organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(4-meth­­oxy­phen­yl)stibine

CROSSMARK_Color_square_no_text.svg

aGeorg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, D-37077 Göttingen, Germany
*Correspondence e-mail: malcara@gwdg.de

Edited by J. Simpson, University of Otago, New Zealand (Received 21 June 2018; accepted 10 July 2018; online 20 July 2018)

The C3-symmetrical mol­ecule, tris­(4-meth­oxy­phen­yl)stibine, C21H21O3Sb, crystallizes with one third of the mol­ecule in the asymmetric unit. Bond lengths and angles of the Sb—C bonds lie in between those of the isostructural homologues C21H21O3Bi and C21H21O3As. The formation of dimers via six weak C—H⋯π inter­actions is considered.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C21H21O3Sb, exhibits perfect C3-symmetry with one third of the mol­ecule in the asymmetric unit. To our surprise, the structure of the title compound (Fig. 1[link]) is not reported in the database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), although we regularly observe it as a side product in our synthesis of asymmetric sulfides (Böhm et al., 2018[Böhm, M. J., Golz, C., Rüter, I. & Alcarazo, M. (2018). Chem. Eur. J. doi: 10.1002/chem.201802806.]). To fill the gap in the row of homologues of the type C21H21O3E, with E being an element of group 14, the title compound is reported herein. It is isostructural with the homologues C21H21O3Bi (Hébert et al., 2016[Hébert, M., Petiot, P., Benoit, E., Dansereau, J., Ahmad, T., Le Roch, A., Ottenwaelder, X. & Gagnon, A. (2016). J. Org. Chem. 81, 5401-5416.]) and C21H21O3As (Sobolev & Belsky, 1981[Sobolev, A. N. & Belsky, V. K. (1981). J. Organomet. Chem. 214, 41-46.]). The lighter homologue C21H21O3P (Allman et al., 1986[Allman, T., Goel, R. G. & Beauchamp, A. L. (1986). Acta Cryst. C42, 603-606.]; Bruckmann et al., 1995[Bruckmann, J., Krüger, C. & Lutz, F. (1995). Z. Naturforsch. Teil B, 05, 351-360.]) crystallizes in the space group P21/c while the lightest homologue C21H21O3N is, so far, not known in the CSD. The Sb—C bond distance and C—Sb—C angle observed here, 2.148 (2) Å and 95.8 (1)°, lie between those of the neighbouring isostructural As and Bi homologues. However, the Sb—C bond distance is closer to that of the Bi derivative with the Bi—C distances being 0.103 Å longer, and the As—C distance 0.175 Å shorter, than that observed for the title compound. No strong inter­molecular inter­actions were observed, Fig. 2[link]. The distances between the C1–C6 centroid and atoms C5 or C3 of the next mol­ecules [3.814 (2) and 3.849 (2) Å, respectively] indicate weak C—H⋯π inter­actions, Table 1[link] and Fig. 3[link]. It is noteworthy that two mol­ecules are connected by six of these weak C—H⋯π inter­actions via C3, forming discrete dimeric units with the anti­mony atom facing outwards.

Table 1
C—H⋯π interactions (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 3.11 3.849 (2) 138
C5—H5⋯Cg1ii 0.93 2.91 3.814 (2) 165
Symmetry codes: (i) [-x+y+{\script{2\over 3}}, -x+{\script{1\over 3}}, z+{\script{4\over 3}}]; (ii) [x-y+{\script{1\over 3}}, x+{\script{2\over 3}}, -z+{\script{5\over 3}}].
[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability) of the title compound. Symmetry codes used to generate the complete mol­ecule: (i) yx, 1 − x, z; (ii) 1 − y, 1 + xy, z.
[Figure 2]
Figure 2
Packing diagram excluding hydrogen atoms.
[Figure 3]
Figure 3
All C—H⋯π inter­actions, shown as dashed lines, in two adjacent dimeric units. Hydrogen atoms not involved in inter­actions are omitted for clarity. Symmetry codes: (i) −x, −y, 1 − z; (ii) y, y − x, 1 − z; (iii) y − x, −x, z; (iv) −y, x − y, z; (v) x − y, x, 1 − z; (vi) [{2\over 3}] − y + x, [{1\over 3}] + x, [{4\over 3}] − z; (vii) [{2\over 3}] − x, [{1\over 3}] − y, [{4\over 3}] − z; (viii) [{2\over 3}] + y, [{1\over 3}] − x + y, [{4\over 3}] − z; (ix) [{2\over 3}] + x, [{1\over 3}] + y, [{1\over 3}] + z; (x) [{2\over 3}] + yx, [{1\over 3}] − x, [{1\over 3}] + z; (xi) [{2\over 3}] − y, [{1\over 3}] + xy, [{1\over 3}] + z.

Synthesis and crystallization

Tris(4-meth­oxy­phen­yl)stibine is obtained regularly as a side product of a reaction of the corresponding Grignard reagent with SbF6 salts (Böhm et al., 2018[Böhm, M. J., Golz, C., Rüter, I. & Alcarazo, M. (2018). Chem. Eur. J. doi: 10.1002/chem.201802806.]). Intentional synthesis of the title product: SbCl3 (69.1 mg, 303 µmol) was dissolved in dry THF (2 ml) and the obtained clear solution was cooled to −77°C. para-Meth­oxy­phenyl magnesium bromide (0.5 M in THF, 2.0 ml, 211 mg, 1.00 mmol, 3.30 equiv.) was added dropwise to the white suspension and the mixture was allowed to slowly warm up to r.t. overnight. The grey suspension was quenched with sat. aq. NH4Cl solution (3.0 ml). The aqueous phase was extracted with DCM (20 ml). The organic phase was dried over MgSO4, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexa­ne: DCM; 90: 10→100: 0) and the title compound was obtained as a white solid (38.9 mg, 87.8 µmol, 29%). Colourless block-like crystals of the title compound were obtained by the diffusion method (DCM/penta­ne) at 4°C over a duration of two days.

1H NMR (300 MHz, CD2Cl2 p.p.m.) δ = 3.79 (s, 9H), 6.89 (d, J = 8.7 Hz, 6H), 7.34 (d, J = 8.7 Hz, 6H). 13C NMR (126 MHz, CD2Cl2 p.p.m.) δ = 55.6, 115.1, 129.6, 137.7, 160.6. IR (ATR, cm−1): 3008.4, 2962.1, 2922.6, 2834.8, 1580.4, 1561.1, 1487.8, 1459.8, 1450.2, 1435.7, 1393.3, 1373.1, 1306.5, 1277.6, 1235.2, 1175.4, 1118.5, 1100.2, 1062.6, 1044.3, 1025.0, 1002.8, 965.2, 941.1, 829.2, 816.7, 785.9, 739.6, 710.6, 584.3, 518.8. M.p. 356 K. HRMS: (ESI-pos.) calculated for C21H21Sb [M + Na]+ = 465.0421; found = 465.0401.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H21O3Sb
Mr 443.13
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 298
a, c (Å) 13.1612 (5), 19.0063 (7)
V3) 2851.1 (2)
Z 6.0
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.25 × 0.23 × 0.23
 
Data collection
Diffractometer Bruker D8 Venture PHOTON-II
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.686, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18268, 2098, 1975
Rint 0.027
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.09
No. of reflections 2098
No. of parameters 77
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.91
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(4-methoxyphenyl)stibine top
Crystal data top
C21H21O3SbDx = 1.548 Mg m3
Mr = 443.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 3409 reflections
a = 13.1612 (5) Åθ = 3.7–27.4°
c = 19.0063 (7) ŵ = 1.47 mm1
V = 2851.1 (2) Å3T = 298 K
Z = 6.0Block, colourless
F(000) = 13320.25 × 0.23 × 0.23 mm
Data collection top
Bruker D8 Venture PHOTON-II
diffractometer
1975 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 31.5°, θmin = 3.7°
Tmin = 0.686, Tmax = 1.000h = 1919
18268 measured reflectionsk = 1519
2098 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0229P)2 + 3.1602P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2098 reflectionsΔρmax = 0.78 e Å3
77 parametersΔρmin = 0.91 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Aromatic/amide H refined with riding coordinates: C2(H2), C3(H3), C5(H5), C6(H6) 2.b Idealized Me refined as rotating group: C7(H7A,H7B,H7C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.0000000.0000000.70199 (2)0.05031 (8)
O10.31482 (13)0.46412 (12)0.52928 (8)0.0612 (3)
C10.10752 (15)0.15805 (14)0.64366 (8)0.0455 (3)
C20.06716 (15)0.18896 (15)0.58391 (9)0.0467 (3)
H20.0091310.1394530.5684360.056*
C30.13748 (15)0.29087 (15)0.54735 (9)0.0467 (3)
H30.1083270.3095080.5078600.056*
C40.25205 (15)0.36600 (14)0.56940 (9)0.0454 (3)
C50.29484 (16)0.33758 (16)0.62858 (10)0.0527 (4)
H50.3713930.3869810.6436540.063*
C60.22236 (16)0.23488 (17)0.66499 (10)0.0530 (4)
H60.2512880.2167750.7048000.064*
C70.4225 (2)0.5548 (2)0.55660 (17)0.0869 (8)
H7A0.4513840.6227510.5270080.130*
H7B0.4786750.5285680.5579950.130*
H7C0.4102360.5743040.6033090.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.05679 (10)0.05679 (10)0.03736 (10)0.02839 (5)0.0000.000
O10.0573 (7)0.0504 (7)0.0669 (8)0.0201 (6)0.0086 (6)0.0045 (6)
C10.0500 (8)0.0458 (7)0.0422 (7)0.0252 (7)0.0075 (6)0.0062 (6)
C20.0463 (8)0.0479 (8)0.0461 (8)0.0237 (7)0.0118 (6)0.0077 (6)
C30.0506 (8)0.0488 (8)0.0452 (8)0.0282 (7)0.0117 (6)0.0061 (6)
C40.0481 (8)0.0430 (7)0.0486 (8)0.0254 (6)0.0059 (6)0.0069 (6)
C50.0467 (8)0.0524 (9)0.0563 (9)0.0227 (7)0.0152 (7)0.0080 (7)
C60.0557 (9)0.0572 (9)0.0482 (8)0.0296 (8)0.0165 (7)0.0053 (7)
C70.0690 (14)0.0602 (12)0.0997 (19)0.0084 (11)0.0174 (13)0.0076 (12)
Geometric parameters (Å, º) top
Sb1—C1i2.1483 (17)C3—H30.9300
Sb1—C12.1483 (17)C3—C41.391 (2)
Sb1—C1ii2.1483 (17)C4—C51.390 (2)
O1—C41.366 (2)C5—H50.9300
O1—C71.418 (3)C5—C61.388 (3)
C1—C21.398 (2)C6—H60.9300
C1—C61.394 (2)C7—H7A0.9600
C2—H20.9300C7—H7B0.9600
C2—C31.377 (3)C7—H7C0.9600
C1i—Sb1—C1ii95.77 (6)O1—C4—C5124.84 (16)
C1ii—Sb1—C195.77 (6)C5—C4—C3119.55 (16)
C1i—Sb1—C195.77 (6)C4—C5—H5120.3
C4—O1—C7117.95 (17)C6—C5—C4119.46 (16)
C2—C1—Sb1122.61 (12)C6—C5—H5120.3
C6—C1—Sb1120.18 (12)C1—C6—H6119.0
C6—C1—C2117.21 (16)C5—C6—C1121.96 (16)
C1—C2—H2119.2C5—C6—H6119.0
C3—C2—C1121.68 (15)O1—C7—H7A109.5
C3—C2—H2119.2O1—C7—H7B109.5
C2—C3—H3119.9O1—C7—H7C109.5
C2—C3—C4120.13 (15)H7A—C7—H7B109.5
C4—C3—H3119.9H7A—C7—H7C109.5
O1—C4—C3115.60 (15)H7B—C7—H7C109.5
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1iii0.933.113.849 (2)138
C5—H5···Cg1iv0.932.913.814 (2)165
Symmetry codes: (iii) x+y+2/3, x+1/3, z+4/3; (iv) xy+1/3, x+2/3, z+5/3.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. AL 1348/7-1; grant No. INST 186/1237-1); Stiftung der Deutschen Wirtschaft (scholarship to Marvin J. Böhm).

References

First citationAllman, T., Goel, R. G. & Beauchamp, A. L. (1986). Acta Cryst. C42, 603–606.  CrossRef IUCr Journals Google Scholar
First citationBöhm, M. J., Golz, C., Rüter, I. & Alcarazo, M. (2018). Chem. Eur. J. doi: 10.1002/chem.201802806.  Google Scholar
First citationBruckmann, J., Krüger, C. & Lutz, F. (1995). Z. Naturforsch. Teil B, 05, 351–360.  Google Scholar
First citationBruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHébert, M., Petiot, P., Benoit, E., Dansereau, J., Ahmad, T., Le Roch, A., Ottenwaelder, X. & Gagnon, A. (2016). J. Org. Chem. 81, 5401–5416.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSobolev, A. N. & Belsky, V. K. (1981). J. Organomet. Chem. 214, 41–46.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds