organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3′,4′-Di­phenyl-3H,4′H-spiro­[benzo[b]thio­phene-2,5′-isoxazol]-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, BP 1796, 30000 Fès, Morocco, and bLaboratoire de Chimie Appliquée des Matériaux, Centres des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: bakhouch_m@yahoo.com

Edited by J. Simpson, University of Otago, New Zealand (Received 10 July 2018; accepted 13 July 2018; online 20 July 2018)

The mol­ecule of the title compound, C22H15NO2S, is built up from a benzo­thio­phene system linked to an isoxazoline ring which is connected to two phenyl rings. The benzo­thio­phene system is essentially planar, while the isoxazoline ring displays an envelope conformation with the spiro C atom as the flap. The mean plane through the isoxazoline ring is slightly inclined to one phenyl ring by 5.74 (13)° and is approximately perpendicular [86.10 (10)°] to the fused ring system and to the other phenyl ring [84.31 (12)°]. In the crystal, mol­ecules are linked together by C—H⋯O hydrogen bonds and by ππ inter­actions between the fused ring systems [inter­centroid distance = 3.702 (2) Å], forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mol­ecules containing an isoxazoline framework have been widely used as key building blocks for medicines. Among these compounds, spiro­isoxazolines have shown strong bioactivities (Bennani et al., 2007[Bennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yıldırım, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19-40.]; Al Houari et al., 2008[Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42-50.]; Hwang et al., 2005[Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639-8643.]). For many years, our laboratory has accumulated much experience in the design and synthesis of heterocyclic systems with isoxazoline and pyrazoline rings through 1,3-dipolar cyclo­addition and cyclo­condensation reactions (El Yazidi et al., 2003[El Yazidi, M., Bougrin, K., Daou, B., Doua, H. & Soufiaoui, M. (2003). J. Soc. Chim. Tunis. 5, 25-29.]; Bakhouch et al., 2014[Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.], 2015[Bakhouch, M., Al Houari, G., Daoudi, M., El yazidi, M. & Kerbal, A. (2015). Mediterr. J. Chem. 4, 9-17.], 2017[Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2017). IUCrData, 2, x170677.]; Mahfoud et al., 2015[Mahfoud, A., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o873-o874.]). In a continuation of our previous work, and in an attempt to evaluate the reactivity of thio­aurones with nitrile oxides as a dipole (Boughaleb et al., 2011[Boughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o1850.]), we describe herein the reaction of (Z)-2-benzyl­idenbenzo[b]thio­phen-3(2H)-one with benzo­nitrile oxide in chloro­form at low temperature. The title compound was obtained by regiospecific 1,3-dipolar cyclo­addition. The results of the X-ray study were in perfect agreement with IR, 1H NMR and 13C NMR spectroscopic analysis, which confirms the regiospecificity of the reaction.

The isoxazoline ring is linked to two phenyl rings and to a benzo­thio­phene ring system, as shown in Fig. 1[link]. The five-membred ring (N1/O1/C8–C10) adopts an envelope conformation with the spiro C8 atom as the flap. The total puckering amplitude for this ring is Q2 = 0.239 (2) Å and the spherical polar angle φ2 = 137.2 (5)° (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The benzo­thio­phene system is nearly perpendicular to the mean plane through the isoxazoline ring (N1/O1/C8–C10) and to the C11–C16 phenyl ring, as indicated by the dihedral angles of 86.10 (10) and 87.46 (11)°, respectively, between them. The dihedral angle between the fused ring system and the C17–C22 phenyl ring is 65.80 (11)°.

[Figure 1]
Figure 1
A plot of the mol­ecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

In the crystal, mol­ecules are linked together by C9—H9⋯O1ii and C19—H19⋯O2i hydrogen bonds and by ππ inter­actions between inversion-related benzene rings of adjacent benzo­thio­phene ring systems [inter­centroid distance = 3.702 (2) Å] to form a three-dimensional network (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.93 2.62 3.462 (3) 152
C9—H9⋯O1ii 0.98 2.66 3.564 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Crystal packing for the title compound showing mol­ecules linked by hydrogen bonds (dashed blue lines) and a ππ inter­action (green line).

Synthesis and crystallization

In a 100 ml flask, 2 mmol of (Z)-2-benzyl­idenebenzo[b]thio­phen-3-one and 2.2 mmol of benzo­nitrile oxide were dissolved in 20 ml of chloro­form. The mixture was cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach (NaOCl, 24%) was added drop-by-drop without exceeding a temperature of 278 K. The mixture was left stirring for 4 h at room temperature, washed with water until the pH was neutral and dried over sodium sulfate (Na2SO4). The solvent was then removed under reduced pressure and the resulting residue was crystallized from ethanol (yield: 90%; m.p. 495 K). Colourless block-like crystals were obtained by slow evaporation of the ethano­lic solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H15NO2S
Mr 357.41
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 9.2650 (2), 10.3523 (2), 36.0698 (8)
V3) 3459.60 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.35 × 0.28 × 0.25
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.639, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 76407, 3811, 2597
Rint 0.089
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.06
No. of reflections 3811
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.26
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3',4'-Diphenyl-3H,4'H-spiro[benzo[b]thiophene-2,5'-isoxazol]-3-one top
Crystal data top
C22H15NO2SDx = 1.372 Mg m3
Mr = 357.41Melting point: 495 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 9.2650 (2) ÅCell parameters from 3811 reflections
b = 10.3523 (2) Åθ = 3.0–27.1°
c = 36.0698 (8) ŵ = 0.20 mm1
V = 3459.60 (13) Å3T = 296 K
Z = 8Block, colourless
F(000) = 14880.35 × 0.28 × 0.25 mm
Data collection top
Bruker X8 APEX
diffractometer
3811 independent reflections
Radiation source: fine-focus sealed tube2597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
φ and ω scansθmax = 27.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.639, Tmax = 0.747k = 1313
76407 measured reflectionsl = 4646
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0215P)2 + 2.5234P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3811 reflectionsΔρmax = 0.18 e Å3
235 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2409 (3)0.4525 (2)0.52031 (6)0.0450 (5)
C20.2733 (3)0.4617 (3)0.48281 (7)0.0620 (7)
H20.3512870.5105870.4746560.074*
C30.1865 (4)0.3962 (3)0.45792 (7)0.0750 (9)
H30.2077130.4004690.4327490.090*
C40.0696 (4)0.3248 (3)0.46947 (7)0.0739 (9)
H40.0128380.2821280.4520880.089*
C50.0360 (3)0.3160 (2)0.50654 (7)0.0559 (7)
H50.0430690.2681370.5144920.067*
C60.1239 (2)0.3807 (2)0.53187 (6)0.0399 (5)
C70.1038 (2)0.3808 (2)0.57209 (6)0.0386 (5)
C80.2164 (2)0.4696 (2)0.59144 (6)0.0372 (5)
C90.2811 (2)0.40827 (19)0.62647 (5)0.0338 (4)
H90.2746190.3138860.6251870.041*
C100.1760 (2)0.4606 (2)0.65481 (6)0.0361 (5)
C110.1605 (2)0.4157 (2)0.69323 (6)0.0414 (5)
C120.0655 (3)0.4780 (3)0.71734 (7)0.0623 (7)
H120.0109730.5476090.7089660.075*
C130.0521 (4)0.4369 (3)0.75341 (8)0.0802 (10)
H130.0101540.4800090.7694150.096*
C140.1291 (4)0.3337 (3)0.76594 (8)0.0788 (10)
H140.1187960.3063540.7903550.095*
C150.2214 (3)0.2704 (3)0.74268 (7)0.0706 (8)
H150.2734590.1995750.7512410.085*
C160.2378 (3)0.3114 (2)0.70626 (6)0.0519 (6)
H160.3013030.2683340.6905770.062*
C170.4353 (2)0.4498 (2)0.63469 (6)0.0370 (5)
C220.4642 (2)0.5692 (2)0.65033 (7)0.0491 (6)
H220.3881810.6229070.6571250.059*
C210.6048 (3)0.6096 (3)0.65596 (8)0.0665 (8)
H210.6231010.6895210.6667650.080*
C200.7171 (3)0.5314 (3)0.64558 (8)0.0731 (9)
H200.8117600.5587860.6490340.088*
C190.6900 (3)0.4130 (3)0.63010 (8)0.0670 (8)
H190.7665040.3603810.6230010.080*
C180.5501 (2)0.3713 (3)0.62498 (7)0.0506 (6)
H180.5327360.2900030.6149500.061*
N10.1012 (2)0.55663 (18)0.64309 (5)0.0452 (5)
O10.13553 (17)0.58038 (14)0.60528 (4)0.0479 (4)
O20.01376 (18)0.32410 (17)0.58958 (4)0.0573 (5)
S10.34013 (7)0.52549 (7)0.55640 (2)0.05418 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0463 (12)0.0488 (13)0.0398 (12)0.0096 (11)0.0056 (11)0.0066 (10)
C20.0635 (17)0.0751 (18)0.0475 (14)0.0168 (15)0.0149 (13)0.0167 (14)
C30.111 (3)0.081 (2)0.0328 (13)0.029 (2)0.0067 (16)0.0039 (14)
C40.114 (3)0.0680 (18)0.0396 (14)0.0096 (19)0.0178 (17)0.0058 (13)
C50.0714 (18)0.0473 (14)0.0489 (14)0.0008 (13)0.0141 (13)0.0007 (11)
C60.0481 (13)0.0367 (11)0.0350 (11)0.0038 (10)0.0022 (10)0.0007 (9)
C70.0374 (11)0.0405 (12)0.0379 (11)0.0005 (10)0.0016 (10)0.0003 (9)
C80.0348 (11)0.0393 (11)0.0376 (11)0.0020 (9)0.0025 (9)0.0007 (9)
C90.0326 (10)0.0323 (10)0.0366 (11)0.0000 (9)0.0026 (9)0.0011 (9)
C100.0280 (10)0.0414 (12)0.0388 (11)0.0031 (9)0.0007 (9)0.0058 (9)
C110.0347 (11)0.0504 (13)0.0390 (12)0.0098 (10)0.0047 (10)0.0072 (10)
C120.0607 (16)0.0700 (17)0.0562 (15)0.0021 (14)0.0218 (13)0.0079 (13)
C130.089 (2)0.096 (2)0.0560 (18)0.016 (2)0.0363 (17)0.0151 (17)
C140.093 (2)0.104 (3)0.0394 (15)0.031 (2)0.0116 (16)0.0003 (16)
C150.080 (2)0.084 (2)0.0477 (15)0.0050 (17)0.0041 (15)0.0108 (14)
C160.0511 (14)0.0647 (16)0.0398 (12)0.0006 (12)0.0003 (12)0.0028 (11)
C170.0301 (10)0.0436 (12)0.0371 (11)0.0017 (9)0.0014 (9)0.0076 (9)
C220.0386 (12)0.0511 (14)0.0577 (15)0.0033 (11)0.0040 (11)0.0001 (11)
C210.0526 (16)0.0736 (18)0.0733 (19)0.0251 (15)0.0138 (15)0.0095 (15)
C200.0347 (14)0.106 (3)0.078 (2)0.0182 (16)0.0103 (14)0.0378 (19)
C190.0351 (13)0.094 (2)0.0723 (19)0.0148 (14)0.0112 (13)0.0296 (17)
C180.0408 (12)0.0587 (15)0.0522 (14)0.0094 (11)0.0071 (11)0.0090 (12)
N10.0402 (10)0.0518 (12)0.0435 (11)0.0055 (9)0.0003 (9)0.0080 (9)
O10.0543 (10)0.0428 (9)0.0467 (9)0.0107 (7)0.0041 (8)0.0014 (7)
O20.0514 (10)0.0706 (11)0.0499 (10)0.0228 (9)0.0048 (8)0.0013 (9)
S10.0460 (3)0.0679 (4)0.0486 (3)0.0160 (3)0.0036 (3)0.0130 (3)
Geometric parameters (Å, º) top
C1—C61.379 (3)C11—C121.396 (3)
C1—C21.389 (3)C12—C131.374 (4)
C1—S11.763 (2)C12—H120.9300
C2—C31.383 (4)C13—C141.362 (4)
C2—H20.9300C13—H130.9300
C3—C41.376 (4)C14—C151.366 (4)
C3—H30.9300C14—H140.9300
C4—C51.376 (4)C15—C161.389 (3)
C4—H40.9300C15—H150.9300
C5—C61.395 (3)C16—H160.9300
C5—H50.9300C17—C181.383 (3)
C6—C71.463 (3)C17—C221.385 (3)
C7—O21.199 (2)C22—C211.383 (3)
C7—C81.555 (3)C22—H220.9300
C8—O11.459 (2)C21—C201.370 (4)
C8—C91.536 (3)C21—H210.9300
C8—S11.802 (2)C20—C191.371 (4)
C9—C101.512 (3)C20—H200.9300
C9—C171.521 (3)C19—C181.379 (4)
C9—H90.9800C19—H190.9300
C10—N11.283 (3)C18—H180.9300
C10—C111.469 (3)N1—O11.421 (2)
C11—C161.378 (3)
C6—C1—C2120.1 (2)C12—C11—C10120.2 (2)
C6—C1—S1114.68 (16)C13—C12—C11120.2 (3)
C2—C1—S1125.2 (2)C13—C12—H12119.9
C3—C2—C1118.2 (3)C11—C12—H12119.9
C3—C2—H2120.9C14—C13—C12120.7 (3)
C1—C2—H2120.9C14—C13—H13119.7
C4—C3—C2121.6 (2)C12—C13—H13119.7
C4—C3—H3119.2C13—C14—C15120.1 (3)
C2—C3—H3119.2C13—C14—H14120.0
C5—C4—C3120.5 (3)C15—C14—H14120.0
C5—C4—H4119.7C14—C15—C16120.2 (3)
C3—C4—H4119.7C14—C15—H15119.9
C4—C5—C6118.2 (3)C16—C15—H15119.9
C4—C5—H5120.9C11—C16—C15120.4 (2)
C6—C5—H5120.9C11—C16—H16119.8
C1—C6—C5121.3 (2)C15—C16—H16119.8
C1—C6—C7113.6 (2)C18—C17—C22118.6 (2)
C5—C6—C7125.2 (2)C18—C17—C9120.4 (2)
O2—C7—C6127.6 (2)C22—C17—C9120.90 (19)
O2—C7—C8121.32 (19)C21—C22—C17120.8 (2)
C6—C7—C8111.10 (18)C21—C22—H22119.6
O1—C8—C9104.11 (15)C17—C22—H22119.6
O1—C8—C7105.87 (16)C20—C21—C22119.8 (3)
C9—C8—C7112.77 (16)C20—C21—H21120.1
O1—C8—S1108.32 (13)C22—C21—H21120.1
C9—C8—S1117.48 (14)C21—C20—C19120.0 (2)
C7—C8—S1107.57 (14)C21—C20—H20120.0
C10—C9—C17111.83 (16)C19—C20—H20120.0
C10—C9—C899.02 (16)C20—C19—C18120.5 (3)
C17—C9—C8114.22 (16)C20—C19—H19119.8
C10—C9—H9110.4C18—C19—H19119.8
C17—C9—H9110.4C19—C18—C17120.3 (3)
C8—C9—H9110.4C19—C18—H18119.8
N1—C10—C11120.21 (19)C17—C18—H18119.8
N1—C10—C9113.72 (18)C10—N1—O1109.23 (16)
C11—C10—C9125.98 (19)N1—O1—C8107.90 (14)
C16—C11—C12118.5 (2)C1—S1—C892.77 (10)
C16—C11—C10121.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.623.462 (3)152
C9—H9···O1ii0.982.663.564 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAl Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50.  Google Scholar
First citationBakhouch, M., Al Houari, G., Daoudi, M., El yazidi, M. & Kerbal, A. (2015). Mediterr. J. Chem. 4, 9–17.  CrossRef Google Scholar
First citationBakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.  CSD CrossRef IUCr Journals Google Scholar
First citationBakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2017). IUCrData, 2, x170677.  Google Scholar
First citationBennani, B., Kerbal, A., Daoudi, M., Filali Baba, B., Al Houari, G., Jalbout, A. F., Mimouni, M., Benazza, M., Demailly, G., Akkurt, M., Öztürk Yıldırım, S. & Ben Hadda, T. (2007). ARKIVOC, xvi, 19–40.  CrossRef Google Scholar
First citationBoughaleb, A., Zouihri, H., Gmouh, S., Kerbal, A. & El yazidi, M. (2011). Acta Cryst. E67, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Yazidi, M., Bougrin, K., Daou, B., Doua, H. & Soufiaoui, M. (2003). J. Soc. Chim. Tunis. 5, 25–29.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahfoud, A., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds