organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,4-Di­phenyl-1-propyl-2-propyl­sulfanyl-4,5-di­hydro-1H-imidazol-5-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.ramli@um5s.net.ma

Edited by J. Simpson, University of Otago, New Zealand (Received 25 June 2018; accepted 28 June 2018; online 6 July 2018)

In the title mol­ecule, C21H24N2OS, the five-membered ring is planar with an r.m.s. deviation of 0.0142 Å. The phenyl rings are inclined to the plane of the di­hydro­imidazolone ring by 60.81 (6) and 79.23 (6)°. In the crystal, inversion dimers are formed by a C—H⋯O hydrogen bond and a C—H⋯π(ring) inter­action. Additional C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions connect these dimers into chains along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the past thirty years, imidazolone derivatives of hydantoin or thio­hydantoin have been the focus of inter­est for the synthetic and pharmaceutical industries because of their biological properties. As part of our ongoing studies of 4,4- and 5,5-di­phenyl­imidazolidine-2,4-dione and 5,5-diphenyl-2-thioxoimidazolidin-4-one derivatives (Ramli, Akrad et al., 2017[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.]; Ramli, Guerrab et al., 2017[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171041.]; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]; Guerrab et al., 2017a[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.],b[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.]), the title compound was prepared and its crystal structure is reported here.

In the title mol­ecule (Fig. 1[link]), the C10–C15 and C16–C21 benzene rings are inclined to the plane of the central five-membered ring by 60.81 (6) and 79.23 (6)°, respectively. In the crystal, C8—H8A⋯O1 hydrogen bonds and C9—H9ACg3 inter­actions, Table 1[link], form inversion dimers, which are connected into chains extending along the c-axis direction by C19—H19⋯O1 hydrogen bonds and C20—H20⋯Cg2 inter­actions (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C10–C15 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 1.005 (15) 2.607 (15) 3.5908 (14) 166.2 (11)
C9—H9ACg3i 0.973 (16) 2.908 (15) 3.7370 (15) 143.8 (12)
C19—H19⋯O1ii 0.955 (16) 2.596 (16) 3.4407 (15) 147.7 (12)
C20—H20⋯Cg2ii 0.997 (16) 2.999 (17) 3.7390 (14) 131.9 (12)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1.
[Figure 1]
Figure 1
The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
A portion of a chain of the title mol­ecules viewed along the b-axis direction. C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions are shown by black and green dashed lines, respectively.

Synthesis and crystallization

Thio­hydantoin (0.7 g) was placed in a flask with K2CO3 (0.9 g, 0.0065 mmol) in absolute di­methyl­formamide (DMF), and two equivalents of propyl iodide were added. The solution was left stirring for 2 h at room temperature. The solvent was then removed after filtration of the base and the oil obtained was recrystallized from methanol solution to yield colourless block-shaped single crystals (Guerrab et al., 2017c[Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData, 2, x171693.], 2018[Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180050.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H24N2OS
Mr 352.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.898 (2), 14.878 (2), 8.4007 (13)
β (°) 96.780 (2)
V3) 1849.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.30 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 35375, 5241, 4279
Rint 0.033
(sin θ/λ)max−1) 0.708
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.07
No. of reflections 5241
No. of parameters 322
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.51, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4-Diphenyl-1-propyl-2-propylsulfanyl-4,5-dihydro-1H-imidazol-5-one top
Crystal data top
C21H24N2OSF(000) = 752
Mr = 352.48Dx = 1.266 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.898 (2) ÅCell parameters from 9958 reflections
b = 14.878 (2) Åθ = 2.7–30.0°
c = 8.4007 (13) ŵ = 0.19 mm1
β = 96.780 (2)°T = 100 K
V = 1849.0 (5) Å3Block, colourless
Z = 40.30 × 0.27 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5241 independent reflections
Radiation source: fine-focus sealed tube4279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 30.2°, θmin = 1.9°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.84, Tmax = 0.96l = 1111
35375 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.1235P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5241 reflectionsΔρmax = 0.51 e Å3
322 parametersΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28969 (2)0.21368 (2)0.56491 (4)0.02040 (10)
O10.40566 (5)0.52459 (5)0.63859 (9)0.01851 (18)
N10.36245 (6)0.37573 (6)0.62527 (11)0.01618 (19)
N20.22807 (6)0.37922 (6)0.46398 (11)0.01469 (18)
C10.26378 (7)0.47263 (7)0.47678 (12)0.0131 (2)
C20.35317 (7)0.46531 (7)0.59014 (12)0.0146 (2)
C30.28811 (7)0.33033 (7)0.54480 (12)0.0153 (2)
C40.18745 (8)0.18173 (8)0.44041 (14)0.0203 (2)
H4A0.1989 (11)0.1189 (11)0.404 (2)0.037 (4)*
H4B0.1770 (12)0.2204 (10)0.342 (2)0.038 (5)*
C50.10239 (8)0.18493 (8)0.52482 (15)0.0217 (2)
H5A0.1147 (10)0.1580 (10)0.6326 (19)0.027 (4)*
H5B0.0847 (10)0.2504 (11)0.5396 (17)0.025 (3)*
C60.02608 (9)0.13272 (9)0.42926 (17)0.0264 (3)
H6A0.0410 (11)0.0673 (11)0.4339 (19)0.038 (4)*
H6B0.0169 (10)0.1538 (10)0.3164 (19)0.030 (4)*
H6C0.0330 (11)0.1417 (10)0.4759 (18)0.032 (4)*
C70.44183 (7)0.33597 (8)0.71897 (13)0.0181 (2)
H7A0.4663 (10)0.3808 (10)0.7962 (18)0.022 (3)*
H7B0.4168 (11)0.2821 (9)0.7763 (18)0.030 (4)*
C80.51335 (8)0.30657 (8)0.61454 (14)0.0189 (2)
H8A0.5325 (10)0.3615 (10)0.5576 (18)0.025 (4)*
H8B0.4848 (9)0.2635 (9)0.5348 (16)0.018 (3)*
C90.59323 (8)0.26092 (9)0.71236 (16)0.0232 (2)
H9A0.6227 (10)0.3009 (10)0.7940 (19)0.027 (4)*
H9B0.6360 (11)0.2419 (10)0.6369 (19)0.031 (4)*
H9C0.5719 (12)0.2071 (11)0.765 (2)0.038 (4)*
C100.19982 (7)0.53663 (7)0.54917 (12)0.0139 (2)
C110.11947 (7)0.50725 (7)0.59961 (13)0.0171 (2)
H110.1028 (9)0.4450 (10)0.5864 (17)0.022 (3)*
C120.06233 (8)0.56794 (8)0.66487 (14)0.0211 (2)
H120.0049 (10)0.5497 (10)0.7005 (17)0.024 (4)*
C130.08580 (8)0.65759 (8)0.68128 (14)0.0228 (2)
H130.0461 (10)0.6994 (10)0.7219 (18)0.025 (4)*
C140.16667 (9)0.68758 (8)0.63317 (15)0.0233 (2)
H140.1854 (10)0.7476 (10)0.6499 (17)0.023 (3)*
C150.22333 (8)0.62766 (7)0.56654 (14)0.0190 (2)
H150.2804 (10)0.6485 (10)0.5290 (17)0.025 (4)*
C160.28335 (7)0.50095 (7)0.30928 (12)0.0142 (2)
C170.36676 (8)0.48304 (7)0.25711 (14)0.0181 (2)
H170.4160 (10)0.4566 (10)0.3323 (17)0.027 (4)*
C180.38154 (9)0.50281 (8)0.10041 (14)0.0228 (3)
H180.4394 (11)0.4880 (11)0.0687 (19)0.038 (4)*
C190.31434 (9)0.54172 (8)0.00507 (14)0.0245 (3)
H190.3236 (10)0.5579 (10)0.1119 (19)0.033 (4)*
C200.23084 (9)0.55984 (8)0.04611 (14)0.0236 (2)
H200.1804 (11)0.5876 (11)0.026 (2)0.035 (4)*
C210.21515 (8)0.53930 (8)0.20199 (13)0.0189 (2)
H210.1559 (10)0.5492 (9)0.2374 (17)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02010 (16)0.01411 (15)0.02723 (17)0.00107 (9)0.00377 (12)0.00478 (10)
O10.0172 (4)0.0200 (4)0.0179 (4)0.0018 (3)0.0004 (3)0.0023 (3)
N10.0156 (4)0.0167 (4)0.0156 (4)0.0016 (3)0.0007 (3)0.0024 (3)
N20.0165 (4)0.0126 (4)0.0154 (4)0.0007 (3)0.0036 (3)0.0000 (3)
C10.0130 (5)0.0136 (5)0.0125 (5)0.0004 (3)0.0011 (4)0.0006 (3)
C20.0155 (5)0.0179 (5)0.0108 (5)0.0010 (4)0.0030 (4)0.0000 (4)
C30.0168 (5)0.0155 (5)0.0143 (5)0.0004 (4)0.0048 (4)0.0017 (4)
C40.0239 (6)0.0158 (5)0.0219 (6)0.0021 (4)0.0061 (4)0.0009 (4)
C50.0214 (6)0.0221 (6)0.0225 (6)0.0015 (4)0.0064 (5)0.0018 (5)
C60.0243 (6)0.0254 (6)0.0296 (7)0.0039 (5)0.0038 (5)0.0027 (5)
C70.0171 (5)0.0219 (5)0.0149 (5)0.0044 (4)0.0002 (4)0.0029 (4)
C80.0180 (5)0.0226 (5)0.0159 (5)0.0016 (4)0.0018 (4)0.0016 (4)
C90.0205 (6)0.0237 (6)0.0248 (6)0.0053 (5)0.0007 (5)0.0013 (5)
C100.0146 (5)0.0158 (5)0.0110 (5)0.0015 (4)0.0005 (4)0.0011 (4)
C110.0175 (5)0.0184 (5)0.0155 (5)0.0003 (4)0.0020 (4)0.0007 (4)
C120.0173 (5)0.0277 (6)0.0187 (6)0.0029 (4)0.0044 (4)0.0015 (4)
C130.0242 (6)0.0250 (6)0.0196 (6)0.0103 (5)0.0041 (5)0.0003 (4)
C140.0281 (6)0.0160 (5)0.0258 (6)0.0030 (4)0.0036 (5)0.0014 (4)
C150.0193 (5)0.0174 (5)0.0206 (6)0.0001 (4)0.0031 (4)0.0001 (4)
C160.0175 (5)0.0129 (5)0.0122 (5)0.0025 (4)0.0023 (4)0.0003 (4)
C170.0180 (5)0.0182 (5)0.0186 (5)0.0014 (4)0.0040 (4)0.0021 (4)
C180.0252 (6)0.0240 (6)0.0209 (6)0.0065 (5)0.0105 (5)0.0063 (4)
C190.0390 (7)0.0230 (6)0.0125 (5)0.0094 (5)0.0068 (5)0.0025 (4)
C200.0311 (6)0.0238 (6)0.0146 (5)0.0026 (5)0.0024 (5)0.0012 (4)
C210.0192 (5)0.0211 (5)0.0160 (5)0.0006 (4)0.0006 (4)0.0001 (4)
Geometric parameters (Å, º) top
S1—C31.7436 (11)C9—H9A0.973 (16)
S1—C41.8066 (13)C9—H9B0.991 (16)
O1—C21.2165 (13)C9—H9C0.987 (16)
N1—C21.3686 (14)C10—C111.3867 (15)
N1—C31.4012 (14)C10—C151.4022 (15)
N1—C71.4657 (14)C11—C121.3967 (15)
N2—C31.2832 (14)C11—H110.961 (15)
N2—C11.4874 (13)C12—C131.3816 (18)
C1—C101.5236 (14)C12—H120.977 (14)
C1—C161.5295 (14)C13—C141.3889 (18)
C1—C21.5469 (15)C13—H130.949 (15)
C4—C51.5242 (16)C14—C151.3900 (16)
C4—H4A1.003 (17)C14—H140.941 (15)
C4—H4B1.002 (17)C15—H150.991 (14)
C5—C61.5248 (18)C16—C171.3914 (15)
C5—H5A0.987 (15)C16—C211.3978 (15)
C5—H5B1.020 (16)C17—C181.3915 (16)
C6—H6A0.997 (17)C17—H170.992 (15)
C6—H6B0.993 (16)C18—C191.3832 (19)
C6—H6C1.014 (16)C18—H180.958 (16)
C7—C81.5222 (15)C19—C201.3897 (18)
C7—H7A0.971 (15)C19—H190.955 (16)
C7—H7B1.028 (15)C20—C211.3911 (16)
C8—C91.5238 (16)C20—H200.997 (16)
C8—H8A1.005 (15)C21—H210.976 (15)
C8—H8B0.987 (14)
C3—S1—C4101.83 (5)C9—C8—H8B108.9 (8)
C2—N1—C3108.15 (9)H8A—C8—H8B109.2 (11)
C2—N1—C7124.29 (9)C8—C9—H9A111.5 (9)
C3—N1—C7127.32 (9)C8—C9—H9B107.6 (9)
C3—N2—C1105.69 (9)H9A—C9—H9B110.8 (13)
N2—C1—C10112.18 (8)C8—C9—H9C109.4 (10)
N2—C1—C16107.23 (8)H9A—C9—H9C108.7 (13)
C10—C1—C16113.03 (8)H9B—C9—H9C108.8 (13)
N2—C1—C2104.68 (8)C11—C10—C15119.12 (10)
C10—C1—C2109.38 (8)C11—C10—C1121.87 (9)
C16—C1—C2110.00 (8)C15—C10—C1119.00 (9)
O1—C2—N1126.11 (10)C10—C11—C12120.28 (10)
O1—C2—C1128.88 (10)C10—C11—H11119.3 (8)
N1—C2—C1105.01 (8)C12—C11—H11120.4 (8)
N2—C3—N1116.35 (10)C13—C12—C11120.30 (11)
N2—C3—S1128.03 (8)C13—C12—H12117.3 (8)
N1—C3—S1115.61 (8)C11—C12—H12122.4 (8)
C5—C4—S1114.39 (8)C12—C13—C14119.94 (11)
C5—C4—H4A110.5 (9)C12—C13—H13120.5 (9)
S1—C4—H4A105.0 (9)C14—C13—H13119.6 (9)
C5—C4—H4B107.9 (10)C13—C14—C15120.01 (11)
S1—C4—H4B111.3 (10)C13—C14—H14120.9 (8)
H4A—C4—H4B107.6 (13)C15—C14—H14119.0 (9)
C4—C5—C6110.39 (10)C14—C15—C10120.34 (11)
C4—C5—H5A109.8 (8)C14—C15—H15120.8 (8)
C6—C5—H5A108.8 (9)C10—C15—H15118.8 (8)
C4—C5—H5B109.1 (8)C17—C16—C21118.90 (10)
C6—C5—H5B111.3 (8)C17—C16—C1120.76 (9)
H5A—C5—H5B107.3 (12)C21—C16—C1120.18 (9)
C5—C6—H6A109.1 (9)C16—C17—C18120.30 (11)
C5—C6—H6B110.6 (9)C16—C17—H17119.8 (8)
H6A—C6—H6B110.6 (13)C18—C17—H17119.9 (8)
C5—C6—H6C110.9 (9)C19—C18—C17120.74 (11)
H6A—C6—H6C108.2 (12)C19—C18—H18121.7 (10)
H6B—C6—H6C107.4 (12)C17—C18—H18117.5 (10)
N1—C7—C8112.44 (9)C18—C19—C20119.32 (11)
N1—C7—H7A107.3 (9)C18—C19—H19122.3 (9)
C8—C7—H7A110.4 (9)C20—C19—H19118.4 (9)
N1—C7—H7B104.6 (9)C19—C20—C21120.30 (11)
C8—C7—H7B111.3 (8)C19—C20—H20121.9 (9)
H7A—C7—H7B110.6 (12)C21—C20—H20117.8 (9)
C7—C8—C9111.87 (9)C20—C21—C16120.44 (11)
C7—C8—H8A107.4 (8)C20—C21—H21120.8 (9)
C9—C8—H8A111.8 (9)C16—C21—H21118.7 (9)
C7—C8—H8B107.6 (8)
C3—N2—C1—C10121.87 (9)C16—C1—C10—C11123.08 (10)
C3—N2—C1—C16113.47 (9)C2—C1—C10—C11114.01 (11)
C3—N2—C1—C23.36 (10)N2—C1—C10—C15178.90 (9)
C3—N1—C2—O1179.50 (10)C16—C1—C10—C1557.51 (13)
C7—N1—C2—O14.77 (17)C2—C1—C10—C1565.41 (12)
C3—N1—C2—C10.08 (10)C15—C10—C11—C120.83 (16)
C7—N1—C2—C1174.66 (9)C1—C10—C11—C12179.76 (10)
N2—C1—C2—O1178.56 (10)C10—C11—C12—C130.67 (17)
C10—C1—C2—O158.17 (13)C11—C12—C13—C140.19 (18)
C16—C1—C2—O166.53 (13)C12—C13—C14—C150.89 (18)
N2—C1—C2—N12.04 (10)C13—C14—C15—C100.73 (18)
C10—C1—C2—N1122.43 (9)C11—C10—C15—C140.13 (17)
C16—C1—C2—N1112.87 (9)C1—C10—C15—C14179.56 (10)
C1—N2—C3—N13.68 (12)N2—C1—C16—C1788.04 (11)
C1—N2—C3—S1175.29 (8)C10—C1—C16—C17147.81 (10)
C2—N1—C3—N22.40 (12)C2—C1—C16—C1725.24 (13)
C7—N1—C3—N2176.93 (10)N2—C1—C16—C2187.17 (11)
C2—N1—C3—S1176.70 (7)C10—C1—C16—C2136.98 (13)
C7—N1—C3—S12.17 (14)C2—C1—C16—C21159.55 (9)
C4—S1—C3—N21.13 (11)C21—C16—C17—C180.24 (16)
C4—S1—C3—N1177.84 (8)C1—C16—C17—C18175.03 (10)
C3—S1—C4—C585.29 (9)C16—C17—C18—C191.00 (17)
S1—C4—C5—C6163.91 (9)C17—C18—C19—C200.98 (17)
C2—N1—C7—C890.02 (12)C18—C19—C20—C210.20 (18)
C3—N1—C7—C883.69 (13)C19—C20—C21—C160.55 (18)
N1—C7—C8—C9177.00 (10)C17—C16—C21—C200.53 (16)
N2—C1—C10—C111.68 (14)C1—C16—C21—C20175.83 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C10–C15 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i1.005 (15)2.607 (15)3.5908 (14)166.2 (11)
C9—H9A···Cg3i0.973 (16)2.908 (15)3.7370 (15)143.8 (12)
C19—H19···O1ii0.955 (16)2.596 (16)3.4407 (15)147.7 (12)
C20—H20···Cg2ii0.997 (16)2.999 (17)3.7390 (14)131.9 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017a). IUCrData, 2, x171534.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171591.  Google Scholar
First citationGuerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017c). IUCrData, 2, x171693.  Google Scholar
First citationGuerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180050.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds