organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,5-Di­phenyl-2-thioxoimidazolidin-4-one di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: hamidazizwazir@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 July 2018; accepted 12 July 2018; online 17 July 2018)

In the title solvate, C15H12N2OS·C2H6OS, the thioxoimidazolidin-4-one mol­ecule and solvent mol­ecule are linked by an N—H⋯O hydrogen bond. The planar imidazolidine ring (r.m.s. deviation = 0.022 Å) is inclined to the phenyl substituents in the 5-position by 69.57 (7) and 72.62 (6)°. In the crystal, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds, together with C—H⋯π inter­actions, generate [100] chains, which stack along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­hydantoins (2-thioxoimidazolidin-4-one derivatives) display a broad and potent biological profile and are found in anti­convulsant, anti­metastatic, anti-angiogenic (Mudit et al., 2009[Mudit, M., Khanfar, M., Muralidharan, A., Thomas, S., Shah, G. V., van Soest, R. W. & El Sayed, K. A. (2009). Bioorg. Med. Chem. 17, 1731-1738.]; Kumar et al., 2009[Kumar, C. A., Swamy, S. N., Sugahara, K. & Rangappa, K. S. (2009). Bioorg, Med. Chem. 17, 4928-4934.]), anti­microbial (Kieć-Kononowicz & Szymańska, 2003[Kieć-Kononowicz, K. & Szymańska, E. (2003). Farmaco, 57, 909-916.]; Khodair et al., 2001[Khodair, A. I., El-barbary, A. A., Abbas, Y. A. & Imam, D. R. (2001). Phosphorus Sulfur Silicon, 170, 261-278.]) and anti­cancer drugs (Azizmohammadi et al., 2013[Azizmohammadi, M., Khoobi, M., Ramazani, A., Emami, S., Zarrin, A., Firuzi, O., Miri, R. & Shafiee, A. (2013). Eur. J. Med. Chem. 59, 15-22.]). As part of our studies in this area, we now present the synthesis and structural analysis of 5,5-diphenyl-2-thioxoimidazolidin-4-one dimethyl sulfoxide monosolvate. A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related structures found 27 hits, including 2-thio­hydantoin itself (Walker et al., 1969[Walker, L. A., Folting, K. & Merritt, L. L. (1969). Acta Cryst. B25, 88-93.]), the unsolvated stucture of the mol­ecule reported here (Roszak & Weaver, 1998[Roszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168-1170.]) and the closely related 5-phenyl-2-thioxo­imidazolidin-4-one (Ogawa et al., 2007[Ogawa, T., Kitoh, S., Ichitani, M., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2007). Anal. Sci. X, 23, x199-x200.]).

The asymmetric unit of the title compound consists of a thio­hydantoin mol­ecule with two phenyl substituents at the 5-position and a dimethyl sulfoxide solvent mol­ecule. The mol­ecules are linked by an N3—H3N⋯O1S hydrogen bond (Fig. 1[link] and Table 1[link]). As expected, the imidazolidine ring is almost planar, with an r.m.s. deviation of 0.022 Å from the best-fit plane, with atoms S2 and O4 deviating by 0.138 (3) and −0.021 (3) Å, respectively, from that plane. The C51–C56 and C61–C66 phenyl rings are inclined to the imidazolidine ring plane by 69.57 (7) and 72.62 (6)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C61–C66 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1S 0.77 (2) 2.00 (2) 2.766 (2) 171 (2)
N1—H1N⋯O1Si 0.86 (2) 1.95 (2) 2.8089 (19) 174 (2)
C66—H66⋯O4i 0.95 2.62 3.341 (2) 133
C1S—H1S3⋯S2ii 0.98 3.17 4.077 (2) 154
C1S—H1S2⋯O4iii 0.98 2.58 3.393 (2) 141
C2S—H2S2⋯O4iii 0.98 2.43 3.283 (2) 145
C2S—H2S1⋯S2ii 0.98 2.93 3.874 (2) 162
C2S—HS23⋯Cg3ii 0.98 2.98 3.887 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit, showing 50% probability displacement ellipsoids. The N—H⋯O hydrogen bond is drawn as a dashed line.

In the crystal, N1—H1N⋯O1Si and the already-mentioned N3—H3N⋯O1S hydrogen bonds (Table 1[link]) link two DMSO solvent mol­ecules to each thio­hydantoin ring, with the former contact augmented by a C2S—H2S1⋯S2 hydrogen bonds and a weaker C2S—H2S3⋯Cg3 contact to the C61–C66 phenyl ring. In addition, O4 acts as a triple acceptor with C66—H66⋯O4i hydrogen bonds linking adjacent main mol­ecules, while C1S—H1S2⋯O4iii and C2S—H2S2⋯O4iii hydrogen bonds bind a third DMSO mol­ecule to a thio­hydantoin unit, enclosing an R22(6) ring (Fig. 2[link] and Table 1[link]). The net effect of these contacts is to create independent chains of thio­hydantoin and solvent mol­ecules along c and these independent chains are stacked along the a-axis direction (Fig. 3[link]).

[Figure 2]
Figure 2
Rows of the thio­hydantoin and DMSO solvent mol­ecules formed along a. In Figs. 2[link] and 3[link], N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are shown as dark-blue, light-blue and yellow dashed lines, respectively. C—H⋯π(ring) contacts are drawn as dotted green lines, with the ring centroids shown as red spheres.
[Figure 3]
Figure 3
Overall packing, viewed along the a-axis direction. For clarity, only a single representative C—H⋯π(ring) contact is shown.

Synthesis and crystallization

The synthesis of 5,5-diphenyl-2-thioxoimidazolidin-4-one was performed by a method reported in the literature (Ghanbari et al., 2014[Ghanbari, M. M., Jamali, M. & Batta, G. (2014). J. Sulfur Chem. 35, 394-398.]) (Fig. 4[link]). The resulting colourless solid was purified by recrystallization from DMSO solution to give colourless blocks (yield 90%). FT–IR (ATR cm−1): 3251 (N—H amide, CO—NH—CS), 3156 (N—H, amide, CPh2—NH—CS), 3022 (aromatic C—H stretch), 1746 (s, C=O amide), 1584, 1526, 1495 (Ar—C=C), 1226.10 (C=S).

[Figure 4]
Figure 4
Synthesis of 5,5-diphenyl-2-thioxoimidazolidin-4-one

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12N2OS·C2H6OS
Mr 346.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.3167 (2), 15.5894 (4), 15.5627 (3)
β (°) 101.820 (2)
V3) 1737.49 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.86
Crystal size (mm) 0.23 × 0.16 × 0.09
 
Data collection
Diffractometer Rigaku SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.932, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6995, 3444, 2966
Rint 0.030
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.07
No. of reflections 3444
No. of parameters 216
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.29
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia, 2012).

5,5-Diphenyl-2-sulfanylideneimidazolidin-4-one dimethyl sulfoxide monosolvate top
Crystal data top
C15H12N2OS·C2H6OSF(000) = 728
Mr = 346.45Dx = 1.324 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.3167 (2) ÅCell parameters from 4420 reflections
b = 15.5894 (4) Åθ = 4.0–74.1°
c = 15.5627 (3) ŵ = 2.86 mm1
β = 101.820 (2)°T = 100 K
V = 1737.49 (7) Å3Block, colourless
Z = 40.23 × 0.16 × 0.09 mm
Data collection top
Rigaku SuperNova Dual Source
diffractometer with an Atlas detector
3444 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2966 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.030
ω scansθmax = 74.3°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 58
Tmin = 0.932, Tmax = 1.000k = 1917
6995 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.039P)2 + 0.8354P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3444 reflectionsΔρmax = 0.34 e Å3
216 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5315 (2)0.63041 (10)0.26867 (10)0.0130 (3)
H1N0.629 (3)0.6288 (14)0.2450 (14)0.016*
C20.3597 (2)0.61437 (12)0.22220 (11)0.0137 (3)
S20.30117 (6)0.57231 (3)0.12248 (3)0.01927 (13)
N30.2341 (2)0.64016 (10)0.27276 (10)0.0150 (3)
H3N0.128 (3)0.6354 (15)0.2566 (15)0.018*
C40.3192 (2)0.67809 (11)0.34936 (11)0.0131 (4)
O40.24401 (17)0.70732 (9)0.40519 (8)0.0172 (3)
C50.5311 (2)0.67650 (12)0.35075 (11)0.0129 (4)
C510.6305 (2)0.62745 (12)0.43169 (11)0.0144 (4)
C520.6650 (3)0.66932 (13)0.51249 (12)0.0192 (4)
H520.6317430.7279450.5159090.023*
C530.7479 (3)0.62539 (15)0.58791 (13)0.0248 (4)
H530.7699650.6539450.6429950.030*
C540.7987 (3)0.54028 (15)0.58349 (14)0.0274 (5)
H540.8568980.5106650.6352270.033*
C550.7642 (3)0.49844 (14)0.50326 (14)0.0270 (5)
H550.7987260.4399650.5000540.032*
C560.6792 (3)0.54174 (13)0.42730 (13)0.0205 (4)
H560.6544980.5126350.3725050.025*
C610.6099 (2)0.76653 (12)0.34460 (11)0.0133 (4)
C620.4968 (3)0.83874 (12)0.32742 (12)0.0164 (4)
H620.3657900.8335330.3229200.020*
C630.5742 (3)0.91861 (13)0.31679 (12)0.0202 (4)
H630.4962980.9678420.3060470.024*
C640.7652 (3)0.92639 (13)0.32186 (13)0.0211 (4)
H640.8180910.9807140.3138050.025*
C650.8781 (3)0.85458 (13)0.33871 (12)0.0194 (4)
H651.0086740.8597840.3418950.023*
C660.8021 (3)0.77493 (12)0.35102 (11)0.0158 (4)
H660.8809760.7262080.3638100.019*
S1S0.14712 (6)0.68634 (3)0.11382 (3)0.01591 (12)
O1S0.14346 (17)0.63681 (8)0.19917 (8)0.0152 (3)
C1S0.2253 (3)0.61145 (14)0.02807 (12)0.0223 (4)
H1S10.1321210.5658900.0304460.033*
H1S20.2428050.6407710.0287260.033*
H1S30.3441310.5863850.0352180.033*
C2S0.3494 (3)0.75316 (14)0.09889 (13)0.0223 (4)
H2S10.4600880.7176790.0986490.033*
H2S20.3636860.7836860.0428590.033*
H2S30.3355110.7948010.1469740.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0117 (7)0.0138 (7)0.0142 (7)0.0002 (6)0.0041 (6)0.0017 (6)
C20.0133 (8)0.0123 (8)0.0166 (8)0.0001 (7)0.0055 (7)0.0008 (7)
S20.0159 (2)0.0247 (3)0.0172 (2)0.00250 (18)0.00345 (17)0.00768 (18)
N30.0090 (7)0.0193 (8)0.0166 (7)0.0012 (6)0.0027 (6)0.0030 (6)
C40.0135 (9)0.0104 (8)0.0151 (8)0.0006 (7)0.0024 (7)0.0034 (7)
O40.0155 (6)0.0212 (7)0.0162 (6)0.0026 (5)0.0063 (5)0.0006 (5)
C50.0119 (8)0.0132 (9)0.0144 (8)0.0007 (7)0.0043 (6)0.0003 (7)
C510.0101 (8)0.0181 (9)0.0152 (8)0.0009 (7)0.0031 (6)0.0040 (7)
C520.0174 (9)0.0224 (10)0.0178 (9)0.0025 (8)0.0034 (7)0.0007 (8)
C530.0227 (10)0.0337 (12)0.0169 (9)0.0062 (9)0.0019 (8)0.0051 (8)
C540.0199 (10)0.0348 (12)0.0257 (10)0.0010 (9)0.0003 (8)0.0164 (9)
C550.0257 (11)0.0206 (11)0.0345 (12)0.0025 (9)0.0054 (9)0.0099 (9)
C560.0190 (9)0.0189 (10)0.0238 (10)0.0016 (8)0.0050 (8)0.0026 (8)
C610.0147 (8)0.0141 (9)0.0109 (8)0.0011 (7)0.0021 (6)0.0012 (7)
C620.0144 (9)0.0174 (9)0.0171 (8)0.0023 (7)0.0026 (7)0.0006 (7)
C630.0233 (10)0.0154 (9)0.0215 (9)0.0029 (8)0.0039 (8)0.0005 (8)
C640.0267 (10)0.0145 (9)0.0214 (9)0.0061 (8)0.0034 (8)0.0005 (7)
C650.0157 (9)0.0199 (10)0.0222 (9)0.0034 (8)0.0033 (7)0.0004 (8)
C660.0151 (9)0.0152 (9)0.0161 (8)0.0016 (7)0.0014 (7)0.0004 (7)
S1S0.0153 (2)0.0171 (2)0.0165 (2)0.00021 (17)0.00602 (16)0.00133 (17)
O1S0.0147 (6)0.0181 (7)0.0134 (6)0.0014 (5)0.0039 (5)0.0010 (5)
C1S0.0261 (10)0.0249 (10)0.0153 (9)0.0010 (9)0.0027 (7)0.0024 (8)
C2S0.0256 (10)0.0213 (10)0.0216 (9)0.0071 (8)0.0088 (8)0.0063 (8)
Geometric parameters (Å, º) top
N1—C21.339 (2)C56—H560.9500
N1—C51.466 (2)C61—C621.390 (3)
N1—H1N0.86 (2)C61—C661.396 (3)
C2—N31.387 (2)C62—C631.392 (3)
C2—S21.6581 (18)C62—H620.9500
N3—C41.362 (2)C63—C641.389 (3)
N3—H3N0.77 (2)C63—H630.9500
C4—O41.209 (2)C64—C651.384 (3)
C4—C51.546 (2)C64—H640.9500
C5—C511.525 (2)C65—C661.390 (3)
C5—C611.528 (2)C65—H650.9500
C51—C561.388 (3)C66—H660.9500
C51—C521.393 (3)S1S—O1S1.5318 (13)
C52—C531.387 (3)S1S—C1S1.777 (2)
C52—H520.9500S1S—C2S1.786 (2)
C53—C541.383 (3)C1S—H1S10.9800
C53—H530.9500C1S—H1S20.9800
C54—C551.385 (3)C1S—H1S30.9800
C54—H540.9500C2S—H2S10.9800
C55—C561.392 (3)C2S—H2S20.9800
C55—H550.9500C2S—H2S30.9800
C2—N1—C5113.14 (15)C55—C56—H56120.0
C2—N1—H1N121.8 (14)C62—C61—C66119.29 (17)
C5—N1—H1N122.2 (15)C62—C61—C5122.59 (16)
N1—C2—N3107.31 (15)C66—C61—C5117.99 (16)
N1—C2—S2127.83 (14)C61—C62—C63120.45 (17)
N3—C2—S2124.86 (14)C61—C62—H62119.8
C4—N3—C2112.64 (16)C63—C62—H62119.8
C4—N3—H3N125.3 (17)C64—C63—C62120.04 (18)
C2—N3—H3N122.0 (17)C64—C63—H63120.0
O4—C4—N3126.78 (17)C62—C63—H63120.0
O4—C4—C5126.79 (16)C65—C64—C63119.65 (18)
N3—C4—C5106.44 (14)C65—C64—H64120.2
N1—C5—C51112.84 (14)C63—C64—H64120.2
N1—C5—C61109.12 (14)C64—C65—C66120.58 (17)
C51—C5—C61112.97 (15)C64—C65—H65119.7
N1—C5—C4100.17 (14)C66—C65—H65119.7
C51—C5—C4109.08 (14)C65—C66—C61119.98 (18)
C61—C5—C4111.99 (15)C65—C66—H66120.0
C56—C51—C52119.65 (17)C61—C66—H66120.0
C56—C51—C5121.72 (16)O1S—S1S—C1S105.41 (9)
C52—C51—C5118.56 (17)O1S—S1S—C2S105.88 (8)
C53—C52—C51119.96 (19)C1S—S1S—C2S98.90 (10)
C53—C52—H52120.0S1S—C1S—H1S1109.5
C51—C52—H52120.0S1S—C1S—H1S2109.5
C54—C53—C52120.5 (2)H1S1—C1S—H1S2109.5
C54—C53—H53119.8S1S—C1S—H1S3109.5
C52—C53—H53119.8H1S1—C1S—H1S3109.5
C53—C54—C55119.69 (19)H1S2—C1S—H1S3109.5
C53—C54—H54120.2S1S—C2S—H2S1109.5
C55—C54—H54120.2S1S—C2S—H2S2109.5
C54—C55—C56120.3 (2)H2S1—C2S—H2S2109.5
C54—C55—H55119.9S1S—C2S—H2S3109.5
C56—C55—H55119.9H2S1—C2S—H2S3109.5
C51—C56—C55119.95 (19)H2S2—C2S—H2S3109.5
C51—C56—H56120.0
C5—N1—C2—N35.9 (2)C5—C51—C52—C53177.23 (16)
C5—N1—C2—S2173.76 (14)C51—C52—C53—C540.7 (3)
N1—C2—N3—C44.0 (2)C52—C53—C54—C550.8 (3)
S2—C2—N3—C4175.60 (14)C53—C54—C55—C560.1 (3)
C2—N3—C4—O4179.16 (18)C52—C51—C56—C550.8 (3)
C2—N3—C4—C50.7 (2)C5—C51—C56—C55177.83 (17)
C2—N1—C5—C51120.98 (16)C54—C55—C56—C510.7 (3)
C2—N1—C5—C61112.57 (17)N1—C5—C61—C62101.61 (19)
C2—N1—C5—C45.14 (18)C51—C5—C61—C62132.01 (17)
O4—C4—C5—N1177.63 (18)C4—C5—C61—C628.4 (2)
N3—C4—C5—N12.46 (17)N1—C5—C61—C6674.20 (19)
O4—C4—C5—C5159.0 (2)C51—C5—C61—C6652.2 (2)
N3—C4—C5—C51121.10 (16)C4—C5—C61—C66175.82 (15)
O4—C4—C5—C6166.8 (2)C66—C61—C62—C630.0 (3)
N3—C4—C5—C61113.10 (16)C5—C61—C62—C63175.80 (16)
N1—C5—C51—C5612.6 (2)C61—C62—C63—C641.1 (3)
C61—C5—C51—C56136.94 (17)C62—C63—C64—C650.9 (3)
C4—C5—C51—C5697.82 (19)C63—C64—C65—C660.3 (3)
N1—C5—C51—C52170.41 (15)C64—C65—C66—C611.4 (3)
C61—C5—C51—C5246.0 (2)C62—C61—C66—C651.2 (3)
C4—C5—C51—C5279.2 (2)C5—C61—C66—C65174.80 (16)
C56—C51—C52—C530.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C61–C66 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1S0.77 (2)2.00 (2)2.766 (2)171 (2)
N1—H1N···O1Si0.86 (2)1.95 (2)2.8089 (19)174 (2)
C66—H66···O4i0.952.623.341 (2)133
C1S—H1S3···S2ii0.983.174.077 (2)154
C1S—H1S2···O4iii0.982.583.393 (2)141
C2S—H2S2···O4iii0.982.433.283 (2)145
C2S—H2S1···S2ii0.982.933.874 (2)162
C2S—HS23···Cg3ii0.982.983.887 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

HA is very grateful to the Higher Education Commission (HEC), Pakistan, for providing a scholarship award for MS/MPhil leading to PhD studies under the Indigenous PhD fellowship for 5000 Scholars Phase-II, Batch-1. We also thank the University of Otago, for purchase of the diffractometer and the Chemistry Department, University of Otago for support of the work of JS.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAzizmohammadi, M., Khoobi, M., Ramazani, A., Emami, S., Zarrin, A., Firuzi, O., Miri, R. & Shafiee, A. (2013). Eur. J. Med. Chem. 59, 15–22.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhanbari, M. M., Jamali, M. & Batta, G. (2014). J. Sulfur Chem. 35, 394–398.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKhodair, A. I., El-barbary, A. A., Abbas, Y. A. & Imam, D. R. (2001). Phosphorus Sulfur Silicon, 170, 261–278.  CrossRef Google Scholar
First citationKieć-Kononowicz, K. & Szymańska, E. (2003). Farmaco, 57, 909–916.  Google Scholar
First citationKumar, C. A., Swamy, S. N., Sugahara, K. & Rangappa, K. S. (2009). Bioorg, Med. Chem. 17, 4928–4934.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMudit, M., Khanfar, M., Muralidharan, A., Thomas, S., Shah, G. V., van Soest, R. W. & El Sayed, K. A. (2009). Bioorg. Med. Chem. 17, 1731–1738.  CrossRef Google Scholar
First citationOgawa, T., Kitoh, S., Ichitani, M., Kuwae, A., Hanai, K. & Kunimoto, K.-K. (2007). Anal. Sci. X, 23, x199–x200.  CrossRef Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRoszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168–1170.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, L. A., Folting, K. & Merritt, L. L. (1969). Acta Cryst. B25, 88–93.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds