organic compounds
2-Oxo-2H-chromen-7-yl 4-methylbenzoate
aLaboratoire de Chimie Moléculaire et de Matériaux (LCMM), Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bUnité Mixte de Recherche et d'Innovation en Electronique et d'Electricité Appliqueés (UMRI EEA), Equipe de Recherche Instrumentation Image et Spectroscopie (L2IS) DFR–GEE, Institut National Polytechnique Félix Houphouët-Boigny (INPHB), BP 1093 Yamoussoukro, Côte D'Ivoire, cLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582, Abidjan 22, Côte d'Ivoire, and dFédération des Sciences Chimiques de Marseille, Spectropôle Service D11, Campus St. Jérôme, Aix-Marseille Université, Avenue Escadrille Normandie Niemen, 13013 Marseille, France
*Correspondence e-mail: abouakoun@gmail.com
In the title compound, C17H12O4, the benzoate ring is oriented at an acute angle of 60.14 (13)° relative to the coumarin plane (r.m.s. deviation = 0.006 Å). This conformation is stabilized by an intramolecular C—H⋯O weak hydrogen bond, which forms a five-membered ring. Also present are π–π stacking interactions between neighbouring pyrone and benzene rings [centroid-to-centroid distances in the range 3.6286 (1)–3.6459 (1) Å] and C=O⋯π interactions [O⋯centroid distances in the range 3.2938 (1)–3.6132 (1) Å]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.
CCDC reference: 1839611
Structure description
et al., 2009), anti-oxidant (Vukovic et al., 2010) and anti-inflammatory agents (Emmanuel-Giota et al., 2001). In view of their importance and as a continuation of our work on the analysis of coumarin derivatives (Abou et al., 2012, 2013), we report herein the synthesis, and Hirshfeld surface analysis of the title compound.
and their derivatives constitute one of the major classes of naturally occurring compounds and interest in their chemistry continues unabated because of their usefulness as biologically active agents. They also form the core of several molecules of pharmaceutical importance. Coumarin and its derivatives have been reported to serve as anti-bacterial (BasanagoudaThe molecular structure of the title compound is illustrated in Fig. 1. In this structure, an S(5) ring motif arises from an intramolecular C16—H16⋯O3 hydrogen bond (Table 1), and generates a pseudo bicyclic ring system (Fig. 1). The coumarin ring system is planar [r.m.s. deviation = 0.006 Å] and is oriented at an acute angle of 60.14 (13)° with respect to the C11–C16 benzene ring, while the angles between the pseudo five-membered ring [r.m.s deviation = 0.007 Å] and the coumarin ring system and C11–C16 benzene ring are 60.91 (12) and 1.06 (15)°, respectively. These dihedral angles show that the five-membered hydrogen-bonded ring and the C11–C16 benzene ring are almost coplanar. Also, an inspection of the bond lengths shows that there is a slight asymmetry of the electron distribution around the pyrone ring: the C2—C3 [1.336 (5) Å] and C1—C2 [1.446 (5) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This feature suggests that the π electron density is preferentially located on the C2—C3 bond of the pyrone ring, as seen in other coumarin derivatives (e.g. Gomes et al., 2016; Ziki et al., 2016).
In the crystal, no intermolecular hydrogen bonds are observed. The unique close intermolecular contacts present are O2⋯H17A and C4⋯C1, with distances shorter than the sum of the van der Waals radii [O2⋯H17A(x, −y, + z) = 2.65 and C4⋯C1 (x, y − 1, z) = 3.364 (5) Å], and unusual C1=O2⋯π interactions [O2⋯Cg1 (x, 1 + y, z) = 3.294 (3), O2⋯Cg4(x, 1 + y, z) = 3.613 (3) Å, where Cg1 and Cg4 are respectively the centroids of the pyrone ring and the coumarin ring system]. The resulting supramolecular aggregation is completed by the presence of π–π stacking between the coumarin and the pyrone and the benzene C11–C16 rings. The centroid–centroid distances of those rings, Cg1⋯Cg2(x, 1 + y, z) = 3.6286 (18), Cg1⋯Cg4 (x, 1 + y, z) = 3.6459 (16) and Cg2⋯Cg4 (x, −1 + y, z) = 3.6407 (16), where Cg2 is the centroid of the C4–C9 benzene ring, are less than 3.8 Å, the threshold (Janiak, 2000) considered to be suitable for an effective π–π interaction (Fig. 2). The perpendicular distances of Cg(I) on ring J and distances between Cg(I) and perpendicular projection of Cg(J) on ring I (slippage) are summarized in Table 2.
|
To confirm and quantify the supramolecular interactions, molecular Hirshfeld surfaces of the title compound were calculated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.043 (red) to 1.281 a.u. (blue), with the program CrystalExplorer3.1 (Wolff et al., 2012). The analysis of intermolecular interactions through the mapping of three-dimensional dnorm involves the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In the studied coumarin, the surface mapped over dnorm highlights three red spots, reflecting distances shorter than the sum of the van der Waals radii. These dominant interactions correspond to intermolecular O2⋯H17A, C4⋯C1 contacts, O⋯π and π–π stacking interactions between the surface and the neighbouring environment. The mapping also shows white spots, with distances equal to the sum of the van der Waals radii, and blue regions, with distances longer than the sum of the van der Waals radii. Transparent surfaces are displayed in order to visualize the molecule (Fig. 3a). In the shape-index map (−1.00 to 1.00 a.u., Fig. 3b), the adjacent red and blue triangle-like patches show concave regions that indicate π–π stacking interactions (Bitzer et al., 2017). Furthermore, the two-dimensional fingerprint plots (FP) are decomposed to highlight particular close contacts of atom pairs, and the contributions from different contacts are provided in Fig. 4. The red spots in the middle of the surface appearing near de = di ≃ 1.8–2.0 Å correspond to close C⋯C interplanar contacts. These contacts, which comprise 9.0% of the total Hirshfeld surface area, are related to π–π interactions (Fig. 4a) as predicted by the X-ray study. The most significant contribution to the Hirshfeld surface (40.4%) is from H⋯H contacts, which appear in the central region of the FP with a central blue spike at de = di = 1.10 Å (Fig. 4b). H⋯O/O⋯H interactions with a 26.1% contribution appear on the left side as blue spikes with the tip at de + di ≃ 2.5 Å, top and bottom (Fig. 4c), showing the presence of O⋯H contacts, whereas the C⋯H/H⋯C plot (16.7%) reveals the information on intermolecular contacts (Fig. 4d). Other visible spots in the Hirshfeld surfaces showing C⋯O/O⋯C and O⋯O contacts make contributions for only 6.5 and 1.3%, respectively (Fig. 4e and 4f).
Synthesis and crystallization
To a solution of p-toluoyl chloride (6.17 mmol, 0.85 ml) in dried tetrahydrofuran (40 ml) was added dried trimethylamine (3 molar equivalents, 2.6 ml) and 7-hydroxycoumarin (6.17 mmol, 1 g) by small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloroform. The solution was acidified with diluted hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and recrystallized from chloroform. Pale-yellow crystals of the title compound were obtained in a good yield: 88%, m.p. 435–436 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1839611
https://doi.org/10.1107/S2414314618009276/bh4038sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618009276/bh4038Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618009276/bh4038Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek,2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C17H12O4 | Dx = 1.399 Mg m−3 |
Mr = 280.27 | Melting point: 435 K |
Monoclinic, Pc | Cu Kα radiation, λ = 1.54184 Å |
a = 5.7029 (2) Å | Cell parameters from 2863 reflections |
b = 4.0346 (1) Å | θ = 4.6–68.2° |
c = 28.9081 (10) Å | µ = 0.83 mm−1 |
β = 90.751 (3)° | T = 298 K |
V = 665.09 (4) Å3 | Prism, pale-yellow |
Z = 2 | 0.25 × 0.16 × 0.09 mm |
F(000) = 292 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas S2 diffractometer | 1780 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1713 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.018 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 68.5°, θmin = 6.1° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −4→4 |
Tmin = 0.858, Tmax = 1.000 | l = −34→34 |
4661 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0313P)2 + 0.1164P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
1780 reflections | Δρmax = 0.10 e Å−3 |
191 parameters | Δρmin = −0.10 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 559 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
48 constraints | Absolute structure parameter: −0.02 (10) |
Primary atom site location: structure-invariant direct methods |
Refinement. H atoms were placed in calculated positions [C—H = 0.93 (aromatic) or 0.96 Å (methyl group)] and refined using a riding model approximation with Uiso(H) constrained to 1.2 (aromatic) or 1.5 (methyl) times Ueq of the respective parent atom. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5429 (3) | 0.0843 (6) | 0.49733 (7) | 0.0518 (5) | |
O2 | 0.4691 (5) | 0.3534 (7) | 0.56175 (10) | 0.0743 (7) | |
O3 | 0.6523 (4) | −0.4691 (6) | 0.35649 (8) | 0.0610 (6) | |
O4 | 0.9336 (4) | −0.2152 (7) | 0.31623 (9) | 0.0716 (7) | |
C1 | 0.6049 (6) | 0.1755 (9) | 0.54165 (12) | 0.0565 (8) | |
C2 | 0.8274 (6) | 0.0560 (9) | 0.55949 (12) | 0.0590 (8) | |
H2 | 0.8734 | 0.1118 | 0.5895 | 0.071* | |
C3 | 0.9685 (5) | −0.1326 (8) | 0.53400 (11) | 0.0543 (8) | |
H3 | 1.1104 | −0.2068 | 0.5464 | 0.065* | |
C4 | 0.9024 (5) | −0.2212 (7) | 0.48762 (11) | 0.0454 (6) | |
C5 | 0.6875 (5) | −0.1073 (7) | 0.47053 (10) | 0.0451 (7) | |
C6 | 0.6086 (5) | −0.1821 (7) | 0.42646 (11) | 0.0467 (7) | |
H6 | 0.4639 | −0.1057 | 0.4158 | 0.056* | |
C7 | 0.7490 (5) | −0.3724 (8) | 0.39873 (10) | 0.0503 (7) | |
C8 | 0.9663 (5) | −0.4892 (8) | 0.41398 (11) | 0.0541 (8) | |
H8 | 1.0600 | −0.6153 | 0.3946 | 0.065* | |
C9 | 1.0394 (5) | −0.4145 (8) | 0.45818 (12) | 0.0526 (8) | |
H9 | 1.1833 | −0.4940 | 0.4688 | 0.063* | |
C10 | 0.7591 (5) | −0.3791 (8) | 0.31640 (11) | 0.0493 (7) | |
C11 | 0.6263 (5) | −0.5016 (7) | 0.27583 (11) | 0.0464 (6) | |
C12 | 0.7106 (6) | −0.4371 (8) | 0.23191 (11) | 0.0565 (8) | |
H12 | 0.8512 | −0.3235 | 0.2286 | 0.068* | |
C13 | 0.5873 (6) | −0.5405 (9) | 0.19322 (11) | 0.0595 (9) | |
H13 | 0.6466 | −0.4965 | 0.1640 | 0.071* | |
C14 | 0.3763 (6) | −0.7088 (8) | 0.19696 (11) | 0.0545 (8) | |
C15 | 0.2946 (6) | −0.7738 (8) | 0.24099 (12) | 0.0570 (8) | |
H15 | 0.1542 | −0.8880 | 0.2443 | 0.068* | |
C16 | 0.4162 (5) | −0.6737 (8) | 0.27977 (11) | 0.0522 (7) | |
H16 | 0.3578 | −0.7212 | 0.3089 | 0.063* | |
C17 | 0.2387 (8) | −0.8184 (10) | 0.15511 (14) | 0.0719 (10) | |
H17A | 0.2586 | −0.6605 | 0.1306 | 0.108* | |
H17B | 0.0756 | −0.8333 | 0.1627 | 0.108* | |
H17C | 0.2939 | −1.0315 | 0.1453 | 0.108* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0435 (11) | 0.0589 (13) | 0.0530 (13) | 0.0018 (9) | −0.0057 (10) | 0.0054 (10) |
O2 | 0.0723 (16) | 0.0801 (18) | 0.0708 (16) | 0.0088 (14) | 0.0031 (13) | −0.0090 (14) |
O3 | 0.0560 (13) | 0.0790 (16) | 0.0480 (12) | −0.0217 (11) | −0.0004 (10) | 0.0008 (11) |
O4 | 0.0611 (14) | 0.0904 (19) | 0.0631 (14) | −0.0315 (13) | −0.0038 (12) | 0.0086 (13) |
C1 | 0.0577 (19) | 0.0562 (18) | 0.0555 (18) | −0.0068 (16) | −0.0008 (16) | 0.0037 (15) |
C2 | 0.061 (2) | 0.066 (2) | 0.0491 (17) | −0.0048 (16) | −0.0131 (16) | 0.0047 (15) |
C3 | 0.0461 (17) | 0.0604 (18) | 0.0561 (18) | −0.0053 (14) | −0.0127 (14) | 0.0142 (16) |
C4 | 0.0378 (14) | 0.0474 (15) | 0.0507 (16) | −0.0084 (11) | −0.0060 (12) | 0.0135 (12) |
C5 | 0.0406 (15) | 0.0448 (15) | 0.0496 (16) | −0.0067 (11) | −0.0019 (13) | 0.0100 (13) |
C6 | 0.0375 (14) | 0.0535 (16) | 0.0490 (15) | −0.0086 (12) | −0.0064 (12) | 0.0114 (13) |
C7 | 0.0486 (17) | 0.0569 (17) | 0.0454 (16) | −0.0170 (13) | −0.0025 (14) | 0.0068 (13) |
C8 | 0.0478 (17) | 0.0570 (18) | 0.0577 (19) | −0.0041 (13) | 0.0045 (15) | 0.0049 (14) |
C9 | 0.0404 (16) | 0.0528 (18) | 0.0646 (19) | −0.0014 (12) | −0.0020 (15) | 0.0131 (14) |
C10 | 0.0484 (17) | 0.0478 (15) | 0.0517 (17) | 0.0017 (13) | 0.0008 (13) | 0.0055 (13) |
C11 | 0.0446 (15) | 0.0454 (15) | 0.0493 (16) | 0.0034 (12) | 0.0006 (13) | 0.0014 (12) |
C12 | 0.0550 (18) | 0.0554 (18) | 0.0591 (19) | −0.0072 (13) | 0.0055 (16) | 0.0060 (15) |
C13 | 0.064 (2) | 0.069 (2) | 0.0448 (17) | 0.0011 (16) | 0.0041 (16) | 0.0050 (15) |
C14 | 0.0597 (18) | 0.0492 (17) | 0.0544 (18) | 0.0052 (14) | −0.0066 (15) | −0.0024 (14) |
C15 | 0.0531 (17) | 0.0596 (19) | 0.0584 (19) | −0.0084 (14) | −0.0007 (15) | −0.0006 (15) |
C16 | 0.0517 (17) | 0.0563 (18) | 0.0488 (16) | −0.0045 (14) | 0.0034 (14) | 0.0016 (14) |
C17 | 0.084 (3) | 0.072 (2) | 0.059 (2) | −0.0031 (19) | −0.0116 (19) | −0.0060 (18) |
O1—C1 | 1.375 (4) | C9—C8 | 1.372 (5) |
O1—C5 | 1.377 (3) | C9—H9 | 0.9300 |
O2—C1 | 1.210 (4) | C11—C10 | 1.473 (5) |
O3—C7 | 1.389 (4) | C11—C12 | 1.388 (4) |
O3—C10 | 1.366 (4) | C11—C16 | 1.391 (4) |
O4—C10 | 1.195 (4) | C12—H12 | 0.9300 |
C2—C1 | 1.446 (5) | C13—C12 | 1.378 (5) |
C2—C3 | 1.336 (5) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | C14—C13 | 1.387 (5) |
C3—H3 | 0.9300 | C14—C17 | 1.500 (5) |
C4—C3 | 1.434 (4) | C15—C14 | 1.386 (4) |
C4—C9 | 1.400 (4) | C15—H15 | 0.9300 |
C5—C4 | 1.393 (4) | C16—C15 | 1.371 (5) |
C6—C5 | 1.379 (4) | C16—H16 | 0.9300 |
C6—C7 | 1.375 (4) | C17—H17A | 0.9600 |
C6—H6 | 0.9300 | C17—H17B | 0.9600 |
C7—C8 | 1.392 (5) | C17—H17C | 0.9600 |
C8—H8 | 0.9300 | ||
C1—O1—C5 | 121.7 (2) | C4—C9—H9 | 119.2 |
C10—O3—C7 | 119.7 (2) | O4—C10—O3 | 122.1 (3) |
O2—C1—O1 | 116.6 (3) | O4—C10—C11 | 127.0 (3) |
O2—C1—C2 | 126.2 (4) | O3—C10—C11 | 110.9 (2) |
O1—C1—C2 | 117.2 (3) | C12—C11—C16 | 118.5 (3) |
C3—C2—C1 | 121.7 (3) | C12—C11—C10 | 119.0 (3) |
C3—C2—H2 | 119.2 | C16—C11—C10 | 122.5 (3) |
C1—C2—H2 | 119.2 | C13—C12—C11 | 120.4 (3) |
C2—C3—C4 | 120.3 (3) | C13—C12—H12 | 119.8 |
C2—C3—H3 | 119.8 | C11—C12—H12 | 119.8 |
C4—C3—H3 | 119.8 | C12—C13—C14 | 121.3 (3) |
C5—C4—C9 | 117.6 (3) | C12—C13—H13 | 119.4 |
C5—C4—C3 | 118.0 (3) | C14—C13—H13 | 119.4 |
C9—C4—C3 | 124.4 (3) | C15—C14—C13 | 117.8 (3) |
O1—C5—C6 | 116.9 (3) | C15—C14—C17 | 120.4 (3) |
O1—C5—C4 | 121.1 (3) | C13—C14—C17 | 121.8 (3) |
C6—C5—C4 | 122.0 (3) | C16—C15—C14 | 121.5 (3) |
C7—C6—C5 | 118.4 (3) | C16—C15—H15 | 119.2 |
C7—C6—H6 | 120.8 | C14—C15—H15 | 119.2 |
C5—C6—H6 | 120.8 | C15—C16—C11 | 120.5 (3) |
C6—C7—O3 | 116.2 (3) | C15—C16—H16 | 119.8 |
C6—C7—C8 | 121.8 (3) | C11—C16—H16 | 119.8 |
O3—C7—C8 | 121.7 (3) | C14—C17—H17A | 109.5 |
C9—C8—C7 | 118.6 (3) | C14—C17—H17B | 109.5 |
C9—C8—H8 | 120.7 | H17A—C17—H17B | 109.5 |
C7—C8—H8 | 120.7 | C14—C17—H17C | 109.5 |
C8—C9—C4 | 121.6 (3) | H17A—C17—H17C | 109.5 |
C8—C9—H9 | 119.2 | H17B—C17—H17C | 109.5 |
C5—C6—C7—O3 | 173.7 (2) | C7—O3—C10—C11 | −179.0 (3) |
C5—C6—C7—C8 | −0.1 (4) | C12—C11—C10—O4 | 2.7 (5) |
C10—O3—C7—C6 | 120.7 (3) | C16—C11—C10—O4 | −175.8 (3) |
C10—O3—C7—C8 | −65.6 (4) | C12—C11—C10—O3 | −179.2 (3) |
C1—O1—C5—C6 | −179.5 (3) | C16—C11—C10—O3 | 2.3 (4) |
C1—O1—C5—C4 | 0.9 (4) | C11—C16—C15—C14 | 0.2 (5) |
C7—C6—C5—O1 | 179.8 (2) | C4—C9—C8—C7 | −0.9 (4) |
C7—C6—C5—C4 | −0.6 (4) | C6—C7—C8—C9 | 0.8 (4) |
O1—C5—C4—C9 | −179.9 (2) | O3—C7—C8—C9 | −172.6 (3) |
C6—C5—C4—C9 | 0.6 (4) | C16—C15—C14—C13 | 0.5 (5) |
O1—C5—C4—C3 | 0.0 (4) | C16—C15—C14—C17 | −179.4 (3) |
C6—C5—C4—C3 | −179.5 (3) | C15—C14—C13—C12 | −0.8 (5) |
C5—C4—C9—C8 | 0.2 (4) | C17—C14—C13—C12 | 179.1 (3) |
C3—C4—C9—C8 | −179.7 (3) | C5—O1—C1—O2 | 177.6 (3) |
C12—C11—C16—C15 | −0.7 (5) | C5—O1—C1—C2 | −1.2 (4) |
C10—C11—C16—C15 | 177.9 (3) | C3—C2—C1—O2 | −178.0 (3) |
C1—C2—C3—C4 | 0.3 (5) | C3—C2—C1—O1 | 0.6 (5) |
C5—C4—C3—C2 | −0.6 (4) | C14—C13—C12—C11 | 0.4 (5) |
C9—C4—C3—C2 | 179.3 (3) | C16—C11—C12—C13 | 0.4 (5) |
C7—O3—C10—O4 | −0.8 (5) | C10—C11—C12—C13 | −178.2 (3) |
Cg1 and Cg4 are the centroids of the O1/C1–C5 and O1/C1–C4/C7–C9 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O3 | 0.93 | 2.38 | 2.708 (4) | 100 |
C1—O2···Cg1i | 1.21 (1) | 3.29 (1) | 3.431 (4) | 86 (1) |
C1—O2···Cg4i | 1.21 (1) | 3.61 (1) | 3.412 (4) | 71 (1) |
Symmetry code: (i) x, y+1, z. |
Cg(I) and Cg(J) are centroids of rings; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. |
Cg(I) | Cg(J) | Symmetry Cg(J) | Cg(I)···Cg(J) | CgI_Perp | CgJ_Perp | Slippage |
Cg1 | Cg2 | x, y + 1, z | 3.6285 (18) | -3.3321 (13) | 3.3284 (12) | 1.445 |
Cg1 | Cg4 | x, y + 1, z | 3.6457 (16) | -3.3306 (13) | 3.3242 (10) | 1.497 |
Cg2 | Cg4 | x, y - 1, z | 3.6408 (16) | 3.3298 (12) | -3.3354 (10) | 1.460 |
Acknowledgements
The authors are grateful to the Spectropôle Service (Aix-Marseille University, France) for the use of the diffractometer.
References
Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439. CSD CrossRef CAS IUCr Journals Google Scholar
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CSD CrossRef IUCr Journals Google Scholar
Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha, Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495. Web of Science CSD CrossRef CAS Google Scholar
Bitzer, R. S., Visentin, L. C., Hörner, M., Nascimento, M. A. C. & Filgueiras, C. A. L. (2017). J. Mol. Struct. 1130, 165–173. Web of Science CrossRef Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emmanuel-Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N. & Hadjipavlou-Litina, D. J. (2001). J. Heterocycl. Chem. 38, 717–722. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vukovic, N., Sukdolak, S., Solujic, S. & Niciforovic, N. (2010). Arch. Pharm. Res. 33, 5–15. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia. Google Scholar
Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.