organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-7-yl 4-methyl­benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliqueés (UMRI EEA), Equipe de Recherche Instrumentation Image et Spectroscopie (L2IS) DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte D'Ivoire, cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582, Abidjan 22, Côte d'Ivoire, and dFédération des Sciences Chimiques de Marseille, Spectropôle Service D11, Campus St. Jérôme, Aix-Marseille Université, Avenue Escadrille Normandie Niemen, 13013 Marseille, France
*Correspondence e-mail: abouakoun@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 28 May 2018; accepted 27 June 2018; online 6 July 2018)

In the title compound, C17H12O4, the benzoate ring is oriented at an acute angle of 60.14 (13)° relative to the coumarin plane (r.m.s. deviation = 0.006 Å). This conformation is stabilized by an intra­molecular C—H⋯O weak hydrogen bond, which forms a five-membered ring. Also present are ππ stacking inter­actions between neighbouring pyrone and benzene rings [centroid-to-centroid distances in the range 3.6286 (1)–3.6459 (1) Å] and C=O⋯π inter­actions [O⋯centroid distances in the range 3.2938 (1)–3.6132 (1) Å]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins and their derivatives constitute one of the major classes of naturally occurring compounds and inter­est in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several mol­ecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (Basanagouda et al., 2009[Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485-495.]), anti-oxidant (Vukovic et al., 2010[Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5-15.]) and anti-inflammatory agents (Emmanuel-Giota et al., 2001[Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717-722.]). In view of their importance and as a continuation of our work on the crystal structure analysis of coumarin derivatives (Abou et al., 2012[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438-o3439.], 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]), we report herein the synthesis, crystal structure and Hirshfeld surface analysis of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. In this structure, an S(5) ring motif arises from an intra­molecular C16—H16⋯O3 hydrogen bond (Table 1[link]), and generates a pseudo bicyclic ring system (Fig. 1[link]). The coumarin ring system is planar [r.m.s. deviation = 0.006 Å] and is oriented at an acute angle of 60.14 (13)° with respect to the C11–C16 benzene ring, while the angles between the pseudo five-membered ring [r.m.s deviation = 0.007 Å] and the coumarin ring system and C11–C16 benzene ring are 60.91 (12) and 1.06 (15)°, respectively. These dihedral angles show that the five-membered hydrogen-bonded ring and the C11–C16 benzene ring are almost coplanar. Also, an inspection of the bond lengths shows that there is a slight asymmetry of the electron distribution around the pyrone ring: the C2—C3 [1.336 (5) Å] and C1—C2 [1.446 (5) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This feature suggests that the π electron density is preferentially located on the C2—C3 bond of the pyrone ring, as seen in other coumarin derivatives (e.g. Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the O1/C1–C5 and O1/C1–C4/C7–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3 0.93 2.38 2.708 (4) 100
C1—O2⋯Cg1i 1.21 (1) 3.29 (1) 3.431 (4) 86 (1)
C1—O2⋯Cg4i 1.21 (1) 3.61 (1) 3.412 (4) 71 (1)
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intra­molecular hydrogen bond.

In the crystal, no inter­molecular hydrogen bonds are observed. The unique close inter­molecular contacts present are O2⋯H17A and C4⋯C1, with distances shorter than the sum of the van der Waals radii [O2⋯H17A(x, −y, [{1\over 2}] + z) = 2.65 and C4⋯C1 (x, y − 1, z) = 3.364 (5) Å], and unusual C1=O2⋯π inter­actions [O2⋯Cg1 (x, 1 + y, z) = 3.294 (3), O2⋯Cg4(x, 1 + y, z) = 3.613 (3) Å, where Cg1 and Cg4 are respectively the centroids of the pyrone ring and the coumarin ring system]. The resulting supra­molecular aggregation is completed by the presence of ππ stacking between the coumarin and the pyrone and the benzene C11–C16 rings. The centroid–centroid distances of those rings, Cg1⋯Cg2(x, 1 + y, z) = 3.6286 (18), Cg1⋯Cg4 (x, 1 + y, z) = 3.6459 (16) and Cg2⋯Cg4 (x, −1 + y, z) = 3.6407 (16), where Cg2 is the centroid of the C4–C9 benzene ring, are less than 3.8 Å, the threshold (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]) considered to be suitable for an effective ππ inter­action (Fig. 2[link]). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2[link].

Table 2
Analysis of short ring inter­actions (Å)

Cg(I) and Cg(J) are centroids of rings; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.

Cg(I) Cg(J) Symmetry Cg(J) Cg(I)⋯Cg(J) CgI_Perp CgJ_Perp Slippage
Cg1 Cg2 x, y + 1, z 3.6285 (18) −3.3321 (13) 3.3284 (12) 1.445
Cg1 Cg4 x, y + 1, z 3.6457 (16) −3.3306 (13) 3.3242 (10) 1.497
Cg2 Cg4 x, y − 1, z 3.6408 (16) 3.3298 (12) −3.3354 (10) 1.460
[Figure 2]
Figure 2
A view of the crystal packing, showing C⋯C contacts, C1=O2⋯π and ππ stacking inter­actions (dashed lines). The green dots are ring centroids.

To confirm and qu­antify the supra­molecular inter­actions, mol­ecular Hirshfeld surfaces of the title compound were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.043 (red) to 1.281 a.u. (blue), with the program CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.]). The analysis of inter­molecular inter­actions through the mapping of three-dimensional dnorm involves the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In the studied coumarin, the surface mapped over dnorm highlights three red spots, reflecting distances shorter than the sum of the van der Waals radii. These dominant inter­actions correspond to inter­molecular O2⋯H17A, C4⋯C1 contacts, O⋯π and ππ stacking inter­actions between the surface and the neighbouring environment. The mapping also shows white spots, with distances equal to the sum of the van der Waals radii, and blue regions, with distances longer than the sum of the van der Waals radii. Transparent surfaces are displayed in order to visualize the mol­ecule (Fig. 3[link]a). In the shape-index map (−1.00 to 1.00 a.u., Fig. 3[link]b), the adjacent red and blue triangle-like patches show concave regions that indicate ππ stacking inter­actions (Bitzer et al., 2017[Bitzer, R. S., Visentin, L. C., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165-173.]). Furthermore, the two-dimensional fingerprint plots (FP) are decomposed to highlight particular close contacts of atom pairs, and the contributions from different contacts are provided in Fig. 4[link]. The red spots in the middle of the surface appearing near de = di ≃ 1.8–2.0 Å correspond to close C⋯C inter­planar contacts. These contacts, which comprise 9.0% of the total Hirshfeld surface area, are related to ππ inter­actions (Fig. 4[link]a) as predicted by the X-ray study. The most significant contribution to the Hirshfeld surface (40.4%) is from H⋯H contacts, which appear in the central region of the FP with a central blue spike at de = di = 1.10 Å (Fig. 4[link]b). H⋯O/O⋯H inter­actions with a 26.1% contribution appear on the left side as blue spikes with the tip at de + di ≃ 2.5 Å, top and bottom (Fig. 4[link]c), showing the presence of O⋯H contacts, whereas the C⋯H/H⋯C plot (16.7%) reveals the information on inter­molecular contacts (Fig. 4[link]d). Other visible spots in the Hirshfeld surfaces showing C⋯O/O⋯C and O⋯O contacts make contributions for only 6.5 and 1.3%, respectively (Fig. 4[link]e and 4f).

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm (−0.043 to 1.281 a.u.) (left) and shape-index (right).
[Figure 4]
Figure 4
Decomposed two-dimensional fingerprint plots for the title compound. Various close contacts and their relative contributions are indicated.

Synthesis and crystallization

To a solution of p-toluoyl chloride (6.17 mmol, 0.85 ml) in dried tetra­hydro­furan (40 ml) was added dried tri­methyl­amine (3 molar equivalents, 2.6 ml) and 7-hy­droxy­coumarin (6.17 mmol, 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloro­form. The solution was acidified with diluted hydro­chloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from chloro­form. Pale-yellow crystals of the title compound were obtained in a good yield: 88%, m.p. 435–436 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C17H12O4
Mr 280.27
Crystal system, space group Monoclinic, Pc
Temperature (K) 298
a, b, c (Å) 5.7029 (2), 4.0346 (1), 28.9081 (10)
β (°) 90.751 (3)
V3) 665.09 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.83
Crystal size (mm) 0.25 × 0.16 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.858, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4661, 1780, 1713
Rint 0.018
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.12
No. of reflections 1780
No. of parameters 191
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.10, −0.10
Absolute structure Flack x determined using 559 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (10)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek,2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2-Oxo-2H-chromen-7-yl 4-methylbenzoate top
Crystal data top
C17H12O4Dx = 1.399 Mg m3
Mr = 280.27Melting point: 435 K
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 5.7029 (2) ÅCell parameters from 2863 reflections
b = 4.0346 (1) Åθ = 4.6–68.2°
c = 28.9081 (10) ŵ = 0.83 mm1
β = 90.751 (3)°T = 298 K
V = 665.09 (4) Å3Prism, pale-yellow
Z = 20.25 × 0.16 × 0.09 mm
F(000) = 292
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2
diffractometer
1780 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1713 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 5.3048 pixels mm-1θmax = 68.5°, θmin = 6.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 44
Tmin = 0.858, Tmax = 1.000l = 3434
4661 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.1164P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1780 reflectionsΔρmax = 0.10 e Å3
191 parametersΔρmin = 0.10 e Å3
2 restraintsAbsolute structure: Flack x determined using 559 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
48 constraintsAbsolute structure parameter: 0.02 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq of the respective parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5429 (3)0.0843 (6)0.49733 (7)0.0518 (5)
O20.4691 (5)0.3534 (7)0.56175 (10)0.0743 (7)
O30.6523 (4)0.4691 (6)0.35649 (8)0.0610 (6)
O40.9336 (4)0.2152 (7)0.31623 (9)0.0716 (7)
C10.6049 (6)0.1755 (9)0.54165 (12)0.0565 (8)
C20.8274 (6)0.0560 (9)0.55949 (12)0.0590 (8)
H20.87340.11180.58950.071*
C30.9685 (5)0.1326 (8)0.53400 (11)0.0543 (8)
H31.11040.20680.54640.065*
C40.9024 (5)0.2212 (7)0.48762 (11)0.0454 (6)
C50.6875 (5)0.1073 (7)0.47053 (10)0.0451 (7)
C60.6086 (5)0.1821 (7)0.42646 (11)0.0467 (7)
H60.46390.10570.41580.056*
C70.7490 (5)0.3724 (8)0.39873 (10)0.0503 (7)
C80.9663 (5)0.4892 (8)0.41398 (11)0.0541 (8)
H81.06000.61530.39460.065*
C91.0394 (5)0.4145 (8)0.45818 (12)0.0526 (8)
H91.18330.49400.46880.063*
C100.7591 (5)0.3791 (8)0.31640 (11)0.0493 (7)
C110.6263 (5)0.5016 (7)0.27583 (11)0.0464 (6)
C120.7106 (6)0.4371 (8)0.23191 (11)0.0565 (8)
H120.85120.32350.22860.068*
C130.5873 (6)0.5405 (9)0.19322 (11)0.0595 (9)
H130.64660.49650.16400.071*
C140.3763 (6)0.7088 (8)0.19696 (11)0.0545 (8)
C150.2946 (6)0.7738 (8)0.24099 (12)0.0570 (8)
H150.15420.88800.24430.068*
C160.4162 (5)0.6737 (8)0.27977 (11)0.0522 (7)
H160.35780.72120.30890.063*
C170.2387 (8)0.8184 (10)0.15511 (14)0.0719 (10)
H17A0.25860.66050.13060.108*
H17B0.07560.83330.16270.108*
H17C0.29391.03150.14530.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0435 (11)0.0589 (13)0.0530 (13)0.0018 (9)0.0057 (10)0.0054 (10)
O20.0723 (16)0.0801 (18)0.0708 (16)0.0088 (14)0.0031 (13)0.0090 (14)
O30.0560 (13)0.0790 (16)0.0480 (12)0.0217 (11)0.0004 (10)0.0008 (11)
O40.0611 (14)0.0904 (19)0.0631 (14)0.0315 (13)0.0038 (12)0.0086 (13)
C10.0577 (19)0.0562 (18)0.0555 (18)0.0068 (16)0.0008 (16)0.0037 (15)
C20.061 (2)0.066 (2)0.0491 (17)0.0048 (16)0.0131 (16)0.0047 (15)
C30.0461 (17)0.0604 (18)0.0561 (18)0.0053 (14)0.0127 (14)0.0142 (16)
C40.0378 (14)0.0474 (15)0.0507 (16)0.0084 (11)0.0060 (12)0.0135 (12)
C50.0406 (15)0.0448 (15)0.0496 (16)0.0067 (11)0.0019 (13)0.0100 (13)
C60.0375 (14)0.0535 (16)0.0490 (15)0.0086 (12)0.0064 (12)0.0114 (13)
C70.0486 (17)0.0569 (17)0.0454 (16)0.0170 (13)0.0025 (14)0.0068 (13)
C80.0478 (17)0.0570 (18)0.0577 (19)0.0041 (13)0.0045 (15)0.0049 (14)
C90.0404 (16)0.0528 (18)0.0646 (19)0.0014 (12)0.0020 (15)0.0131 (14)
C100.0484 (17)0.0478 (15)0.0517 (17)0.0017 (13)0.0008 (13)0.0055 (13)
C110.0446 (15)0.0454 (15)0.0493 (16)0.0034 (12)0.0006 (13)0.0014 (12)
C120.0550 (18)0.0554 (18)0.0591 (19)0.0072 (13)0.0055 (16)0.0060 (15)
C130.064 (2)0.069 (2)0.0448 (17)0.0011 (16)0.0041 (16)0.0050 (15)
C140.0597 (18)0.0492 (17)0.0544 (18)0.0052 (14)0.0066 (15)0.0024 (14)
C150.0531 (17)0.0596 (19)0.0584 (19)0.0084 (14)0.0007 (15)0.0006 (15)
C160.0517 (17)0.0563 (18)0.0488 (16)0.0045 (14)0.0034 (14)0.0016 (14)
C170.084 (3)0.072 (2)0.059 (2)0.0031 (19)0.0116 (19)0.0060 (18)
Geometric parameters (Å, º) top
O1—C11.375 (4)C9—C81.372 (5)
O1—C51.377 (3)C9—H90.9300
O2—C11.210 (4)C11—C101.473 (5)
O3—C71.389 (4)C11—C121.388 (4)
O3—C101.366 (4)C11—C161.391 (4)
O4—C101.195 (4)C12—H120.9300
C2—C11.446 (5)C13—C121.378 (5)
C2—C31.336 (5)C13—H130.9300
C2—H20.9300C14—C131.387 (5)
C3—H30.9300C14—C171.500 (5)
C4—C31.434 (4)C15—C141.386 (4)
C4—C91.400 (4)C15—H150.9300
C5—C41.393 (4)C16—C151.371 (5)
C6—C51.379 (4)C16—H160.9300
C6—C71.375 (4)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—C81.392 (5)C17—H17C0.9600
C8—H80.9300
C1—O1—C5121.7 (2)C4—C9—H9119.2
C10—O3—C7119.7 (2)O4—C10—O3122.1 (3)
O2—C1—O1116.6 (3)O4—C10—C11127.0 (3)
O2—C1—C2126.2 (4)O3—C10—C11110.9 (2)
O1—C1—C2117.2 (3)C12—C11—C16118.5 (3)
C3—C2—C1121.7 (3)C12—C11—C10119.0 (3)
C3—C2—H2119.2C16—C11—C10122.5 (3)
C1—C2—H2119.2C13—C12—C11120.4 (3)
C2—C3—C4120.3 (3)C13—C12—H12119.8
C2—C3—H3119.8C11—C12—H12119.8
C4—C3—H3119.8C12—C13—C14121.3 (3)
C5—C4—C9117.6 (3)C12—C13—H13119.4
C5—C4—C3118.0 (3)C14—C13—H13119.4
C9—C4—C3124.4 (3)C15—C14—C13117.8 (3)
O1—C5—C6116.9 (3)C15—C14—C17120.4 (3)
O1—C5—C4121.1 (3)C13—C14—C17121.8 (3)
C6—C5—C4122.0 (3)C16—C15—C14121.5 (3)
C7—C6—C5118.4 (3)C16—C15—H15119.2
C7—C6—H6120.8C14—C15—H15119.2
C5—C6—H6120.8C15—C16—C11120.5 (3)
C6—C7—O3116.2 (3)C15—C16—H16119.8
C6—C7—C8121.8 (3)C11—C16—H16119.8
O3—C7—C8121.7 (3)C14—C17—H17A109.5
C9—C8—C7118.6 (3)C14—C17—H17B109.5
C9—C8—H8120.7H17A—C17—H17B109.5
C7—C8—H8120.7C14—C17—H17C109.5
C8—C9—C4121.6 (3)H17A—C17—H17C109.5
C8—C9—H9119.2H17B—C17—H17C109.5
C5—C6—C7—O3173.7 (2)C7—O3—C10—C11179.0 (3)
C5—C6—C7—C80.1 (4)C12—C11—C10—O42.7 (5)
C10—O3—C7—C6120.7 (3)C16—C11—C10—O4175.8 (3)
C10—O3—C7—C865.6 (4)C12—C11—C10—O3179.2 (3)
C1—O1—C5—C6179.5 (3)C16—C11—C10—O32.3 (4)
C1—O1—C5—C40.9 (4)C11—C16—C15—C140.2 (5)
C7—C6—C5—O1179.8 (2)C4—C9—C8—C70.9 (4)
C7—C6—C5—C40.6 (4)C6—C7—C8—C90.8 (4)
O1—C5—C4—C9179.9 (2)O3—C7—C8—C9172.6 (3)
C6—C5—C4—C90.6 (4)C16—C15—C14—C130.5 (5)
O1—C5—C4—C30.0 (4)C16—C15—C14—C17179.4 (3)
C6—C5—C4—C3179.5 (3)C15—C14—C13—C120.8 (5)
C5—C4—C9—C80.2 (4)C17—C14—C13—C12179.1 (3)
C3—C4—C9—C8179.7 (3)C5—O1—C1—O2177.6 (3)
C12—C11—C16—C150.7 (5)C5—O1—C1—C21.2 (4)
C10—C11—C16—C15177.9 (3)C3—C2—C1—O2178.0 (3)
C1—C2—C3—C40.3 (5)C3—C2—C1—O10.6 (5)
C5—C4—C3—C20.6 (4)C14—C13—C12—C110.4 (5)
C9—C4—C3—C2179.3 (3)C16—C11—C12—C130.4 (5)
C7—O3—C10—O40.8 (5)C10—C11—C12—C13178.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the O1/C1–C5 and O1/C1–C4/C7–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16···O30.932.382.708 (4)100
C1—O2···Cg1i1.21 (1)3.29 (1)3.431 (4)86 (1)
C1—O2···Cg4i1.21 (1)3.61 (1)3.412 (4)71 (1)
Symmetry code: (i) x, y+1, z.
Analysis of short ring interactions (Å) top
Cg(I) and Cg(J) are centroids of rings; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I.
Cg(I)Cg(J)Symmetry Cg(J)Cg(I)···Cg(J)CgI_PerpCgJ_PerpSlippage
Cg1Cg2x, y + 1, z3.6285 (18)-3.3321 (13)3.3284 (12)1.445
Cg1Cg4x, y + 1, z3.6457 (16)-3.3306 (13)3.3242 (10)1.497
Cg2Cg4x, y - 1, z3.6408 (16)3.3298 (12)-3.3354 (10)1.460
 

Acknowledgements

The authors are grateful to the Spectropôle Service (Aix-Marseille University, France) for the use of the diffractometer.

References

First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CSD CrossRef IUCr Journals Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationBitzer, R. S., Visentin, L. C., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173.  Web of Science CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar
First citationZiki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds