metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Bromido­(n-butyl­amine-κN)bis­­(ethene-1,2-di­amine-κ2N,N′)cobalt(III) dibromide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, BWDA Arts and Science College, Tindivanam 604 304, India, bDepartment of Physics, Thanthai Hans Rover College, Perambalur 621 220, India, cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, dP.G. & Research Department of Physics, A. A. Govt. Arts College, Villupuram, India, and eDepartment of Physics, Thiruvalluvar University, College of Arts and Science, Thiruvennainallur 607 203, India
*Correspondence e-mail: e.govindan84@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 29 June 2018; accepted 15 July 2018; online 20 July 2018)

In the title compound, [CoBr(C2H8N2)2(C4H11N)]Br2, the cobalt(III) ion has a distorted octa­hedral coordination environment and is surrounded by four N atoms in the equatorial plane made up of three N atoms from the two ethyl­enedi­amine ligands and the remaining N from the n-butyl substituent, with the other N atom from the ethyl­enedi­amine ligand and the Br atom occupying the axial positions. In the crystal, the complex cation and the two counter-anions are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming a three-dimensional network. The crystal studied was refined as a two-component inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mixed-ligand cobalt(III) complexes exhibit anti­tumor, anti­bacterial, anti­microbial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992[Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475-480.]; Teicher et al., 1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]; Arslan et al., 2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]; Delehanty et al., 2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]). Cobalt is an essential and integral component of vitamin B12 and is therefore found physiologically in most tissues. Complexes of cobalt are useful for nutritional supplementation to provide cobalt in a form, which effectively increases its bioavailability, for instance, vitamin B12 by microorganisms present in the gut. In addition, cobalt(III) complexes are known for electron-transfer and ligand-substitution reactions, which find applications in chemical and biological systems. Our present research concerns the design and synthesis of cobalt(III) complexes with the objective of understanding the structure–reactivity correlation. Substituting a different amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates (Anbalagan, 2011[Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.]; Anbalagan et al., 2011[Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45-52.]). Against this background and to ascertain the mol­ecular conformation, the structure determination of the title compound has been carried out.

X-ray analysis confirms the mol­ecular structure and atom connectivity as illustrated in Fig. 1[link]. The Co—N bond lengths are comparable with literature values [1.9722 (2)–1.988 (2) Å: Manimaran et al., 2018[Manimaran, S., Govindan, E., Manjunathan, M., Sambathkumar, K. & Anbalagan, K. (2018). IucrData, 3, x180819.]; 1.948 (7)–1.963 (7) Å: Lee et al., 2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]; Ramesh et al., 2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]; Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]; Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174-m1175.]]. The whole mol­ecule is not planar, the dihedral angle between the two chelate rings being 79.4 (4)°. One of the five-membered rings in the mol­ecule adopts a half-chair conformation.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, C—H⋯Br and N—H⋯Br hydrogen bonds (Table 1[link]) link the mol­ecules into a three-dimensional framework, as shown in Figs 2[link] and 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br3i 0.90 2.51 3.348 (9) 156
N1—H1B⋯Br1ii 0.90 2.71 3.467 (8) 143
N2—H2A⋯Br2iii 0.90 2.50 3.335 (8) 154
N2—H2B⋯Br2 0.90 2.50 3.392 (8) 173
N3—H3A⋯Br3 0.90 3.03 3.680 (9) 131
N3—H3A⋯Br3i 0.90 3.01 3.695 (9) 134
N3—H3B⋯Br2 0.90 2.57 3.372 (9) 148
N4—H4C⋯Br2iii 0.90 2.65 3.468 (9) 151
N4—H4D⋯Br3iv 0.90 2.49 3.359 (9) 163
N5—H5A⋯Br3 0.90 2.61 3.458 (9) 158
N5—H5B⋯Br3iv 0.90 2.88 3.487 (9) 126
C3—H3D⋯Br3 0.99 2.84 3.594 (11) 134
C4—H4B⋯Br2 0.99 3.00 3.739 (11) 132
C5—H5D⋯Br1 0.99 3.10 3.607 (12) 114
C5—H5D⋯Br1ii 0.99 3.10 3.884 (13) 137
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
The packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.

Synthesis and crystallization

trans-[Co(en)2Br2]Br solid (2 g) was made into a paste using 3–4 drops of water. To the solid mass, about 2 ml of N-butyl­amine was dropped for 20 min and mixed well. The mixing was continued until the colour changed from dull green to red. The reaction mixture was set aside until no further change was observed and the mixture was allowed to stand overnight. Finally, the obtained solid was washed with ethanol and dissolved in 5–10 ml of water pre-heated to 70°C and allowed to crystallize using hot acidified water (yield 0.85 g). The crystals were filtered, washed with ethanol and dried under vacuum. X-ray quality crystals were obtained by repeated recrystallization from hot acidified distilled water. Microcrystalline pink crystals were obtained for analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal studied was refined as a two-component inversion twin.

Table 2
Experimental details

Crystal data
Chemical formula [CoBr(C2H8N2)2(C4H11N)]Br2
Mr 492.00
Crystal system, space group Monoclinic, P21
Temperature (K) 123
a, b, c (Å) 10.6336 (7), 7.5810 (3), 12.0809 (7)
β (°) 114.028 (7)
V3) 889.49 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.69
Crystal size (mm) 0.23 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.165, 0.361
No. of measured, independent and observed [I > 2σ(I)] reflections 2398, 2398, 1769
Rint 0.037
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.085, 0.92
No. of reflections 2398
No. of parameters 156
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.72
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.08 (3)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

cis-Bromido(n-butylamine-κN)bis(ethene-1,2-diamine-κ2N,N')cobalt(III) dibromide top
Crystal data top
[CoBr(C2H8N2)2(C4H11N)]Br2F(000) = 484
Mr = 492.00Dx = 1.837 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.6336 (7) ÅCell parameters from 2458 reflections
b = 7.5810 (3) Åθ = 2.9–25.0°
c = 12.0809 (7) ŵ = 7.69 mm1
β = 114.028 (7)°T = 123 K
V = 889.49 (10) Å3Block, pink
Z = 20.23 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1769 reflections with I > 2σ(I)
ω and φ scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 25.0°, θmin = 3.3°
Tmin = 0.165, Tmax = 0.361h = 712
2398 measured reflectionsk = 88
2398 independent reflectionsl = 1412
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
2398 reflectionsΔρmax = 0.78 e Å3
156 parametersΔρmin = 0.72 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = ranging from 0.95 to 0.99 Å and N—H 0.90 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C and N bound H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.03734 (13)0.48014 (17)0.62170 (11)0.0420 (4)
Co10.86142 (14)0.3543 (2)0.67319 (11)0.0192 (3)
N10.8910 (9)0.1217 (11)0.6194 (7)0.026 (2)
H1A0.8089730.0700570.5775540.032*
H1B0.9340730.1333570.5692540.032*
N21.0045 (8)0.2816 (11)0.8297 (7)0.024 (2)
H2A1.0639690.3708710.8620550.029*
H2B0.9658690.2534710.8811550.029*
N30.7102 (9)0.2722 (11)0.7171 (8)0.026 (2)
H3A0.6453060.2175500.6532450.031*
H3B0.7435060.1942500.7785450.031*
N40.8408 (10)0.5759 (11)0.7439 (8)0.028 (2)
H4C0.9245630.6213620.7882210.034*
H4D0.7949620.6529620.6844210.034*
N50.7236 (9)0.4307 (12)0.5110 (7)0.029 (2)
H5A0.6407270.4325470.5146380.035*
H5B0.7436270.5429370.4997380.035*
C10.9733 (13)0.0091 (15)0.7212 (10)0.040 (3)
H1C1.0190600.0851050.6944470.048*
H1D0.9146320.0462860.7575300.048*
C21.0779 (12)0.1281 (16)0.8109 (9)0.034 (3)
H2C1.1271380.0651880.8884720.041*
H2D1.1462040.1665460.7795200.041*
C30.6490 (11)0.4226 (15)0.7535 (10)0.035 (3)
H3C0.6035900.3825020.8061830.042*
H3D0.5791950.4806600.6811810.042*
C40.7650 (12)0.5509 (14)0.8220 (10)0.032 (3)
H4A0.7274910.6645510.8354140.039*
H4B0.8263890.5013590.9016130.039*
C50.7084 (12)0.3309 (18)0.4017 (8)0.036 (3)
H5C0.6639460.2163130.4022050.044*
H5D0.8009650.3061210.4043190.044*
C60.6245 (12)0.4262 (16)0.2852 (9)0.041 (3)
H6A0.5322470.4519880.2830590.049*
H6B0.6694020.5402650.2844720.049*
C70.6072 (14)0.325 (2)0.1734 (9)0.059 (4)
H7A0.6995800.2903120.1794690.071*
H7B0.5558100.2153410.1713650.071*
C80.5347 (16)0.420 (2)0.0568 (11)0.086 (7)
H8A0.5192800.3391690.0108010.129*
H8B0.5911620.5195810.0522620.129*
H8C0.4460300.4636820.0522490.129*
Br20.84875 (14)0.1393 (2)1.00875 (12)0.0503 (4)
Br30.38253 (12)0.35525 (18)0.45593 (11)0.0385 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0407 (9)0.0524 (8)0.0383 (7)0.0145 (7)0.0215 (7)0.0064 (7)
Co10.0198 (8)0.0217 (7)0.0150 (7)0.0008 (8)0.0060 (6)0.0012 (8)
N10.034 (6)0.027 (5)0.019 (5)0.006 (5)0.011 (4)0.006 (5)
N20.017 (6)0.030 (5)0.023 (5)0.004 (4)0.007 (4)0.002 (4)
N30.022 (6)0.027 (5)0.026 (6)0.007 (4)0.007 (5)0.001 (5)
N40.028 (6)0.028 (6)0.023 (5)0.006 (4)0.004 (5)0.003 (5)
N50.023 (6)0.039 (5)0.019 (5)0.001 (4)0.003 (4)0.003 (5)
C10.060 (10)0.024 (7)0.034 (7)0.017 (6)0.018 (7)0.007 (6)
C20.033 (8)0.040 (7)0.028 (6)0.025 (7)0.010 (6)0.011 (7)
C30.024 (7)0.061 (9)0.022 (6)0.015 (6)0.011 (5)0.002 (6)
C40.042 (8)0.028 (6)0.019 (6)0.021 (6)0.006 (6)0.009 (5)
C50.049 (8)0.042 (8)0.015 (5)0.004 (7)0.011 (6)0.001 (6)
C60.041 (9)0.049 (8)0.032 (7)0.005 (6)0.015 (6)0.007 (6)
C70.065 (11)0.090 (12)0.015 (6)0.014 (10)0.010 (6)0.002 (8)
C80.077 (13)0.14 (2)0.033 (8)0.017 (12)0.020 (8)0.015 (10)
Br20.0412 (9)0.0702 (9)0.0393 (8)0.0142 (8)0.0161 (7)0.0307 (8)
Br30.0263 (7)0.0326 (6)0.0448 (7)0.0020 (7)0.0023 (6)0.0047 (7)
Geometric parameters (Å, º) top
Br1—Co12.3967 (18)C1—H1C0.9900
Co1—N41.937 (8)C1—H1D0.9900
Co1—N11.949 (9)C2—H2C0.9900
Co1—N21.962 (8)C2—H2D0.9900
Co1—N31.988 (9)C3—C41.524 (15)
Co1—N51.996 (8)C3—H3C0.9900
N1—C11.460 (13)C3—H3D0.9900
N1—H1A0.8999C4—H4A0.9900
N1—H1B0.9001C4—H4B0.9900
N2—C21.469 (13)C5—C61.509 (14)
N2—H2A0.9001C5—H5C0.9900
N2—H2B0.8993C5—H5D0.9900
N3—C31.467 (13)C6—C71.498 (15)
N3—H3A0.8998C6—H6A0.9900
N3—H3B0.9003C6—H6B0.9900
N4—C41.481 (13)C7—C81.487 (16)
N4—H4C0.9006C7—H7A0.9900
N4—H4D0.9002C7—H7B0.9900
N5—C51.473 (13)C8—H8A0.9800
N5—H5A0.9002C8—H8B0.9800
N5—H5B0.9005C8—H8C0.9800
C1—C21.498 (16)
N4—Co1—N1174.0 (4)C2—C1—H1C110.6
N4—Co1—N290.1 (4)N1—C1—H1D110.6
N1—Co1—N284.3 (3)C2—C1—H1D110.6
N4—Co1—N384.5 (4)H1C—C1—H1D108.7
N1—Co1—N393.6 (4)N2—C2—C1107.7 (9)
N2—Co1—N392.8 (4)N2—C2—H2C110.2
N4—Co1—N590.6 (4)C1—C2—H2C110.2
N1—Co1—N595.1 (4)N2—C2—H2D110.2
N2—Co1—N5177.0 (4)C1—C2—H2D110.2
N3—Co1—N590.2 (4)H2C—C2—H2D108.5
N4—Co1—Br190.6 (3)N3—C3—C4107.4 (9)
N1—Co1—Br191.4 (3)N3—C3—H3C110.2
N2—Co1—Br188.9 (2)C4—C3—H3C110.2
N3—Co1—Br1174.8 (3)N3—C3—H3D110.2
N5—Co1—Br188.2 (3)C4—C3—H3D110.2
C1—N1—Co1111.7 (7)H3C—C3—H3D108.5
C1—N1—H1A109.3N4—C4—C3105.4 (9)
Co1—N1—H1A109.2N4—C4—H4A110.7
C1—N1—H1B109.3C3—C4—H4A110.7
Co1—N1—H1B109.3N4—C4—H4B110.7
H1A—N1—H1B107.9C3—C4—H4B110.7
C2—N2—Co1109.0 (6)H4A—C4—H4B108.8
C2—N2—H2A109.8N5—C5—C6113.5 (10)
Co1—N2—H2A109.8N5—C5—H5C108.9
C2—N2—H2B109.9C6—C5—H5C108.9
Co1—N2—H2B109.9N5—C5—H5D108.9
H2A—N2—H2B108.4C6—C5—H5D108.9
C3—N3—Co1110.0 (6)H5C—C5—H5D107.7
C3—N3—H3A109.6C7—C6—C5113.9 (10)
Co1—N3—H3A109.6C7—C6—H6A108.8
C3—N3—H3B109.7C5—C6—H6A108.8
Co1—N3—H3B109.6C7—C6—H6B108.8
H3A—N3—H3B108.2C5—C6—H6B108.8
C4—N4—Co1111.0 (7)H6A—C6—H6B107.7
C4—N4—H4C109.5C8—C7—C6115.6 (13)
Co1—N4—H4C109.4C8—C7—H7A108.4
C4—N4—H4D109.5C6—C7—H7A108.4
Co1—N4—H4D109.4C8—C7—H7B108.4
H4C—N4—H4D108.0C6—C7—H7B108.4
C5—N5—Co1120.0 (7)H7A—C7—H7B107.4
C5—N5—H5A107.4C7—C8—H8A109.5
Co1—N5—H5A107.4C7—C8—H8B109.5
C5—N5—H5B107.2H8A—C8—H8B109.5
Co1—N5—H5B107.4C7—C8—H8C109.5
H5A—N5—H5B106.8H8A—C8—H8C109.5
N1—C1—C2105.7 (9)H8B—C8—H8C109.5
N1—C1—H1C110.6
Co1—N1—C1—C237.0 (11)N3—C3—C4—N449.8 (11)
Co1—N2—C2—C140.7 (10)Co1—N5—C5—C6167.2 (8)
N1—C1—C2—N250.1 (12)N5—C5—C6—C7179.5 (11)
Co1—N3—C3—C436.4 (10)C5—C6—C7—C8175.3 (12)
Co1—N4—C4—C341.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br3i0.902.513.348 (9)156
N1—H1B···Br1ii0.902.713.467 (8)143
N2—H2A···Br2iii0.902.503.335 (8)154
N2—H2B···Br20.902.503.392 (8)173
N3—H3A···Br30.903.033.680 (9)131
N3—H3A···Br3i0.903.013.695 (9)134
N3—H3B···Br20.902.573.372 (9)148
N4—H4C···Br2iii0.902.653.468 (9)151
N4—H4D···Br3iv0.902.493.359 (9)163
N5—H5A···Br30.902.613.458 (9)158
N5—H5B···Br3iv0.902.883.487 (9)126
C3—H3D···Br30.992.843.594 (11)134
C4—H4B···Br20.993.003.739 (11)132
C5—H5D···Br10.993.103.607 (12)114
C5—H5D···Br1ii0.993.103.884 (13)137
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+2, y+1/2, z+2; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, Pondicherry, for the data collection.

Funding information

MM and EG gratefully acknowledge the DST–SERB for a young scientist start-up research grant (YSS/2014/000561) and the DST–FIST for providing NMR facilities to the department.

References

First citationAnbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832.  Web of Science CrossRef CAS Google Scholar
First citationAnbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManimaran, S., Govindan, E., Manjunathan, M., Sambathkumar, K. & Anbalagan, K. (2018). IucrData, 3, x180819.  CrossRef IUCr Journals Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds