organic compounds
Ethyl 2-[2-(4-oxo-4H-chromen-2-yl)phenoxy]acetate
aDepartment of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: ngoyal@xula.edu
In the title flavonoid derivative, C19H16O5, the chromene portion is planar (r.m.s. deviation = 0.022 Å) with the substituents lying closely to the same plane. The dihedral angle between its mean plane and that of the benzene ring is 4.9 (1)°. This planarity is due, in part, to the presence of a strong intramolecular C—H⋯O hydrogen bond and to two weak C—H⋯O contacts. In the crystal, neighboring molecules are linked by a C—H⋯O hydrogen bond and a C—H⋯π interaction, forming chains along the a-axis direction.
Keywords: crystal structure; flavonoid derivative; chromene; hydrogen bonding; C—H⋯π(ring) interactions.
CCDC reference: 1855031
Structure description
; Kale et al., 2008; Walle, 2007). It has been shown that biological activity can be affected by the position of the different substituents on the flavone ring. Many studies have been published suggesting that flavonoid-based molecules have therapeutic efficacy in areas such as cardiovascular diseases, cancers, and age-related diseases (Bear & Teel, 2000; Rice-Evans et al., 1995; Pandey, 2007). In general, can acts as substrates, inducers, and/or inhibitors of P450 enzymes. We have previously reported synthetic metabolized by several enzymes including P450s 1 A1, 1 A2, 1B1, 2 C9, 3 A4 and 3 A5 (Sridhar et al., 2012; Foroozesh et al., 1997).
comprise a family of natural compounds with variable phenolic structures that occur in plants. Naturally occurring and their chemical derivatives exhibit a variety of pharmacological activities (Kühnau, 1976The et al., 2003) is quite similar to that of ethyl 2-(2-(4-oxo-4H-chrome-2-yl)phenoxy)acetate in that it occurs in P212121 with a comparably shaped cell, is essentially planar, and forms π stacks along the a axis. The crystallographically characterized flavone derivatives most similar to the title compound are 2′-hydroxy flavone (Seetharaman & Rajan, 1995) and 2′-methoxy flavone (Wallet et al., 1990), both of which are also planar molecules with hydrogen bonding playing a role in enforcing the molecular conformation. Both 2′-hydroxy flavone and 2′-methoxy flavone also form columnar π stacks, but the latter molecule packs to form two distinct stacks along different directions.
of flavone itself (WallerIn the title compound, the 10-membered bicylic moiety is planar to within 0.028 (3) Å (r.m.s. deviation of the fitted atoms = 0.022 Å), while the dihedral angle between its mean plane and that of the C10–C15 benzene ring is only 4.9 (1)°. This planarity is likely due to the intramolecular C8—H8⋯O3 hydrogen bond (Fig. 1 and Table 1). The conformation of the ester grouping may be due in part to C19—H19B⋯O2 and C8—H8⋯O5 hydrogen bonds, but since the H⋯O distances are only 0.04 and 0.08 Å less than the sum of the van der Waals radii, respectively, these interactions would be quite weak at best.
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming chains extending along the a-axis direction (Table 1 and Fig. 2). Within the chains there are also C—H⋯π interactions present (Table 1, Fig. 2).
Synthesis and crystallization
Potassium carbonate (0.86 g, 6.291 mmol) was added to a stirred solution of flavon-2′-ol (0.500 g, 2.097 mmol) in 30 ml of acetone. The mixture was stirred for 30 min at 298 K. Bromo ethyl acetate (0.761 g, 5.24 mmol) was added slowly to the mixture. The reaction mixture was heated at 303 K overnight and then filtered and concentrated on a rotary evaporator. The crude material was then purified by flash v:v) as the to yield the title compound as a white solid (yield 0.652 g, 96%; m.p. 361–363 K). Colorless plate-like crystals were obtained by slow cooling of a warm solution of ethyl acetate:hexanes (2:1, v:v).
on silica gel with ethyl acetate:hexanes (20:80,1H NMR (300 MHz, δ, p.p.m. in CDCl3): 8.23 (d, J = 9.1 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.56–7.38 (m, 3H), 7.24 (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 4.76 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, δ, p.p.m. in CDCl3): 178.7, 168.1, 160.4, 156.4, 156.0, 133.5, 132.2, 129.6, 125.6, 124.9, 123.8, 121.7, 121.5, 118.0, 112.9, 112.5, 65.6, 61.6, 14.0. Anal. calcd. for C19H16O5: C, 70.36; H, 4.97. Found: C, 70.55; H, 4.91.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1855031
https://doi.org/10.1107/S2414314618009938/su4166sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618009938/su4166Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618009938/su4166Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C19H16O5 | Dx = 1.387 Mg m−3 |
Mr = 324.32 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, P212121 | Cell parameters from 9900 reflections |
a = 4.6852 (1) Å | θ = 3.4–72.4° |
b = 17.5786 (5) Å | µ = 0.83 mm−1 |
c = 18.8573 (5) Å | T = 150 K |
V = 1553.07 (7) Å3 | Plate, colourless |
Z = 4 | 0.29 × 0.22 × 0.07 mm |
F(000) = 680 |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3030 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2800 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 3.4° |
ω scans | h = −5→4 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −21→21 |
Tmin = 0.77, Tmax = 0.94 | l = −23→22 |
11308 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | All H-atom parameters refined |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2094P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3030 reflections | Δρmax = 0.13 e Å−3 |
281 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 1052 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2034 (3) | 0.36678 (8) | 0.51445 (8) | 0.0368 (4) | |
O2 | 0.7780 (4) | 0.46099 (10) | 0.65057 (8) | 0.0460 (4) | |
O3 | 0.6284 (4) | 0.55035 (9) | 0.41929 (8) | 0.0401 (4) | |
O4 | 1.1532 (4) | 0.69398 (10) | 0.40606 (10) | 0.0513 (5) | |
O5 | 0.9663 (4) | 0.62778 (9) | 0.49699 (8) | 0.0423 (4) | |
C1 | 0.2302 (5) | 0.33774 (12) | 0.58204 (11) | 0.0346 (5) | |
C2 | 0.0567 (6) | 0.27625 (14) | 0.59824 (13) | 0.0423 (6) | |
H2 | −0.075 (7) | 0.2546 (16) | 0.5610 (14) | 0.049 (8)* | |
C3 | 0.0689 (6) | 0.24647 (14) | 0.66622 (14) | 0.0474 (6) | |
H3 | −0.056 (7) | 0.2035 (18) | 0.6761 (16) | 0.059 (8)* | |
C4 | 0.2536 (6) | 0.27732 (14) | 0.71673 (13) | 0.0465 (6) | |
H4 | 0.247 (7) | 0.2551 (16) | 0.7655 (15) | 0.052 (8)* | |
C5 | 0.4281 (6) | 0.33689 (14) | 0.69871 (12) | 0.0421 (6) | |
H5 | 0.560 (6) | 0.3608 (16) | 0.7313 (15) | 0.047 (7)* | |
C6 | 0.4182 (5) | 0.36879 (12) | 0.63074 (11) | 0.0350 (5) | |
C7 | 0.6005 (5) | 0.43284 (12) | 0.61004 (11) | 0.0361 (5) | |
C8 | 0.5556 (5) | 0.46043 (13) | 0.53864 (12) | 0.0362 (5) | |
H8 | 0.669 (6) | 0.5030 (16) | 0.5230 (14) | 0.046 (7)* | |
C9 | 0.3641 (5) | 0.42812 (12) | 0.49416 (11) | 0.0330 (4) | |
C10 | 0.3013 (5) | 0.44765 (12) | 0.41940 (11) | 0.0346 (5) | |
C11 | 0.0962 (5) | 0.40542 (13) | 0.38233 (13) | 0.0405 (5) | |
H11 | −0.012 (6) | 0.3664 (15) | 0.4072 (14) | 0.042 (7)* | |
C12 | 0.0415 (6) | 0.41769 (14) | 0.31085 (13) | 0.0469 (6) | |
H12 | −0.103 (6) | 0.3856 (15) | 0.2880 (15) | 0.047 (7)* | |
C13 | 0.1946 (6) | 0.47231 (14) | 0.27468 (13) | 0.0458 (6) | |
H13 | 0.159 (6) | 0.4829 (16) | 0.2251 (15) | 0.050 (7)* | |
C14 | 0.3935 (6) | 0.51654 (14) | 0.30949 (12) | 0.0422 (6) | |
H14 | 0.488 (7) | 0.5559 (17) | 0.2835 (16) | 0.057 (8)* | |
C15 | 0.4429 (5) | 0.50577 (12) | 0.38172 (12) | 0.0358 (5) | |
C16 | 0.7779 (5) | 0.60771 (14) | 0.38187 (12) | 0.0404 (5) | |
H16A | 0.886 (6) | 0.5842 (14) | 0.3420 (13) | 0.041 (7)* | |
H16B | 0.642 (6) | 0.6484 (14) | 0.3621 (13) | 0.035 (6)* | |
C17 | 0.9869 (5) | 0.64768 (13) | 0.42946 (12) | 0.0382 (5) | |
C18 | 1.1644 (7) | 0.66578 (16) | 0.54554 (14) | 0.0479 (6) | |
H18A | 1.363 (7) | 0.6452 (17) | 0.5326 (17) | 0.058 (8)* | |
H18B | 1.143 (6) | 0.7245 (17) | 0.5402 (15) | 0.053 (8)* | |
C19 | 1.0807 (9) | 0.64282 (19) | 0.61898 (16) | 0.0607 (8) | |
H19A | 1.224 (9) | 0.663 (2) | 0.650 (2) | 0.083 (11)* | |
H19B | 1.074 (7) | 0.588 (2) | 0.6227 (17) | 0.070 (10)* | |
H19C | 0.887 (10) | 0.662 (2) | 0.632 (2) | 0.104 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0381 (8) | 0.0372 (7) | 0.0350 (7) | −0.0042 (7) | −0.0006 (6) | −0.0031 (6) |
O2 | 0.0501 (10) | 0.0495 (9) | 0.0384 (8) | −0.0137 (8) | −0.0087 (7) | −0.0020 (7) |
O3 | 0.0434 (9) | 0.0433 (8) | 0.0337 (7) | −0.0057 (7) | 0.0017 (7) | −0.0005 (6) |
O4 | 0.0484 (11) | 0.0482 (9) | 0.0573 (10) | −0.0074 (9) | 0.0135 (9) | 0.0052 (8) |
O5 | 0.0443 (9) | 0.0421 (8) | 0.0405 (8) | −0.0049 (7) | 0.0005 (7) | −0.0001 (7) |
C1 | 0.0359 (12) | 0.0331 (10) | 0.0348 (10) | 0.0033 (9) | 0.0033 (9) | −0.0036 (8) |
C2 | 0.0421 (14) | 0.0389 (12) | 0.0460 (12) | −0.0057 (11) | 0.0030 (10) | −0.0047 (10) |
C3 | 0.0526 (15) | 0.0374 (12) | 0.0523 (14) | −0.0073 (12) | 0.0104 (12) | −0.0006 (10) |
C4 | 0.0570 (16) | 0.0414 (12) | 0.0411 (12) | −0.0014 (12) | 0.0083 (12) | 0.0009 (10) |
C5 | 0.0503 (15) | 0.0403 (12) | 0.0358 (11) | −0.0025 (11) | 0.0031 (10) | −0.0027 (9) |
C6 | 0.0360 (11) | 0.0329 (10) | 0.0362 (10) | 0.0011 (10) | 0.0044 (9) | −0.0050 (8) |
C7 | 0.0377 (12) | 0.0352 (11) | 0.0354 (10) | −0.0004 (10) | 0.0018 (9) | −0.0046 (9) |
C8 | 0.0380 (12) | 0.0350 (11) | 0.0356 (11) | −0.0020 (10) | 0.0010 (9) | −0.0024 (9) |
C9 | 0.0323 (11) | 0.0311 (9) | 0.0355 (10) | 0.0039 (9) | 0.0032 (9) | −0.0037 (8) |
C10 | 0.0352 (12) | 0.0340 (10) | 0.0346 (10) | 0.0077 (9) | 0.0001 (9) | −0.0064 (8) |
C11 | 0.0418 (13) | 0.0360 (11) | 0.0437 (11) | 0.0056 (10) | −0.0067 (10) | −0.0051 (10) |
C12 | 0.0539 (16) | 0.0410 (13) | 0.0458 (12) | 0.0095 (12) | −0.0162 (11) | −0.0092 (11) |
C13 | 0.0551 (16) | 0.0446 (13) | 0.0376 (12) | 0.0174 (12) | −0.0095 (11) | −0.0067 (10) |
C14 | 0.0486 (15) | 0.0434 (12) | 0.0347 (11) | 0.0108 (12) | −0.0010 (10) | −0.0016 (10) |
C15 | 0.0358 (12) | 0.0376 (11) | 0.0340 (10) | 0.0082 (10) | 0.0000 (9) | −0.0070 (8) |
C16 | 0.0405 (13) | 0.0431 (12) | 0.0377 (11) | 0.0014 (11) | 0.0083 (10) | 0.0033 (10) |
C17 | 0.0374 (12) | 0.0346 (11) | 0.0427 (12) | 0.0060 (10) | 0.0088 (10) | 0.0011 (9) |
C18 | 0.0464 (16) | 0.0450 (14) | 0.0523 (14) | −0.0064 (12) | −0.0055 (11) | −0.0063 (11) |
C19 | 0.079 (2) | 0.0539 (17) | 0.0492 (14) | −0.0116 (16) | −0.0156 (16) | −0.0003 (13) |
O1—C9 | 1.370 (3) | C8—H8 | 0.96 (3) |
O1—C1 | 1.379 (3) | C9—C10 | 1.481 (3) |
O2—C7 | 1.233 (3) | C10—C11 | 1.401 (3) |
O3—C15 | 1.368 (3) | C10—C15 | 1.410 (3) |
O3—C16 | 1.416 (3) | C11—C12 | 1.389 (3) |
O4—C17 | 1.210 (3) | C11—H11 | 0.97 (3) |
O5—C17 | 1.324 (3) | C12—C13 | 1.379 (4) |
O5—C18 | 1.465 (3) | C12—H12 | 0.98 (3) |
C1—C6 | 1.385 (3) | C13—C14 | 1.380 (4) |
C1—C2 | 1.386 (3) | C13—H13 | 0.97 (3) |
C2—C3 | 1.386 (4) | C14—C15 | 1.394 (3) |
C2—H2 | 1.01 (3) | C14—H14 | 0.96 (3) |
C3—C4 | 1.396 (4) | C16—C17 | 1.503 (4) |
C3—H3 | 0.97 (3) | C16—H16A | 0.99 (3) |
C4—C5 | 1.371 (4) | C16—H16B | 1.03 (3) |
C4—H4 | 1.00 (3) | C18—C19 | 1.495 (4) |
C5—C6 | 1.400 (3) | C18—H18A | 1.03 (3) |
C5—H5 | 0.97 (3) | C18—H18B | 1.04 (3) |
C6—C7 | 1.466 (3) | C19—H19A | 0.97 (4) |
C7—C8 | 1.446 (3) | C19—H19B | 0.97 (4) |
C8—C9 | 1.353 (3) | C19—H19C | 1.00 (5) |
C9—O1—C1 | 119.97 (17) | C10—C11—H11 | 119.4 (16) |
C15—O3—C16 | 117.64 (17) | C13—C12—C11 | 119.5 (3) |
C17—O5—C18 | 115.8 (2) | C13—C12—H12 | 122.9 (16) |
O1—C1—C6 | 121.68 (19) | C11—C12—H12 | 117.6 (16) |
O1—C1—C2 | 116.0 (2) | C12—C13—C14 | 120.6 (2) |
C6—C1—C2 | 122.3 (2) | C12—C13—H13 | 121.6 (17) |
C3—C2—C1 | 118.3 (2) | C14—C13—H13 | 117.8 (17) |
C3—C2—H2 | 121.7 (16) | C13—C14—C15 | 120.0 (2) |
C1—C2—H2 | 120.0 (16) | C13—C14—H14 | 118.5 (19) |
C2—C3—C4 | 120.6 (2) | C15—C14—H14 | 121.4 (19) |
C2—C3—H3 | 116.4 (18) | O3—C15—C14 | 122.2 (2) |
C4—C3—H3 | 122.9 (18) | O3—C15—C10 | 116.94 (19) |
C5—C4—C3 | 119.8 (2) | C14—C15—C10 | 120.8 (2) |
C5—C4—H4 | 123.0 (18) | O3—C16—C17 | 110.95 (19) |
C3—C4—H4 | 117.1 (18) | O3—C16—H16A | 109.3 (15) |
C4—C5—C6 | 120.9 (2) | C17—C16—H16A | 108.3 (15) |
C4—C5—H5 | 123.8 (16) | O3—C16—H16B | 111.7 (14) |
C6—C5—H5 | 115.3 (16) | C17—C16—H16B | 107.2 (13) |
C1—C6—C5 | 118.1 (2) | H16A—C16—H16B | 109 (2) |
C1—C6—C7 | 119.8 (2) | O4—C17—O5 | 125.1 (2) |
C5—C6—C7 | 122.1 (2) | O4—C17—C16 | 121.1 (2) |
O2—C7—C8 | 122.7 (2) | O5—C17—C16 | 113.8 (2) |
O2—C7—C6 | 122.4 (2) | O5—C18—C19 | 106.8 (2) |
C8—C7—C6 | 114.9 (2) | O5—C18—H18A | 105.4 (17) |
C9—C8—C7 | 122.2 (2) | C19—C18—H18A | 111.3 (18) |
C9—C8—H8 | 120.0 (16) | O5—C18—H18B | 109.3 (17) |
C7—C8—H8 | 117.8 (16) | C19—C18—H18B | 109.4 (16) |
C8—C9—O1 | 121.46 (19) | H18A—C18—H18B | 114 (3) |
C8—C9—C10 | 128.7 (2) | C18—C19—H19A | 107 (2) |
O1—C9—C10 | 109.83 (18) | C18—C19—H19B | 110.1 (19) |
C11—C10—C15 | 117.1 (2) | H19A—C19—H19B | 110 (3) |
C11—C10—C9 | 119.2 (2) | C18—C19—H19C | 113 (3) |
C15—C10—C9 | 123.7 (2) | H19A—C19—H19C | 111 (3) |
C12—C11—C10 | 121.9 (3) | H19B—C19—H19C | 107 (4) |
C12—C11—H11 | 118.7 (16) | ||
C9—O1—C1—C6 | −0.3 (3) | C8—C9—C10—C11 | 178.7 (2) |
C9—O1—C1—C2 | 179.21 (19) | O1—C9—C10—C11 | 1.5 (3) |
O1—C1—C2—C3 | −178.0 (2) | C8—C9—C10—C15 | 0.6 (4) |
C6—C1—C2—C3 | 1.6 (4) | O1—C9—C10—C15 | −176.63 (19) |
C1—C2—C3—C4 | −0.6 (4) | C15—C10—C11—C12 | 2.6 (3) |
C2—C3—C4—C5 | −1.0 (4) | C9—C10—C11—C12 | −175.7 (2) |
C3—C4—C5—C6 | 1.8 (4) | C10—C11—C12—C13 | 0.8 (4) |
O1—C1—C6—C5 | 178.7 (2) | C11—C12—C13—C14 | −2.4 (4) |
C2—C1—C6—C5 | −0.8 (3) | C12—C13—C14—C15 | 0.6 (4) |
O1—C1—C6—C7 | −1.7 (3) | C16—O3—C15—C14 | −1.6 (3) |
C2—C1—C6—C7 | 178.7 (2) | C16—O3—C15—C10 | 178.42 (19) |
C4—C5—C6—C1 | −0.9 (4) | C13—C14—C15—O3 | −177.0 (2) |
C4—C5—C6—C7 | 179.6 (2) | C13—C14—C15—C10 | 2.9 (3) |
C1—C6—C7—O2 | −177.6 (2) | C11—C10—C15—O3 | 175.58 (19) |
C5—C6—C7—O2 | 1.9 (3) | C9—C10—C15—O3 | −6.3 (3) |
C1—C6—C7—C8 | 2.5 (3) | C11—C10—C15—C14 | −4.4 (3) |
C5—C6—C7—C8 | −177.9 (2) | C9—C10—C15—C14 | 173.8 (2) |
O2—C7—C8—C9 | 178.7 (2) | C15—O3—C16—C17 | −176.01 (18) |
C6—C7—C8—C9 | −1.5 (3) | C18—O5—C17—O4 | −0.2 (3) |
C7—C8—C9—O1 | −0.5 (3) | C18—O5—C17—C16 | −179.5 (2) |
C7—C8—C9—C10 | −177.5 (2) | O3—C16—C17—O4 | 173.4 (2) |
C1—O1—C9—C8 | 1.5 (3) | O3—C16—C17—O5 | −7.3 (3) |
C1—O1—C9—C10 | 179.00 (18) | C17—O5—C18—C19 | 173.0 (2) |
Cg3 is the centroid of the C10–C15 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O3 | 0.96 (3) | 2.13 (3) | 2.771 (3) | 122 (2) |
C5—H5···O2 | 0.97 (3) | 2.54 (3) | 2.876 (3) | 100 (2) |
C11—H11···O1 | 0.97 (3) | 2.26 (3) | 2.631 (3) | 101 (2) |
C16—H16B···O4i | 1.03 (3) | 2.56 (3) | 3.327 (3) | 131 (2) |
C16—H16A···Cg3ii | 0.99 (3) | 2.75 (3) | 3.0449 (3) | 128 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Funding information
The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award No. R25GM060926, NIMHD–RCMI grant No. 5 G12MD007595, and by the Louisiana Cancer Research Consortium Core Facilities at Xavier University of Louisiana. The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Bear, W. L. & Teel, R. W. (2000). Anticancer Res. 20, 3609–3614. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI. Google Scholar
Foroozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91–102. CrossRef CAS PubMed Web of Science Google Scholar
Kale, A., Gawande, S. & Kotwal, S. (2008). Phytother. Res. 22, 567–577. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kühnau, J. (1976). World Rev. Nutr. Diet. 24, 117–191. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pandey, A. K. (2007). Natl. Acad. Sci. Lett. 30, 383–386. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. & Pridham, J. B. (1995). Free Radical Res. 22, 375–383. Google Scholar
Seetharaman, J. & Rajan, S. S. (1995). Z. Kristallogr. 210, 104–106. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sridhar, J., Liu, J., Foroozesh, M. & Stevens, C. L. (2012). Molecules, 17, 9283–9305. CrossRef Google Scholar
Walle, T. (2007). Semin. Cancer Biol. 17, 354–362. CrossRef Google Scholar
Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536–1540. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.