—C16117.81 (19)C39—C38—C37120.87 (14)
C14—C15—H15121.1C39—C38—H38119.6
C16—C15—H15121.1C37—C38—H38119.6
N1—C16—C15124.6 (2)C38—C39—C34122.39 (14)
N1—C16—H16117.7C38—C39—H39118.8
C15—C16—H16117.7C34—C39—H39118.8
C11—O1—C1—C66.9 (2)C26—N2—C22—C231.0 (3)
C11—O1—C1—C2173.89 (13)C26—N2—C22—C21178.49 (17)
C21—O2—C2—C33.6 (2)O2—C21—C22—N2171.32 (14)
C21—O2—C2—C1176.08 (13)O2—C21—C22—C239.2 (2)
O1—C1—C2—O21.09 (18)N2—C22—C23—C240.0 (3)
C6—C1—C2—O2179.70 (12)C21—C22—C23—C24179.40 (16)
O1—C1—C2—C3179.23 (13)C22—C23—C24—C251.4 (3)
C6—C1—C2—C30.0 (2)C23—C24—C25—C261.7 (3)
O2—C2—C3—C4179.98 (14)C22—N2—C26—C250.6 (3)
C1—C2—C3—C40.4 (2)C24—C25—C26—N20.8 (4)
C2—C3—C4—C50.3 (2)C4—C5—C31—C32175.56 (15)
C3—C4—C5—C60.1 (2)C6—C5—C31—C322.4 (3)
C3—C4—C5—C31177.94 (13)C5—C31—C32—C333.3 (2)
O1—C1—C6—C5178.68 (13)C5—C31—C32—C34175.23 (14)
C2—C1—C6—C50.4 (2)C31—C32—C34—C39162.29 (14)
C4—C5—C6—C10.5 (2)C33—C32—C34—C3919.11 (19)
C31—C5—C6—C1177.43 (13)C31—C32—C34—C3518.4 (2)
C1—O1—C11—C12175.28 (12)C33—C32—C34—C35160.15 (14)
C16—N1—C12—C131.1 (3)C39—C34—C35—C360.9 (2)
C16—N1—C12—C11178.01 (17)C32—C34—C35—C36179.82 (14)
O1—C11—C12—N1144.35 (15)C34—C35—C36—C371.1 (3)
O1—C11—C12—C1334.8 (2)C35—C36—C37—C381.1 (2)
N1—C12—C13—C142.6 (3)C35—C36—C37—N4179.39 (16)
C11—C12—C13—C14176.45 (18)N4—C37—C38—C39179.21 (15)
C12—C13—C14—C151.2 (3)C36—C37—C38—C390.9 (2)
C13—C14—C15—C161.4 (4)C37—C38—C39—C340.8 (2)
C12—N1—C16—C151.8 (3)C35—C34—C39—C380.7 (2)
C14—C15—C16—N13.1 (4)C32—C34—C39—C38179.97 (13)
C2—O2—C21—C22174.24 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N1i0.95 (2)2.35 (2)3.293 (3)172.8 (18)
N4—H4A···N3i0.89 (2)2.52 (2)3.390 (3)165.5 (19)
C6—H6···N30.932.593.431 (2)151
C26—H26···N2ii0.932.653.339 (3)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the Undergraduate Research Training Program of Anhui University (KYXL2017019).

Funding information

Funding for this research was provided by: Anhui University (award No. KYXL2017019).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Wei, Z., Xia, Y., Fang, M., Zhu, W., Yang, X., Li, F., Tian, Y., Zhang, X. & Zhou, H. (2018). Spectrochim. Acta Part A, 196, 256–261.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds