metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[(μ5-cis-cyclo­hex-4-ene-1,2-di­carboxyl­ato)(μ3-cis-cyclo­hex-4-ene-1,2-di­carboxyl­ato)dicadmium(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Grand Valley State University, Allendale, MI 49401, USA, and bE-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 13 June 2018; accepted 26 June 2018; online 6 July 2018)

The title compound, [Cd2(C8H8O4)2]n, crystallizes in the centrosymmetric monoclinic P21/n space group. Via cis-cyclo­hex-4-ene-1,2-di­carboxyl­ate ligands in two different binding modes, square pyramidally and penta­gonal bipyramidally coordinated Cd atoms are connected into coordination polymer layer motifs oriented parallel to the ab plane. These layered motifs are aggregated into the three-dimensional supra­molecular crystal structure of the title compound by means of crystal packing forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The dipodal tethering ligand propane-1,3-diylbis(piperidine-4,1-di­yl)bis­(pyridin-4-yl­methanone (4-pbpp) has recently proven useful in preparing metal 1,3-thio­phenedi­carboxyl­ate coordination polymers with intriguing and diverse inter­penetrated topologies (Sample & LaDuca, 2016[Sample, A. D. & LaDuca, R. L. (2016). Inorg. Chim. Acta, 443, 198-206.]). The title compound was prepared during synthetic attempts to prepare cadmium coordination polymers containing both cis-cyclo­hex-4-ene-1,2-di­carboxyl­ate (chedc) and 4-pbpp ligands. There have only been two reports of cadmium chedc coordination polymers with dipyridyl-type coligands to the best of our knowledge. One possessed 1,10-phenanthroline capping coligands (Xu et al., 2010[Xu, X., Liu, X., Zhang, X. & Sun, T. (2010). Solid State Sci. 12, 355-360.]), and the other 4,4′-bi­pyridine tethering coligands (Cui et al., 2013[Cui, Z., Qi, J., Xu, X., Liu, L. & Wang, Y. (2013). J. Solid State Chem. 205, 142-148.]).

The asymmetric unit of the title compound contains two crystallographically distinct Cd atoms (Cd1, Cd2) and two crystallographically distinct chedc ligands (chedc-A, chedc-B) (Fig. 1[link]). The crystallographic distinction within the chedc ligands arises from different binding modes. The Cd1 atom displays a distorted square-pyramidal coordination environment while the Cd2 atom displays a penta­gonal–bipyramidal coordination geometry. Bond lengths and angles within the coordination environments are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.269 (4) Cd2—O2 2.346 (3)
Cd1—O2 2.430 (4) Cd2—O3 2.286 (4)
Cd1—O5 2.173 (4) Cd2—O3iv 2.357 (4)
Cd1—O6i 2.181 (4) Cd2—O4iv 2.387 (4)
Cd1—O8ii 2.283 (4) Cd2—O7 2.231 (4)
Cd2—O2iii 2.555 (4) Cd2—O8iv 2.286 (4)
       
O1—Cd1—O2 55.39 (12) O3—Cd2—O3iv 155.99 (11)
O1—Cd1—O8ii 118.49 (14) O3—Cd2—O4iv 145.60 (13)
O5—Cd1—O1 133.22 (15) O3iv—Cd2—O4iv 54.92 (13)
O5—Cd1—O2 99.66 (14) O4iv—Cd2—O2iii 76.42 (12)
O5—Cd1—O6i 110.36 (16) O7—Cd2—O2iii 82.99 (13)
O5—Cd1—O8ii 92.17 (15) O7—Cd2—O2 92.78 (14)
O6i—Cd1—O1 99.08 (14) O7—Cd2—O3 90.21 (14)
O6i—Cd1—O2 149.76 (13) O7—Cd2—O3iv 101.45 (13)
O6i—Cd1—O8ii 99.42 (14) O7—Cd2—O4iv 94.95 (14)
O8ii—Cd1—O2 82.52 (13) O7—Cd2—O8iv 162.73 (14)
O2—Cd2—O2iii 155.57 (11) O8iv—Cd2—O2iii 79.75 (12)
O2—Cd2—O3iv 73.13 (13) O8iv—Cd2—O2 102.80 (13)
O2—Cd2—O4iv 128.00 (13) O8iv—Cd2—O3 83.70 (14)
O3iv—Cd2—O2iii 131.30 (12) O8iv—Cd2—O3iv 90.31 (14)
O3—Cd2—O2iii 70.49 (12) O8iv—Cd2—O4iv 81.41 (14)
O3—Cd2—O2 85.52 (13)    
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The coordination environments within the title compound, showing the square-pyramidal coordination at atom Cd1 and the penta­gonal–bipyramidal coordination at atom Cd2. Displacement ellipsoids are drawn at the 50% probability level. All non-H atoms are labeled. Color code: Cd1, violet; Cd2, blue; O, red; C, black; H, pink. The symmetry codes are as listed in Table 1[link].

The Cd atoms and chedc ligands construct [Cd2(chedc-A)(chedc-B)]n ribbon motifs (Fig. 2[link]) that are oriented parallel to the b-axis direction. Within the cores of the ribbon motifs are embedded [Cd(μ-O)]n chains with a Cd2⋯Cd2 inter­nuclear distance of 3.606 (2) Å. The bridging oxygen atoms are the O3 atoms within the chedc-A ligands. The Cd1 atoms at the periphery of the ribbon motifs are anchored to the Cd1 atoms at the cores of the ribbon motifs by both chedc-A and chedc-B ligands.

[Figure 2]
Figure 2
[Cd2(chedc-A)(chedc-B)]n ribbon motif parallel to b-axis direction in the crystal structure of the title compound. Color code: Cd1, violet; Cd2, blue; chedc-A ligands, green, chedc-B ligands, purple.

The ribbon motifs are connected into [Cd2(chedc-A)(chedc-B)]n coordination polymer layers (Fig. 3[link]) that are arranged parallel to the ab plane. The inter-ribbon connection is provided by O6 atoms belonging to the chedc-B ligands. Adjacent [Cd2(chedc-A)(chedc-B)]n coordination polymer layer motifs stack in an ABAB pattern along the c-axis direction, related by crystallographic glide planes (Fig. 4[link]). Crystal packing forces provide the impetus for the layer aggregation.

[Figure 3]
Figure 3
[Cd2(chedc-A)(chedc-B)]n coordination polymer layer motif in the title compound, oriented parallel to the ab plane. Color code: Cd1, violet; Cd2, blue.
[Figure 4]
Figure 4
ABAB stacking pattern of the [Cd2(chedc-A)(chedc-B)]n coordination polymer layer motifs to construct the three-dimensional crystal structure of the title compound.

Synthesis and crystallization

Cd(NO3)2.4H2O (115 mg, 0.37 mmol), cis-cyclo­hex-4-ene-1,2-di­carb­oxy­lic acid (63 mg, 0.37 mol), propane-1,3-diylbis(piperidine-4,1-di­yl)bis­(pyridin-4-yl­methanone (153 mg, 0.37 mol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 278 K. Colorless block-shaped crystals of the title compound were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd2(C8H8CdO4)2]
Mr 561.09
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.8377 (11), 7.0700 (8), 24.268 (3)
β (°) 100.120 (1)
V3) 1661.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.60
Crystal size (mm) 0.25 × 0.16 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, COSMO, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.613, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 12875, 3038, 2500
Rint 0.047
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.07
No. of reflections 3038
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.47, −0.84
Computer programs: COSMO, APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, COSMO, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.])and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2015); cell refinement: APEX2 (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ5-cis-cyclohex-4-ene-1,2-dicarboxylato)(µ3-cis-cyclohex-4-ene-1,2-dicarboxylato)dicadmium(II)] top
Crystal data top
[Cd2(C8H8CdO4)2]F(000) = 1088
Mr = 561.09Dx = 2.243 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8377 (11) ÅCell parameters from 5975 reflections
b = 7.0700 (8) Åθ = 2.4–25.3°
c = 24.268 (3) ŵ = 2.60 mm1
β = 100.120 (1)°T = 173 K
V = 1661.6 (3) Å3Block, colourless
Z = 40.25 × 0.16 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3038 independent reflections
Radiation source: sealed tube2500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.4 pixels mm-1θmax = 25.3°, θmin = 1.7°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 88
Tmin = 0.613, Tmax = 0.745l = 2929
12875 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0444P)2 + 3.7886P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3038 reflectionsΔρmax = 1.47 e Å3
235 parametersΔρmin = 0.83 e Å3
0 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F2, SHELXL-97, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bound to C were placed in calculated positions with a riding model with Uiso = 1.2Ueq.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.39348 (4)0.94716 (6)0.74436 (2)0.02049 (14)
Cd20.76663 (4)0.61706 (5)0.76431 (2)0.01681 (13)
O10.3949 (4)0.8233 (6)0.65823 (15)0.0237 (9)
O20.5952 (4)0.8119 (5)0.71409 (14)0.0194 (8)
O30.7149 (4)0.4133 (5)0.69043 (16)0.0224 (9)
O40.5747 (4)0.1907 (5)0.65224 (16)0.0300 (10)
O50.4160 (4)0.8240 (6)0.82752 (17)0.0317 (10)
O60.2972 (4)0.6105 (5)0.77425 (16)0.0244 (9)
O70.6164 (4)0.4686 (5)0.80826 (16)0.0233 (9)
O80.5445 (4)0.1854 (5)0.77511 (16)0.0230 (8)
C10.5190 (6)0.7816 (8)0.6655 (2)0.0199 (12)
C20.5848 (5)0.7039 (8)0.6184 (2)0.0180 (11)
H20.68720.71820.62910.022*
C30.5376 (6)0.8158 (8)0.5642 (2)0.0213 (12)
H3A0.52850.95070.57380.026*
H3B0.61000.80680.54070.026*
C40.4048 (6)0.7508 (8)0.5308 (2)0.0270 (13)
H40.36300.82740.50040.032*
C50.3402 (6)0.5921 (8)0.5409 (2)0.0280 (14)
H50.25400.56340.51800.034*
C60.3978 (6)0.4568 (8)0.5867 (3)0.0275 (14)
H6A0.38350.32530.57280.033*
H6B0.34830.47240.61850.033*
C70.5525 (6)0.4926 (7)0.6064 (2)0.0204 (12)
H70.59740.46020.57370.025*
C80.6151 (6)0.3584 (7)0.6527 (2)0.0203 (12)
C90.3695 (6)0.6591 (8)0.8208 (2)0.0219 (12)
C100.4064 (6)0.5202 (7)0.8687 (2)0.0191 (12)
H100.32350.50820.88710.023*
C110.5243 (6)0.5972 (8)0.9129 (2)0.0240 (13)
H11A0.59560.65310.89380.029*
H11B0.48790.69940.93410.029*
C120.5896 (6)0.4506 (9)0.9528 (2)0.0270 (13)
H120.64800.49130.98610.032*
C130.5711 (6)0.2671 (9)0.9448 (2)0.0302 (14)
H130.61840.18370.97240.036*
C140.4806 (6)0.1819 (8)0.8949 (2)0.0265 (13)
H14A0.39700.12940.90680.032*
H14B0.53050.07570.88090.032*
C150.4357 (5)0.3224 (7)0.8468 (2)0.0178 (11)
H150.34700.27430.82470.021*
C160.5398 (5)0.3300 (8)0.8071 (2)0.0180 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0174 (2)0.0198 (2)0.0242 (2)0.00097 (16)0.00357 (17)0.00307 (16)
Cd20.0151 (2)0.0146 (2)0.0210 (2)0.00088 (14)0.00367 (16)0.00038 (15)
O10.018 (2)0.030 (2)0.022 (2)0.0032 (17)0.0035 (16)0.0028 (17)
O20.0166 (19)0.021 (2)0.0191 (19)0.0036 (16)0.0009 (15)0.0020 (16)
O30.023 (2)0.022 (2)0.022 (2)0.0041 (16)0.0017 (17)0.0045 (16)
O40.043 (3)0.012 (2)0.031 (2)0.0039 (18)0.0055 (19)0.0007 (18)
O50.046 (3)0.019 (2)0.029 (2)0.0047 (19)0.003 (2)0.0005 (18)
O60.022 (2)0.029 (2)0.021 (2)0.0074 (17)0.0020 (17)0.0037 (17)
O70.024 (2)0.021 (2)0.027 (2)0.0083 (17)0.0091 (17)0.0044 (17)
O80.026 (2)0.018 (2)0.028 (2)0.0025 (17)0.0099 (17)0.0079 (17)
C10.023 (3)0.015 (3)0.021 (3)0.003 (2)0.004 (2)0.003 (2)
C20.015 (3)0.021 (3)0.018 (3)0.002 (2)0.002 (2)0.000 (2)
C30.027 (3)0.015 (3)0.023 (3)0.004 (2)0.008 (2)0.004 (2)
C40.033 (3)0.024 (3)0.021 (3)0.008 (3)0.004 (3)0.001 (2)
C50.023 (3)0.032 (4)0.027 (3)0.003 (3)0.001 (3)0.007 (3)
C60.028 (3)0.020 (3)0.029 (3)0.003 (2)0.010 (3)0.001 (3)
C70.025 (3)0.015 (3)0.020 (3)0.001 (2)0.002 (2)0.003 (2)
C80.023 (3)0.018 (3)0.021 (3)0.008 (2)0.006 (2)0.003 (2)
C90.020 (3)0.022 (3)0.028 (3)0.001 (2)0.015 (2)0.001 (2)
C100.019 (3)0.017 (3)0.023 (3)0.002 (2)0.008 (2)0.003 (2)
C110.022 (3)0.026 (3)0.022 (3)0.003 (2)0.001 (2)0.006 (2)
C120.022 (3)0.038 (4)0.020 (3)0.001 (3)0.001 (2)0.006 (3)
C130.031 (3)0.032 (4)0.027 (3)0.008 (3)0.000 (3)0.005 (3)
C140.032 (3)0.022 (3)0.028 (3)0.002 (3)0.011 (3)0.001 (3)
C150.016 (3)0.015 (3)0.024 (3)0.000 (2)0.006 (2)0.004 (2)
C160.012 (3)0.020 (3)0.020 (3)0.000 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Cd1—O12.269 (4)C3—H3A0.9900
Cd1—O22.430 (4)C3—H3B0.9900
Cd1—O52.173 (4)C3—C41.483 (8)
Cd1—O6i2.181 (4)C4—H40.9500
Cd1—O8ii2.283 (4)C4—C51.332 (8)
Cd2—O2iii2.555 (4)C5—H50.9500
Cd2—O22.346 (3)C5—C61.500 (8)
Cd2—O32.286 (4)C6—H6A0.9900
Cd2—O3iv2.357 (4)C6—H6B0.9900
Cd2—O4iv2.387 (4)C6—C71.534 (8)
Cd2—O72.231 (4)C7—H71.0000
Cd2—O8iv2.286 (4)C7—C81.515 (7)
O1—C11.239 (6)C8—Cd2iii2.739 (5)
O2—Cd2iv2.554 (4)C9—C101.517 (8)
O2—C11.300 (6)C10—H101.0000
O3—Cd2iii2.357 (4)C10—C111.534 (7)
O3—C81.280 (7)C10—C151.542 (7)
O4—Cd2iii2.387 (4)C11—H11A0.9900
O4—C81.250 (7)C11—H11B0.9900
O5—C91.253 (7)C11—C121.486 (8)
O6—Cd1v2.181 (4)C12—H120.9500
O6—C91.271 (7)C12—C131.320 (8)
O7—C161.233 (6)C13—H130.9500
O8—Cd1vi2.283 (4)C13—C141.497 (8)
O8—Cd2iii2.286 (4)C14—H14A0.9900
O8—C161.290 (6)C14—H14B0.9900
C1—C21.512 (7)C14—C151.538 (8)
C2—H21.0000C15—H151.0000
C2—C31.535 (7)C15—C161.524 (7)
C2—C71.545 (7)
O1—Cd1—O255.39 (12)C4—C3—C2114.4 (5)
O1—Cd1—O8ii118.49 (14)C4—C3—H3A108.7
O5—Cd1—O1133.22 (15)C4—C3—H3B108.7
O5—Cd1—O299.66 (14)C3—C4—H4117.8
O5—Cd1—O6i110.36 (16)C5—C4—C3124.3 (5)
O5—Cd1—O8ii92.17 (15)C5—C4—H4117.8
O6i—Cd1—O199.08 (14)C4—C5—H5118.6
O6i—Cd1—O2149.76 (13)C4—C5—C6122.8 (5)
O6i—Cd1—O8ii99.42 (14)C6—C5—H5118.6
O8ii—Cd1—O282.52 (13)C5—C6—H6A109.5
O2—Cd2—O2iii155.57 (11)C5—C6—H6B109.5
O2—Cd2—O3iv73.13 (13)C5—C6—C7110.6 (5)
O2—Cd2—O4iv128.00 (13)H6A—C6—H6B108.1
O3iv—Cd2—O2iii131.30 (12)C7—C6—H6A109.5
O3—Cd2—O2iii70.49 (12)C7—C6—H6B109.5
O3—Cd2—O285.52 (13)C2—C7—H7105.4
O3—Cd2—O3iv155.99 (11)C6—C7—C2112.2 (4)
O3—Cd2—O4iv145.60 (13)C6—C7—H7105.4
O3iv—Cd2—O4iv54.92 (13)C8—C7—C2115.0 (4)
O4iv—Cd2—O2iii76.42 (12)C8—C7—C6112.3 (5)
O7—Cd2—O2iii82.99 (13)C8—C7—H7105.4
O7—Cd2—O292.78 (14)O3—C8—Cd2iii59.3 (3)
O7—Cd2—O390.21 (14)O3—C8—C7120.1 (5)
O7—Cd2—O3iv101.45 (13)O4—C8—Cd2iii60.6 (3)
O7—Cd2—O4iv94.95 (14)O4—C8—O3119.8 (5)
O7—Cd2—O8iv162.73 (14)O4—C8—C7120.0 (5)
O8iv—Cd2—O2iii79.75 (12)C7—C8—Cd2iii178.8 (4)
O8iv—Cd2—O2102.80 (13)O5—C9—O6120.1 (5)
O8iv—Cd2—O383.70 (14)O5—C9—C10118.0 (5)
O8iv—Cd2—O3iv90.31 (14)O6—C9—C10121.9 (5)
O8iv—Cd2—O4iv81.41 (14)C9—C10—H10107.1
C1—O1—Cd197.3 (3)C9—C10—C11110.9 (5)
Cd1—O2—Cd2iv92.24 (12)C9—C10—C15110.9 (4)
Cd2—O2—Cd1128.66 (15)C11—C10—H10107.1
Cd2—O2—Cd2iv94.67 (12)C11—C10—C15113.5 (4)
C1—O2—Cd188.2 (3)C15—C10—H10107.1
C1—O2—Cd2iv121.8 (3)C10—C11—H11A108.9
C1—O2—Cd2128.5 (3)C10—C11—H11B108.9
Cd2—O3—Cd2iii101.89 (14)H11A—C11—H11B107.7
C8—O3—Cd2iii92.9 (3)C12—C11—C10113.3 (5)
C8—O3—Cd2142.2 (3)C12—C11—H11A108.9
C8—O4—Cd2iii92.3 (3)C12—C11—H11B108.9
C9—O5—Cd1106.0 (4)C11—C12—H12118.1
C9—O6—Cd1v130.8 (3)C13—C12—C11123.8 (5)
C16—O7—Cd2144.7 (4)C13—C12—H12118.1
Cd1vi—O8—Cd2iii103.74 (14)C12—C13—H13117.9
C16—O8—Cd1vi133.8 (3)C12—C13—C14124.2 (5)
C16—O8—Cd2iii122.5 (3)C14—C13—H13117.9
O1—C1—Cd155.8 (3)C13—C14—H14A108.8
O1—C1—O2119.1 (5)C13—C14—H14B108.8
O1—C1—C2121.5 (5)C13—C14—C15113.9 (5)
O2—C1—Cd163.3 (3)H14A—C14—H14B107.7
O2—C1—C2119.4 (5)C15—C14—H14A108.8
C2—C1—Cd1175.1 (4)C15—C14—H14B108.8
C1—C2—H2108.1C10—C15—H15107.1
C1—C2—C3110.8 (4)C14—C15—C10111.7 (4)
C1—C2—C7113.1 (4)C14—C15—H15107.1
C3—C2—H2108.1C16—C15—C10111.9 (4)
C3—C2—C7108.4 (4)C16—C15—C14111.6 (4)
C7—C2—H2108.1C16—C15—H15107.1
C2—C3—H3A108.7O7—C16—O8123.8 (5)
C2—C3—H3B108.7O7—C16—C15119.3 (5)
H3A—C3—H3B107.6O8—C16—C15116.8 (5)
Cd1—O1—C1—O22.4 (5)O6—C9—C10—C11164.5 (5)
Cd1—O1—C1—C2175.1 (4)O6—C9—C10—C1537.4 (7)
Cd1—O2—C1—O12.2 (5)C1—C2—C3—C485.0 (6)
Cd1—O2—C1—C2175.3 (4)C1—C2—C7—C663.1 (6)
Cd1—O5—C9—O614.5 (6)C1—C2—C7—C867.0 (6)
Cd1—O5—C9—C10163.5 (4)C2—C3—C4—C510.2 (8)
Cd1v—O6—C9—O5136.2 (4)C2—C7—C8—O317.8 (7)
Cd1v—O6—C9—C1045.9 (7)C2—C7—C8—O4166.3 (5)
Cd1vi—O8—C16—O7161.3 (4)C3—C2—C7—C660.2 (6)
Cd1vi—O8—C16—C1520.7 (7)C3—C2—C7—C8169.8 (5)
Cd2iv—O2—C1—Cd191.5 (3)C3—C4—C5—C61.9 (9)
Cd2—O2—C1—Cd1140.6 (4)C4—C5—C6—C717.5 (8)
Cd2—O2—C1—O1138.4 (4)C5—C6—C7—C248.7 (6)
Cd2iv—O2—C1—O193.7 (5)C5—C6—C7—C8179.9 (5)
Cd2iv—O2—C1—C283.8 (5)C6—C7—C8—O3147.8 (5)
Cd2—O2—C1—C244.1 (6)C6—C7—C8—O436.3 (7)
Cd2—O3—C8—Cd2iii113.7 (5)C7—C2—C3—C439.7 (6)
Cd2iii—O3—C8—O42.9 (5)C9—C10—C11—C12164.9 (5)
Cd2—O3—C8—O4116.6 (6)C9—C10—C15—C14177.1 (4)
Cd2—O3—C8—C767.4 (8)C9—C10—C15—C1651.2 (6)
Cd2iii—O3—C8—C7178.9 (4)C10—C11—C12—C1314.2 (8)
Cd2iii—O4—C8—O32.9 (5)C10—C15—C16—O719.9 (7)
Cd2iii—O4—C8—C7178.9 (4)C10—C15—C16—O8162.0 (4)
Cd2—O7—C16—O813.4 (10)C11—C10—C15—C1451.5 (6)
Cd2—O7—C16—C15168.7 (4)C11—C10—C15—C1674.4 (6)
Cd2iii—O8—C16—O719.6 (7)C11—C12—C13—C141.0 (10)
Cd2iii—O8—C16—C15158.4 (3)C12—C13—C14—C1513.3 (8)
O1—C1—C2—C344.2 (7)C13—C14—C15—C1037.7 (7)
O1—C1—C2—C777.8 (6)C13—C14—C15—C1688.4 (6)
O2—C1—C2—C3133.3 (5)C14—C15—C16—O7106.0 (6)
O2—C1—C2—C7104.8 (6)C14—C15—C16—O872.1 (6)
O5—C9—C10—C1113.4 (7)C15—C10—C11—C1239.4 (7)
O5—C9—C10—C15140.4 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+3/2; (vi) x, y1, z.
 

Funding information

We thank the Honors College of Michigan State University for funding this work.

References

First citationBruker (2015). APEX2, COSMO, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Z., Qi, J., Xu, X., Liu, L. & Wang, Y. (2013). J. Solid State Chem. 205, 142–148.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSample, A. D. & LaDuca, R. L. (2016). Inorg. Chim. Acta, 443, 198–206.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, X., Liu, X., Zhang, X. & Sun, T. (2010). Solid State Sci. 12, 355–360.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds