organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[2-(4-oxo-4H-chromen-2-yl)phen­­oxy]acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: ngoyal@xula.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 May 2018; accepted 11 July 2018; online 24 July 2018)

In the title flavonoid derivative, C19H16O5, the chromene portion is planar (r.m.s. deviation = 0.022 Å) with the substituents lying closely to the same plane. The dihedral angle between its mean plane and that of the benzene ring is 4.9 (1)°. This planarity is due, in part, to the presence of a strong intra­molecular C—H⋯O hydrogen bond and to two weak C—H⋯O contacts. In the crystal, neighboring mol­ecules are linked by a C—H⋯O hydrogen bond and a C—H⋯π inter­action, forming chains along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavonoids comprise a family of natural compounds with variable phenolic structures that occur in plants. Naturally occurring flavonoids and their chemical derivatives exhibit a variety of pharmacological activities (Kühnau, 1976[Kühnau, J. (1976). World Rev. Nutr. Diet. 24, 117-191.]; Kale et al., 2008[Kale, A., Gawande, S. & Kotwal, S. (2008). Phytother. Res. 22, 567-577.]; Walle, 2007[Walle, T. (2007). Semin. Cancer Biol. 17, 354-362.]). It has been shown that biological activity can be affected by the position of the different substituents on the flavone ring. Many studies have been published suggesting that flavonoid-based mol­ecules have therapeutic efficacy in areas such as cardiovascular diseases, cancers, and age-related diseases (Bear & Teel, 2000[Bear, W. L. & Teel, R. W. (2000). Anticancer Res. 20, 3609-3614.]; Rice-Evans et al., 1995[Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. & Pridham, J. B. (1995). Free Radical Res. 22, 375-383.]; Pandey, 2007[Pandey, A. K. (2007). Natl. Acad. Sci. Lett. 30, 383-386.]). In general, flavonoids can acts as substrates, inducers, and/or inhibitors of P450 enzymes. We have previously reported synthetic flavonoids metabolized by several cytochrome P450 enzymes including P450s 1 A1, 1 A2, 1B1, 2 C9, 3 A4 and 3 A5 (Sridhar et al., 2012[Sridhar, J., Liu, J., Foroozesh, M. & Stevens, C. L. (2012). Molecules, 17, 9283-9305.]; Foroozesh et al., 1997[Foroozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91-102.]).

The crystal structure of flavone itself (Waller et al., 2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]) is quite similar to that of ethyl 2-(2-(4-oxo-4H-chrome-2-yl)phen­oxy)acetate in that it occurs in P212121 with a comparably shaped cell, is essentially planar, and forms π stacks along the a axis. The crystallographically characterized flavone derivatives most similar to the title compound are 2′-hy­droxy flavone (Seetharaman & Rajan, 1995[Seetharaman, J. & Rajan, S. S. (1995). Z. Kristallogr. 210, 104-106.]) and 2′-meth­oxy flavone (Wallet et al., 1990[Wallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536-1540.]), both of which are also planar mol­ecules with hydrogen bonding playing a role in enforcing the mol­ecular conformation. Both 2′-hy­droxy flavone and 2′-meth­oxy flavone also form columnar π stacks, but the latter mol­ecule packs to form two distinct stacks along different directions.

In the title compound, the 10-membered bicylic moiety is planar to within 0.028 (3) Å (r.m.s. deviation of the fitted atoms = 0.022 Å), while the dihedral angle between its mean plane and that of the C10–C15 benzene ring is only 4.9 (1)°. This planarity is likely due to the intra­molecular C8—H8⋯O3 hydrogen bond (Fig. 1[link] and Table 1[link]). The conformation of the ester grouping may be due in part to C19—H19B⋯O2 and C8—H8⋯O5 hydrogen bonds, but since the H⋯O distances are only 0.04 and 0.08 Å less than the sum of the van der Waals radii, respectively, these inter­actions would be quite weak at best.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3 0.96 (3) 2.13 (3) 2.771 (3) 122 (2)
C5—H5⋯O2 0.97 (3) 2.54 (3) 2.876 (3) 100 (2)
C11—H11⋯O1 0.97 (3) 2.26 (3) 2.631 (3) 101 (2)
C16—H16B⋯O4i 1.03 (3) 2.56 (3) 3.327 (3) 131 (2)
C16—H16ACg3ii 0.99 (3) 2.75 (3) 3.0449 (3) 128 (2)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labeling and 50% probability displacement ellipsoids. The intra­molecular hydrogen bond is shown by a dashed line (Table 1[link]).

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains extending along the a-axis direction (Table 1[link] and Fig. 2[link]). Within the chains there are also C—H⋯π inter­actions present (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines, and the C—H⋯π inter­actions are illustrated by blue arrows for the central column of mol­ecules (see Table 1[link]).

Synthesis and crystallization

Potassium carbonate (0.86 g, 6.291 mmol) was added to a stirred solution of flavon-2′-ol (0.500 g, 2.097 mmol) in 30 ml of acetone. The mixture was stirred for 30 min at 298 K. Bromo ethyl acetate (0.761 g, 5.24 mmol) was added slowly to the mixture. The reaction mixture was heated at 303 K overnight and then filtered and concentrated on a rotary evaporator. The crude material was then purified by flash chromatography on silica gel with ethyl acetate:hexa­nes (20:80, v:v) as the eluent to yield the title compound as a white solid (yield 0.652 g, 96%; m.p. 361–363 K). Colorless plate-like crystals were obtained by slow cooling of a warm solution of ethyl acetate:hexa­nes (2:1, v:v).

1H NMR (300 MHz, δ, p.p.m. in CDCl3): 8.23 (d, J = 9.1 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.56–7.38 (m, 3H), 7.24 (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 4.76 (s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, δ, p.p.m. in CDCl3): 178.7, 168.1, 160.4, 156.4, 156.0, 133.5, 132.2, 129.6, 125.6, 124.9, 123.8, 121.7, 121.5, 118.0, 112.9, 112.5, 65.6, 61.6, 14.0. Anal. calcd. for C19H16O5: C, 70.36; H, 4.97. Found: C, 70.55; H, 4.91.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H16O5
Mr 324.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 4.6852 (1), 17.5786 (5), 18.8573 (5)
V3) 1553.07 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.29 × 0.22 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.77, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 11308, 3030, 2800
Rint 0.040
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.08
No. of reflections 3030
No. of parameters 281
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.13, −0.17
Absolute structure Flack x determined using 1052 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.04 (9)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Ethyl 2-[2-(4-oxo-4H-chromen-2-yl)phenoxy]acetate top
Crystal data top
C19H16O5Dx = 1.387 Mg m3
Mr = 324.32Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9900 reflections
a = 4.6852 (1) Åθ = 3.4–72.4°
b = 17.5786 (5) ŵ = 0.83 mm1
c = 18.8573 (5) ÅT = 150 K
V = 1553.07 (7) Å3Plate, colourless
Z = 40.29 × 0.22 × 0.07 mm
F(000) = 680
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3030 independent reflections
Radiation source: INCOATEC IµS micro–focus source2800 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.4°
ω scansh = 54
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.77, Tmax = 0.94l = 2322
11308 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.2094P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3030 reflectionsΔρmax = 0.13 e Å3
281 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 1052 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2034 (3)0.36678 (8)0.51445 (8)0.0368 (4)
O20.7780 (4)0.46099 (10)0.65057 (8)0.0460 (4)
O30.6284 (4)0.55035 (9)0.41929 (8)0.0401 (4)
O41.1532 (4)0.69398 (10)0.40606 (10)0.0513 (5)
O50.9663 (4)0.62778 (9)0.49699 (8)0.0423 (4)
C10.2302 (5)0.33774 (12)0.58204 (11)0.0346 (5)
C20.0567 (6)0.27625 (14)0.59824 (13)0.0423 (6)
H20.075 (7)0.2546 (16)0.5610 (14)0.049 (8)*
C30.0689 (6)0.24647 (14)0.66622 (14)0.0474 (6)
H30.056 (7)0.2035 (18)0.6761 (16)0.059 (8)*
C40.2536 (6)0.27732 (14)0.71673 (13)0.0465 (6)
H40.247 (7)0.2551 (16)0.7655 (15)0.052 (8)*
C50.4281 (6)0.33689 (14)0.69871 (12)0.0421 (6)
H50.560 (6)0.3608 (16)0.7313 (15)0.047 (7)*
C60.4182 (5)0.36879 (12)0.63074 (11)0.0350 (5)
C70.6005 (5)0.43284 (12)0.61004 (11)0.0361 (5)
C80.5556 (5)0.46043 (13)0.53864 (12)0.0362 (5)
H80.669 (6)0.5030 (16)0.5230 (14)0.046 (7)*
C90.3641 (5)0.42812 (12)0.49416 (11)0.0330 (4)
C100.3013 (5)0.44765 (12)0.41940 (11)0.0346 (5)
C110.0962 (5)0.40542 (13)0.38233 (13)0.0405 (5)
H110.012 (6)0.3664 (15)0.4072 (14)0.042 (7)*
C120.0415 (6)0.41769 (14)0.31085 (13)0.0469 (6)
H120.103 (6)0.3856 (15)0.2880 (15)0.047 (7)*
C130.1946 (6)0.47231 (14)0.27468 (13)0.0458 (6)
H130.159 (6)0.4829 (16)0.2251 (15)0.050 (7)*
C140.3935 (6)0.51654 (14)0.30949 (12)0.0422 (6)
H140.488 (7)0.5559 (17)0.2835 (16)0.057 (8)*
C150.4429 (5)0.50577 (12)0.38172 (12)0.0358 (5)
C160.7779 (5)0.60771 (14)0.38187 (12)0.0404 (5)
H16A0.886 (6)0.5842 (14)0.3420 (13)0.041 (7)*
H16B0.642 (6)0.6484 (14)0.3621 (13)0.035 (6)*
C170.9869 (5)0.64768 (13)0.42946 (12)0.0382 (5)
C181.1644 (7)0.66578 (16)0.54554 (14)0.0479 (6)
H18A1.363 (7)0.6452 (17)0.5326 (17)0.058 (8)*
H18B1.143 (6)0.7245 (17)0.5402 (15)0.053 (8)*
C191.0807 (9)0.64282 (19)0.61898 (16)0.0607 (8)
H19A1.224 (9)0.663 (2)0.650 (2)0.083 (11)*
H19B1.074 (7)0.588 (2)0.6227 (17)0.070 (10)*
H19C0.887 (10)0.662 (2)0.632 (2)0.104 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0381 (8)0.0372 (7)0.0350 (7)0.0042 (7)0.0006 (6)0.0031 (6)
O20.0501 (10)0.0495 (9)0.0384 (8)0.0137 (8)0.0087 (7)0.0020 (7)
O30.0434 (9)0.0433 (8)0.0337 (7)0.0057 (7)0.0017 (7)0.0005 (6)
O40.0484 (11)0.0482 (9)0.0573 (10)0.0074 (9)0.0135 (9)0.0052 (8)
O50.0443 (9)0.0421 (8)0.0405 (8)0.0049 (7)0.0005 (7)0.0001 (7)
C10.0359 (12)0.0331 (10)0.0348 (10)0.0033 (9)0.0033 (9)0.0036 (8)
C20.0421 (14)0.0389 (12)0.0460 (12)0.0057 (11)0.0030 (10)0.0047 (10)
C30.0526 (15)0.0374 (12)0.0523 (14)0.0073 (12)0.0104 (12)0.0006 (10)
C40.0570 (16)0.0414 (12)0.0411 (12)0.0014 (12)0.0083 (12)0.0009 (10)
C50.0503 (15)0.0403 (12)0.0358 (11)0.0025 (11)0.0031 (10)0.0027 (9)
C60.0360 (11)0.0329 (10)0.0362 (10)0.0011 (10)0.0044 (9)0.0050 (8)
C70.0377 (12)0.0352 (11)0.0354 (10)0.0004 (10)0.0018 (9)0.0046 (9)
C80.0380 (12)0.0350 (11)0.0356 (11)0.0020 (10)0.0010 (9)0.0024 (9)
C90.0323 (11)0.0311 (9)0.0355 (10)0.0039 (9)0.0032 (9)0.0037 (8)
C100.0352 (12)0.0340 (10)0.0346 (10)0.0077 (9)0.0001 (9)0.0064 (8)
C110.0418 (13)0.0360 (11)0.0437 (11)0.0056 (10)0.0067 (10)0.0051 (10)
C120.0539 (16)0.0410 (13)0.0458 (12)0.0095 (12)0.0162 (11)0.0092 (11)
C130.0551 (16)0.0446 (13)0.0376 (12)0.0174 (12)0.0095 (11)0.0067 (10)
C140.0486 (15)0.0434 (12)0.0347 (11)0.0108 (12)0.0010 (10)0.0016 (10)
C150.0358 (12)0.0376 (11)0.0340 (10)0.0082 (10)0.0000 (9)0.0070 (8)
C160.0405 (13)0.0431 (12)0.0377 (11)0.0014 (11)0.0083 (10)0.0033 (10)
C170.0374 (12)0.0346 (11)0.0427 (12)0.0060 (10)0.0088 (10)0.0011 (9)
C180.0464 (16)0.0450 (14)0.0523 (14)0.0064 (12)0.0055 (11)0.0063 (11)
C190.079 (2)0.0539 (17)0.0492 (14)0.0116 (16)0.0156 (16)0.0003 (13)
Geometric parameters (Å, º) top
O1—C91.370 (3)C8—H80.96 (3)
O1—C11.379 (3)C9—C101.481 (3)
O2—C71.233 (3)C10—C111.401 (3)
O3—C151.368 (3)C10—C151.410 (3)
O3—C161.416 (3)C11—C121.389 (3)
O4—C171.210 (3)C11—H110.97 (3)
O5—C171.324 (3)C12—C131.379 (4)
O5—C181.465 (3)C12—H120.98 (3)
C1—C61.385 (3)C13—C141.380 (4)
C1—C21.386 (3)C13—H130.97 (3)
C2—C31.386 (4)C14—C151.394 (3)
C2—H21.01 (3)C14—H140.96 (3)
C3—C41.396 (4)C16—C171.503 (4)
C3—H30.97 (3)C16—H16A0.99 (3)
C4—C51.371 (4)C16—H16B1.03 (3)
C4—H41.00 (3)C18—C191.495 (4)
C5—C61.400 (3)C18—H18A1.03 (3)
C5—H50.97 (3)C18—H18B1.04 (3)
C6—C71.466 (3)C19—H19A0.97 (4)
C7—C81.446 (3)C19—H19B0.97 (4)
C8—C91.353 (3)C19—H19C1.00 (5)
C9—O1—C1119.97 (17)C10—C11—H11119.4 (16)
C15—O3—C16117.64 (17)C13—C12—C11119.5 (3)
C17—O5—C18115.8 (2)C13—C12—H12122.9 (16)
O1—C1—C6121.68 (19)C11—C12—H12117.6 (16)
O1—C1—C2116.0 (2)C12—C13—C14120.6 (2)
C6—C1—C2122.3 (2)C12—C13—H13121.6 (17)
C3—C2—C1118.3 (2)C14—C13—H13117.8 (17)
C3—C2—H2121.7 (16)C13—C14—C15120.0 (2)
C1—C2—H2120.0 (16)C13—C14—H14118.5 (19)
C2—C3—C4120.6 (2)C15—C14—H14121.4 (19)
C2—C3—H3116.4 (18)O3—C15—C14122.2 (2)
C4—C3—H3122.9 (18)O3—C15—C10116.94 (19)
C5—C4—C3119.8 (2)C14—C15—C10120.8 (2)
C5—C4—H4123.0 (18)O3—C16—C17110.95 (19)
C3—C4—H4117.1 (18)O3—C16—H16A109.3 (15)
C4—C5—C6120.9 (2)C17—C16—H16A108.3 (15)
C4—C5—H5123.8 (16)O3—C16—H16B111.7 (14)
C6—C5—H5115.3 (16)C17—C16—H16B107.2 (13)
C1—C6—C5118.1 (2)H16A—C16—H16B109 (2)
C1—C6—C7119.8 (2)O4—C17—O5125.1 (2)
C5—C6—C7122.1 (2)O4—C17—C16121.1 (2)
O2—C7—C8122.7 (2)O5—C17—C16113.8 (2)
O2—C7—C6122.4 (2)O5—C18—C19106.8 (2)
C8—C7—C6114.9 (2)O5—C18—H18A105.4 (17)
C9—C8—C7122.2 (2)C19—C18—H18A111.3 (18)
C9—C8—H8120.0 (16)O5—C18—H18B109.3 (17)
C7—C8—H8117.8 (16)C19—C18—H18B109.4 (16)
C8—C9—O1121.46 (19)H18A—C18—H18B114 (3)
C8—C9—C10128.7 (2)C18—C19—H19A107 (2)
O1—C9—C10109.83 (18)C18—C19—H19B110.1 (19)
C11—C10—C15117.1 (2)H19A—C19—H19B110 (3)
C11—C10—C9119.2 (2)C18—C19—H19C113 (3)
C15—C10—C9123.7 (2)H19A—C19—H19C111 (3)
C12—C11—C10121.9 (3)H19B—C19—H19C107 (4)
C12—C11—H11118.7 (16)
C9—O1—C1—C60.3 (3)C8—C9—C10—C11178.7 (2)
C9—O1—C1—C2179.21 (19)O1—C9—C10—C111.5 (3)
O1—C1—C2—C3178.0 (2)C8—C9—C10—C150.6 (4)
C6—C1—C2—C31.6 (4)O1—C9—C10—C15176.63 (19)
C1—C2—C3—C40.6 (4)C15—C10—C11—C122.6 (3)
C2—C3—C4—C51.0 (4)C9—C10—C11—C12175.7 (2)
C3—C4—C5—C61.8 (4)C10—C11—C12—C130.8 (4)
O1—C1—C6—C5178.7 (2)C11—C12—C13—C142.4 (4)
C2—C1—C6—C50.8 (3)C12—C13—C14—C150.6 (4)
O1—C1—C6—C71.7 (3)C16—O3—C15—C141.6 (3)
C2—C1—C6—C7178.7 (2)C16—O3—C15—C10178.42 (19)
C4—C5—C6—C10.9 (4)C13—C14—C15—O3177.0 (2)
C4—C5—C6—C7179.6 (2)C13—C14—C15—C102.9 (3)
C1—C6—C7—O2177.6 (2)C11—C10—C15—O3175.58 (19)
C5—C6—C7—O21.9 (3)C9—C10—C15—O36.3 (3)
C1—C6—C7—C82.5 (3)C11—C10—C15—C144.4 (3)
C5—C6—C7—C8177.9 (2)C9—C10—C15—C14173.8 (2)
O2—C7—C8—C9178.7 (2)C15—O3—C16—C17176.01 (18)
C6—C7—C8—C91.5 (3)C18—O5—C17—O40.2 (3)
C7—C8—C9—O10.5 (3)C18—O5—C17—C16179.5 (2)
C7—C8—C9—C10177.5 (2)O3—C16—C17—O4173.4 (2)
C1—O1—C9—C81.5 (3)O3—C16—C17—O57.3 (3)
C1—O1—C9—C10179.00 (18)C17—O5—C18—C19173.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O30.96 (3)2.13 (3)2.771 (3)122 (2)
C5—H5···O20.97 (3)2.54 (3)2.876 (3)100 (2)
C11—H11···O10.97 (3)2.26 (3)2.631 (3)101 (2)
C16—H16B···O4i1.03 (3)2.56 (3)3.327 (3)131 (2)
C16—H16A···Cg3ii0.99 (3)2.75 (3)3.0449 (3)128 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Funding information

The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award No. R25GM060926, NIMHD–RCMI grant No. 5 G12MD007595, and by the Louisiana Cancer Research Consortium Core Facilities at Xavier University of Louisiana. The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBear, W. L. & Teel, R. W. (2000). Anticancer Res. 20, 3609–3614.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.  Google Scholar
First citationForoozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91–102.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKale, A., Gawande, S. & Kotwal, S. (2008). Phytother. Res. 22, 567–577.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKühnau, J. (1976). World Rev. Nutr. Diet. 24, 117–191.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandey, A. K. (2007). Natl. Acad. Sci. Lett. 30, 383–386.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. & Pridham, J. B. (1995). Free Radical Res. 22, 375–383.  Google Scholar
First citationSeetharaman, J. & Rajan, S. S. (1995). Z. Kristallogr. 210, 104–106.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, J., Liu, J., Foroozesh, M. & Stevens, C. L. (2012). Molecules, 17, 9283–9305.  CrossRef Google Scholar
First citationWalle, T. (2007). Semin. Cancer Biol. 17, 354–362.  CrossRef Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWallet, J.-C., Gaydou, E. M., Jaud, J. & Baldy, A. (1990). Acta Cryst. C46, 1536–1540.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds