organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Methyl-4-(pyridin-2-yl)-3H-1,5-benzodiazepine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, cNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, dLaboratoire de Chimie Bio Organique Appliquee, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lelghayati@yahoo.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 July 2018; accepted 3 July 2018; online 6 July 2018)

In the title compound, C15H13N3, the seven-membered ring adopts a boat conformation. In the crystal, inversion-related C—H⋯N hydrogen bonds form dimers, which pack in an alternating fashion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The renewed inter­est in bicyclic heterocycles derived from 1,5-benzodiazepine is based mainly on their biological properties and therapeutic functions (Wang et al., 2015[Wang, L. Z., Li, X. Q. & An, Y. S. (2015). Org. Biomol. Chem. 13, 5497-5509.]). As a continuation of our research into 1,5-benzodiazepine derivatives (Tjiou et al., 2005[Tjiou, E. M., Lhoussaine, E. G., Virieux, D. & Fruchier, A. (2005). Magn. Reson. Chem. 43, 557-562.]), we prepared the title compound and characterized it by X-ray diffraction.

In the title compound (Fig. 1[link]), the seven-membered ring adopts a boat conformation with Cremer–Pople puckering parameters Q(2) = 0.8492 (11) Å, Q(3) = 0.2494 (12) Å, φ(2) = 205.89 (8)° and φ(3) = 307.6 (3)°. The total puckering amplitude is 0.8850 (12) Å. The C1–C6 phenyl ring makes a dihedral angle of 30.05 (6)° with the N3/C11–C15 pyridine ring. In the crystal, inversion-related C15—H15⋯N3 hydrogen bonds form weak dimers, which pack in an alternating fashion (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N3i 0.989 (13) 2.590 (13) 3.4900 (16) 151.3 (10)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with the labelling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the a-axis direction with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A mixture of o-phenyl­enedi­amine (3 mmol) and 1-(pyridin-2-yl)butane-1,3-dione (3 mmol) in 30 ml of xylene was heated under reflux for 3 h. The reaction mixture was cooled at room temperature, the precipitated solid was collected by filtration and recrystallized from dry ethanol to give yellow crystals, m.p. 99–100°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H13N3
Mr 235.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.9642 (6), 17.7004 (17), 11.3963 (11)
β (°) 100.695 (1)
V3) 1182.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.20 × 0.07
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 11157, 3013, 2144
Rint 0.035
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 0.97
No. of reflections 3013
No. of parameters 215
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.30, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Methyl-4-(pyridin-2-yl)-3H-1,5-benzodiazepine top
Crystal data top
C15H13N3F(000) = 496
Mr = 235.28Dx = 1.322 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.9642 (6) ÅCell parameters from 3540 reflections
b = 17.7004 (17) Åθ = 2.3–28.7°
c = 11.3963 (11) ŵ = 0.08 mm1
β = 100.695 (1)°T = 100 K
V = 1182.2 (2) Å3Plate, colorless
Z = 40.27 × 0.20 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3013 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.035
ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 88
Tmin = 0.84, Tmax = 0.99k = 2323
11157 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.108All H-atom parameters refined
S = 0.97 w = 1/[σ2(Fo2) + (0.0657P)2]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 30 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34913 (16)0.27417 (5)0.30084 (8)0.0224 (2)
N20.27587 (16)0.42244 (5)0.16780 (8)0.0204 (2)
N30.76518 (16)0.49702 (5)0.35890 (8)0.0228 (2)
C10.11011 (19)0.36589 (6)0.16439 (10)0.0207 (3)
C20.0941 (2)0.37687 (7)0.08182 (11)0.0244 (3)
H20.111 (2)0.4250 (7)0.0379 (11)0.025 (3)*
C30.2649 (2)0.32385 (8)0.06639 (11)0.0281 (3)
H30.409 (2)0.3340 (8)0.0098 (12)0.037 (4)*
C40.2331 (2)0.25575 (7)0.12854 (11)0.0282 (3)
H40.353 (2)0.2159 (8)0.1160 (11)0.033 (4)*
C50.0300 (2)0.24196 (7)0.20519 (11)0.0252 (3)
H50.001 (2)0.1925 (8)0.2492 (11)0.029 (3)*
C60.1437 (2)0.29660 (6)0.22717 (10)0.0215 (3)
C70.4687 (2)0.32169 (7)0.37092 (10)0.0217 (3)
C80.3899 (2)0.40186 (7)0.38289 (10)0.0217 (3)
H8A0.224 (2)0.4008 (7)0.3882 (10)0.023 (3)*
H8B0.483 (2)0.4274 (7)0.4525 (11)0.024 (3)*
C90.41139 (19)0.43848 (6)0.26626 (10)0.0196 (3)
C100.6968 (2)0.29969 (8)0.43983 (12)0.0267 (3)
H10A0.815 (2)0.3338 (8)0.4217 (12)0.039 (4)*
H10B0.702 (2)0.3068 (8)0.5264 (13)0.036 (4)*
H10C0.736 (2)0.2461 (9)0.4232 (12)0.036 (4)*
C110.59968 (19)0.49276 (6)0.26147 (10)0.0193 (2)
C120.6041 (2)0.53489 (6)0.15832 (10)0.0224 (3)
H120.477 (2)0.5293 (7)0.0896 (11)0.023 (3)*
C130.7871 (2)0.58193 (7)0.15521 (11)0.0239 (3)
H130.792 (2)0.6104 (7)0.0838 (12)0.028 (3)*
C140.9602 (2)0.58643 (7)0.25468 (11)0.0245 (3)
H141.090 (2)0.6186 (7)0.2554 (11)0.026 (3)*
C150.9410 (2)0.54339 (7)0.35369 (11)0.0255 (3)
H151.062 (2)0.5457 (7)0.4260 (12)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0229 (5)0.0219 (5)0.0233 (5)0.0002 (4)0.0060 (4)0.0016 (4)
N20.0201 (5)0.0188 (5)0.0219 (5)0.0006 (4)0.0023 (4)0.0003 (4)
N30.0242 (5)0.0210 (5)0.0220 (5)0.0009 (4)0.0007 (4)0.0015 (4)
C10.0213 (6)0.0219 (6)0.0198 (6)0.0004 (5)0.0061 (5)0.0028 (4)
C20.0224 (6)0.0255 (6)0.0246 (6)0.0011 (5)0.0024 (5)0.0021 (5)
C30.0199 (6)0.0343 (7)0.0294 (7)0.0007 (5)0.0023 (5)0.0037 (5)
C40.0237 (6)0.0312 (7)0.0304 (7)0.0079 (6)0.0069 (5)0.0058 (5)
C50.0279 (7)0.0239 (6)0.0254 (6)0.0030 (5)0.0091 (5)0.0012 (5)
C60.0224 (6)0.0229 (6)0.0206 (6)0.0007 (5)0.0074 (5)0.0028 (4)
C70.0252 (6)0.0218 (6)0.0195 (6)0.0004 (5)0.0074 (5)0.0046 (4)
C80.0226 (6)0.0231 (6)0.0194 (6)0.0010 (5)0.0040 (5)0.0008 (5)
C90.0207 (6)0.0174 (5)0.0204 (6)0.0040 (5)0.0030 (5)0.0004 (4)
C100.0260 (7)0.0269 (7)0.0261 (7)0.0017 (5)0.0019 (5)0.0036 (5)
C110.0213 (6)0.0162 (5)0.0200 (6)0.0028 (4)0.0028 (4)0.0022 (4)
C120.0249 (6)0.0195 (6)0.0215 (6)0.0023 (5)0.0010 (5)0.0011 (5)
C130.0288 (7)0.0197 (6)0.0238 (6)0.0021 (5)0.0065 (5)0.0022 (5)
C140.0234 (6)0.0196 (6)0.0307 (7)0.0021 (5)0.0055 (5)0.0017 (5)
C150.0240 (6)0.0240 (6)0.0265 (6)0.0007 (5)0.0006 (5)0.0026 (5)
Geometric parameters (Å, º) top
N1—C71.2816 (14)C7—C81.5089 (17)
N1—C61.4080 (15)C8—C91.5055 (16)
N2—C91.2871 (14)C8—H8A1.001 (13)
N2—C11.4023 (14)C8—H8B0.990 (12)
N3—C151.3418 (15)C9—C111.4865 (16)
N3—C111.3439 (14)C10—H10A0.981 (15)
C1—C21.4076 (16)C10—H10B0.989 (14)
C1—C61.4152 (16)C10—H10C1.003 (15)
C2—C31.3724 (17)C11—C121.3965 (16)
C2—H20.984 (13)C12—C131.3784 (17)
C3—C41.3931 (19)C12—H120.987 (12)
C3—H30.990 (14)C13—C141.3865 (17)
C4—C51.3775 (17)C13—H130.963 (13)
C4—H40.997 (13)C14—C151.3835 (17)
C5—C61.4050 (16)C14—H140.961 (14)
C5—H51.008 (13)C15—H150.989 (13)
C7—C101.4909 (17)
C7—N1—C6120.57 (10)C9—C8—H8B112.6 (7)
C9—N2—C1120.46 (10)C7—C8—H8B111.4 (7)
C15—N3—C11117.27 (10)H8A—C8—H8B111.9 (10)
N2—C1—C2115.98 (10)N2—C9—C11117.84 (10)
N2—C1—C6124.87 (10)N2—C9—C8122.15 (10)
C2—C1—C6118.76 (10)C11—C9—C8119.97 (10)
C3—C2—C1121.40 (12)C7—C10—H10A110.5 (8)
C3—C2—H2121.7 (7)C7—C10—H10B110.5 (8)
C1—C2—H2116.9 (7)H10A—C10—H10B104.0 (11)
C2—C3—C4119.91 (12)C7—C10—H10C111.7 (8)
C2—C3—H3119.5 (8)H10A—C10—H10C110.0 (12)
C4—C3—H3120.6 (8)H10B—C10—H10C110.0 (11)
C5—C4—C3119.78 (12)N3—C11—C12122.66 (10)
C5—C4—H4119.4 (7)N3—C11—C9116.74 (10)
C3—C4—H4120.8 (7)C12—C11—C9120.56 (10)
C4—C5—C6121.56 (12)C13—C12—C11118.88 (11)
C4—C5—H5121.9 (8)C13—C12—H12122.3 (7)
C6—C5—H5116.5 (8)C11—C12—H12118.9 (7)
C5—C6—N1116.31 (10)C12—C13—C14119.11 (11)
C5—C6—C1118.43 (11)C12—C13—H13119.1 (8)
N1—C6—C1124.86 (10)C14—C13—H13121.8 (8)
N1—C7—C10120.31 (11)C15—C14—C13118.27 (11)
N1—C7—C8121.79 (10)C15—C14—H14120.5 (7)
C10—C7—C8117.86 (11)C13—C14—H14121.2 (7)
C9—C8—C7104.25 (9)N3—C15—C14123.80 (11)
C9—C8—H8A107.9 (7)N3—C15—H15116.2 (8)
C7—C8—H8A108.4 (7)C14—C15—H15120.0 (8)
C9—N2—C1—C2147.82 (11)C10—C7—C8—C9106.51 (11)
C9—N2—C1—C639.40 (16)C1—N2—C9—C11173.32 (9)
N2—C1—C2—C3177.04 (11)C1—N2—C9—C84.15 (16)
C6—C1—C2—C33.79 (17)C7—C8—C9—N271.43 (14)
C1—C2—C3—C43.46 (18)C7—C8—C9—C11105.99 (11)
C2—C3—C4—C50.03 (18)C15—N3—C11—C120.86 (16)
C3—C4—C5—C63.16 (18)C15—N3—C11—C9177.18 (10)
C4—C5—C6—N1175.86 (10)N2—C9—C11—N3166.77 (10)
C4—C5—C6—C12.76 (17)C8—C9—C11—N310.75 (15)
C7—N1—C6—C5146.53 (11)N2—C9—C11—C1211.31 (16)
C7—N1—C6—C140.87 (16)C8—C9—C11—C12171.17 (10)
N2—C1—C6—C5173.28 (10)N3—C11—C12—C131.07 (17)
C2—C1—C6—C50.68 (16)C9—C11—C12—C13176.89 (10)
N2—C1—C6—N10.82 (17)C11—C12—C13—C140.47 (17)
C2—C1—C6—N1171.78 (11)C12—C13—C14—C150.25 (18)
C6—N1—C7—C10174.01 (10)C11—N3—C15—C140.08 (18)
C6—N1—C7—C83.42 (16)C13—C14—C15—N30.47 (19)
N1—C7—C8—C970.98 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.989 (13)2.590 (13)3.4900 (16)151.3 (10)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTjiou, E. M., Lhoussaine, E. G., Virieux, D. & Fruchier, A. (2005). Magn. Reson. Chem. 43, 557–562.  Web of Science CrossRef Google Scholar
First citationWang, L. Z., Li, X. Q. & An, Y. S. (2015). Org. Biomol. Chem. 13, 5497–5509.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds