metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[aqua­(iminodi­acetato-κ3O,N,O′)nickel(II)]-μ-4,4′-di­pyridyl­amine-κ2N:N′]

aE-35A Holmes Hall, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825 , USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Zeller, Purdue University, USA (Received 24 May 2018; accepted 12 June 2018; online 22 June 2018)

In the title compound, [Ni(C4H5NO4)(C10H9N3)(H2O)]n, the NiII cations are octa­hedrally coordinated by an N atom donor and two O donor atoms belonging to a tridentate iminodi­acetate (ida) ligand in a fac fashion, an O atom donor from an aqua ligand, and cis-disposed pyridyl N donor atoms from two 4,4′-di­pyridyl­amine (dpa) ligands. The dpa ligands are disordered over two sets of sites in a 0.594 (7):0.406 (7) ratio. Through the bridging dpa ligands, [Ni(ida)(dpa)(H2O)]n zigzag coordination polymer chains are formed that are oriented along the b-axis direction. These chain motifs are anchored into the three-dimensional supra­molecular crystal structure of the title compound by means of O—H⋯O and N—H⋯O hydrogen-bonding pathways.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The dipodal tethering ligand 4,4′-di­pyridyl­amine (dpa) has proven exceptionally useful in preparing coordination polymers with intriguing and diverse topologies (LaDuca, 2009[LaDuca, R. L. (2009). Coord. Chem. Rev. 253, 1759-1792.]). The title compound was prepared during synthetic attempts to prepare divalent metal coordination polymers containing both iminodi­acetate (ida) and dpa ligands.

The asymmetric unit of the title compound contains an NiII atom, an aqua ligand, a doubly deprotonated ida ligand and a dpa ligand. The atoms in the dpa ligand show positional disorder and were modeled successfully using refined partial occupancies [0.594 (7):0.406 (7) ratio] and two parts. The NiII atom is octa­hedrally coordinated (Fig. 1[link]) with the ida ligand binding in a tridentate manner, in which O atoms of the carboxyl­ate termini and the central imine N atom occupy three coordination sites in a fac arrangement. The bound water mol­ecule occupies a fourth site. The remaining cis coordination sites are taken up by pyridyl N atom donors from two dpa ligands. One carboxyl­ate O atom at each ida carboxyl­ate terminus remains unligated.

[Figure 1]
Figure 1
The coordination environment within the title compound, showing octa­hedral coordination at the NiII cation. Displacement ellipsoids are drawn at the 50% probability level. All non-H atoms are labeled. Both disorder components of the dpa ligands are shown. Color code: Ni, green; N, blue; O, red; C, black; H, pink. Symmetry code: (i) −x, y − [1\over2], −z + [1\over2].

The dpa ligands act as exobidentate tethering ligands, conjoining neighboring [Ni(ida)(H2O)] coordination fragments into a one-dimensional [Ni(ida)(dpa)(H2O)]n coordin­ation polymer ribbon (Fig. 2[link]). These have a zigzag topology and are arranged parallel to [010], with an Ni⋯Ni through-ligand distance of 11.450 (4) Å.

[Figure 2]
Figure 2
[Ni(ima)(dpa)(H2O)]n coordination polymer zigzag chains parallel to [010] in the title compound. Only one dpa disorder component is shown.

The central amine moieties of the dpa ligands in one [Ni(ida)(dpa)(H2O)]n coordination polymer ribbon provide N—H⋯O hydrogen-bonding points of contact (Table 1[link]) to unligated ida carboxyl­ate groups in adjacent ribbon motifs. Additionally, the aqua ligands provide inter-ribbon connections (Table 1[link]) via O—H⋯O hydrogen bonding to other unligated ida carboxyl­ate groups. By these two distinct hydrogen-bonding pathways, the individual [Ni(ida)(dpa)(H2O)]n coordination polymer ribbons aggregate into the supra­molecular three-dimensional crystal of the title compound (Fig. 3[link])

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1ii 0.81 (2) 1.99 (2) 2.774 (4) 161 (5)
O5—H5B⋯O1iii 0.86 (2) 1.86 (2) 2.706 (5) 172 (5)
N4—H4⋯O2iii 1.00 2.28 3.233 (4) 158
C2—H2A⋯O1iii 0.99 2.58 3.374 (6) 137
C6—H6⋯O3iv 0.95 2.32 3.259 (14) 170
C9—H9⋯N3i 0.95 2.56 3.037 (16) 112
N2—H2⋯O4iv 0.88 1.86 2.718 (16) 166
C6A—H6A⋯O3iv 0.95 2.50 3.37 (2) 152
C9A—H9A⋯O5 0.95 2.47 2.952 (13) 111
N2A—H2AA⋯O4iv 0.88 1.99 2.82 (2) 156
C10A—H10A⋯O5v 0.95 2.52 3.131 (15) 123
C14A—H14A⋯O2v 0.95 2.28 2.904 (9) 122
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Inter­action of the [Ni(ima)(dpa)(H2O)]n coordination polymer chain motifs by O—H⋯O and N—H⋯O hydrogen bonds, which are shown as dashed lines. Individual ribbon motifs are colored for clarity.

Synthesis and crystallization

Ni(NO3)2·6H2O (108 mg, 0.37 mmol), iminodi­acetic acid (49 mg, 0.37 mol), 4,4-di­pyridyl­amine (73 mg, 0.37 mol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 278 K. Blue block-shaped crystals of the title compound (57 mg, 41% yield based on nickel) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the dpa ligand are disordered in place over two sets of positions with refined occupancies in a 0.594 (7):0.406 (7) ratio. Chemically equivalent bond distances and angles were restrained to be similar using SADI and SAME commands, with an e.s.d. of 0.02 Å. SIMU commands were used to treat the thermal ellipsoids within the dpa disorder components within 2 Å with 1σ of 0.01 and σ for terminal atoms of 0.02 Å2.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C4H5NO4)(C10H9N3)(H2O)]
Mr 379.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.186 (2), 14.541 (3), 11.489 (2)
β (°) 100.531 (2)
V3) 1673.0 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.19
Crystal size (mm) 0.31 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.633, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15567, 3823, 2480
Rint 0.073
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.158, 0.99
No. of reflections 3823
No. of parameters 341
No. of restraints 526
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.98, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and CrystalMaker (Palmer, 2018[Palmer, D. (2018). Crystal Maker. Crystal Maker Software, PO Box 183, Bicester, Oxfordshire, England.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2018); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[aqua(iminodiacetato-κ3O,N,O')nickel(II)]-µ-4,4'-dipyridylamine-κ2N:N'] top
Crystal data top
[Ni(C4H5NO4)(C10H9N3)(H2O)]F(000) = 784
Mr = 379.02Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.186 (2) ÅCell parameters from 3842 reflections
b = 14.541 (3) Åθ = 2.3–25.3°
c = 11.489 (2) ŵ = 1.19 mm1
β = 100.531 (2)°T = 173 K
V = 1673.0 (6) Å3Block, blue
Z = 40.31 × 0.14 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube2480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1313
Tmin = 0.633, Tmax = 0.745k = 1818
15567 measured reflectionsl = 1414
Refinement top
Refinement on F2526 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0833P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3823 reflectionsΔρmax = 0.98 e Å3
341 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bound to C and N were placed in calculated positions with a riding model with Uiso = 1.2Ueq. Hydrogen atoms bound to O were found by Fourier difference map and refined with with Uiso = 1.5Ueq. The O–H bonds were restrained to be 0.84 (2) Å using DFIX commands.

1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All O(H,H) groups 2. Restrained distances O5-H5A = O5-H5B 0.84 with sigma of 0.02 N2-C12 ~ N2A-C12A ~ N2-C7 ~ N2A-C7A with sigma of 0.02 N3-C10 ~ N3A-C10A ~ N3-C14 ~ N3A-C14A ~ N1-C5 ~ N1-C9 ~ N1A-C5A ~ N1A-C9A with sigma of 0.02 C12-C11 ~ C12-C13 ~ C12A-C11A ~ C12A-C13A ~ C7-C6 ~ C7-C8 ~ C7A-C6A ~ C7A-C8A with sigma of 0.02 3. Uiso/Uaniso restraints and constraints N1 ~ C5 ~ C6 ~ C7 ~ C8 ~ C9 ~ N2 ~ N1A ~ C5A ~ C6A ~ C7A ~ C8A ~ C9A ~ N2A ~ N3 ~ C10 ~ C11 ~ C12 ~ C13 ~ C14 ~ N3A ~ C10A ~ C11A ~ C12A ~ C13A ~ C14A: within 2A with sigma of 0.01 and sigma for terminal atoms of 0.02 4. Same fragment restrains {N1, C5, C6, C7, C8, C9} sigma for 1-2: 0.02, 1-3: 0.04 as {N1A, C5A, C6A, C7A, C8A, C9A} {N1, C5, C6, C7, C8, C9} sigma for 1-2: 0.02, 1-3: 0.04 as {N3, C10, C11, C12, C13, C14} {N1, C5, C6, C7, C8, C9} sigma for 1-2: 0.02, 1-3: 0.04 as {N3A, C10A, C11A, C12A, C13A, C14A} 5. Others Sof(N1A)=Sof(C5A)=Sof(H5AA)=Sof(C6A)=Sof(H6A)=Sof(C7A)=Sof(C8A)=Sof(H8A)= Sof(C9A)=Sof(H9A)=Sof(N2A)=Sof(H2AA)=Sof(N3A)=Sof(C10A)=Sof(H10A)=Sof(C11A)= Sof(H11A)=Sof(C12A)=Sof(C13A)=Sof(H13A)=Sof(C14A)=Sof(H14A)=1-FVAR(1) Sof(N1)=Sof(C5)=Sof(H5)=Sof(C6)=Sof(H6)=Sof(C7)=Sof(C8)=Sof(H8)=Sof(C9)= Sof(H9)=Sof(N2)=Sof(H2)=Sof(N3)=Sof(C10)=Sof(H10)=Sof(C11)=Sof(H11)=Sof(C12)= Sof(C13)=Sof(H13)=Sof(C14)=Sof(H14)=FVAR(1) 6.a Ternary CH refined with riding coordinates: N4(H4) 6.b Secondary CH2 refined with riding coordinates: C2(H2A,H2B), C3(H3A,H3B) 6.c Aromatic/amide H refined with riding coordinates: C5(H5), C6(H6), C8(H8), C9(H9), N2(H2), C5A(H5AA), C6A(H6A), C8A(H8A), C9A(H9A), N2A(H2AA), C10(H10), C11(H11), C13(H13), C14(H14), C10A(H10A), C11A(H11A), C13A(H13A), C14A(H14A)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.42446 (5)0.33031 (3)0.21251 (4)0.03457 (19)
O10.5512 (4)0.10358 (18)0.4044 (3)0.0701 (10)
O20.4700 (3)0.24245 (17)0.3568 (2)0.0461 (7)
O30.6004 (3)0.39538 (19)0.2771 (2)0.0483 (7)
O40.8202 (3)0.3844 (3)0.2862 (3)0.0738 (10)
O50.3899 (3)0.41790 (19)0.0653 (3)0.0480 (7)
H5A0.389 (5)0.4731 (14)0.076 (4)0.072*
H5B0.447 (4)0.410 (3)0.020 (4)0.072*
N40.5502 (3)0.24046 (19)0.1415 (3)0.0403 (8)
H40.5140580.2293810.0557640.048*
C10.7034 (5)0.3602 (3)0.2478 (4)0.0497 (10)
C20.6830 (4)0.2840 (3)0.1556 (4)0.0540 (11)
H2A0.6949400.3097630.0784670.065*
H2B0.7523640.2363890.1785760.065*
C30.5507 (6)0.1544 (3)0.2082 (4)0.0589 (13)
H3A0.6388360.1243940.2134390.071*
H3B0.4824500.1125050.1643250.071*
C40.5225 (5)0.1680 (3)0.3335 (4)0.0508 (11)
N10.3086 (14)0.4127 (12)0.3028 (13)0.036 (2)0.594 (7)
C50.3571 (17)0.4465 (14)0.4106 (15)0.035 (2)0.594 (7)
H50.4443570.4285860.4480930.042*0.594 (7)
C60.2872 (16)0.5058 (13)0.4698 (14)0.037 (2)0.594 (7)
H60.3255790.5271810.5465670.044*0.594 (7)
C70.1607 (18)0.5340 (14)0.4171 (10)0.0380 (19)0.594 (7)
C80.1061 (9)0.4969 (6)0.3077 (8)0.0427 (18)0.594 (7)
H80.0172620.5112080.2706510.051*0.594 (7)
C90.1836 (9)0.4390 (6)0.2544 (8)0.0437 (19)0.594 (7)
H90.1465750.4158190.1781270.052*0.594 (7)
N20.0880 (13)0.5915 (10)0.4784 (14)0.040 (2)0.594 (7)
H20.1115390.5899720.5560190.048*0.594 (7)
N1A0.321 (2)0.4209 (19)0.294 (2)0.037 (3)0.406 (7)
C5A0.348 (3)0.438 (2)0.410 (2)0.038 (3)0.406 (7)
H5AA0.4230780.4082530.4561210.046*0.406 (7)
C6A0.275 (2)0.496 (2)0.468 (2)0.037 (3)0.406 (7)
H6A0.3006890.5068160.5501280.044*0.406 (7)
C7A0.162 (3)0.539 (2)0.4037 (15)0.040 (2)0.406 (7)
C8A0.1327 (13)0.5229 (8)0.2833 (11)0.039 (2)0.406 (7)
H8A0.0583970.5521480.2354980.047*0.406 (7)
C9A0.2128 (13)0.4638 (8)0.2336 (12)0.040 (2)0.406 (7)
H9A0.1898750.4527130.1509000.048*0.406 (7)
N2A0.0984 (19)0.6021 (15)0.466 (2)0.040 (3)0.406 (7)
H2AA0.1398460.6182210.5372600.048*0.406 (7)
N30.2448 (11)0.7591 (8)0.3590 (10)0.0416 (19)0.594 (7)
C100.1977 (10)0.7441 (7)0.4736 (8)0.041 (2)0.594 (7)
H100.2434910.7707690.5302820.049*0.594 (7)
C110.0861 (9)0.6921 (6)0.5135 (8)0.0417 (19)0.594 (7)
H110.0564940.6841990.5962630.050*0.594 (7)
C120.0165 (12)0.6511 (10)0.4354 (10)0.0403 (16)0.594 (7)
C130.0612 (7)0.6711 (5)0.3157 (6)0.0472 (16)0.594 (7)
H130.0141600.6482970.2576210.057*0.594 (7)
C140.1723 (7)0.7233 (5)0.2831 (6)0.0500 (16)0.594 (7)
H140.2008140.7353120.2011640.060*0.594 (7)
N3A0.2610 (16)0.7430 (11)0.3535 (15)0.043 (2)0.406 (7)
C10A0.1774 (15)0.7604 (11)0.4548 (13)0.043 (3)0.406 (7)
H10A0.1997190.8088320.5030810.051*0.406 (7)
C11A0.0608 (14)0.7126 (9)0.4939 (12)0.044 (2)0.406 (7)
H11A0.0052510.7278730.5670260.053*0.406 (7)
C12A0.0261 (18)0.6417 (14)0.4245 (16)0.042 (2)0.406 (7)
C13A0.1218 (10)0.6158 (7)0.3269 (9)0.048 (2)0.406 (7)
H13A0.1098760.5611890.2847760.057*0.406 (7)
C14A0.2321 (10)0.6688 (7)0.2921 (9)0.046 (2)0.406 (7)
H14A0.2915070.6528630.2213040.055*0.406 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0394 (3)0.0317 (3)0.0326 (3)0.00311 (19)0.0064 (2)0.00321 (18)
O10.134 (3)0.0361 (15)0.0441 (17)0.0179 (17)0.0256 (18)0.0099 (13)
O20.072 (2)0.0348 (14)0.0343 (14)0.0032 (13)0.0165 (13)0.0015 (11)
O30.0441 (17)0.0523 (17)0.0486 (17)0.0074 (13)0.0091 (13)0.0146 (13)
O40.0414 (19)0.112 (3)0.068 (2)0.0160 (19)0.0092 (16)0.019 (2)
O50.064 (2)0.0358 (14)0.0430 (16)0.0068 (14)0.0070 (13)0.0013 (13)
N40.058 (2)0.0352 (16)0.0286 (15)0.0038 (15)0.0091 (14)0.0023 (12)
C10.046 (3)0.064 (3)0.039 (2)0.003 (2)0.0086 (19)0.0007 (19)
C20.049 (3)0.067 (3)0.047 (2)0.007 (2)0.011 (2)0.003 (2)
C30.106 (4)0.038 (2)0.038 (2)0.014 (2)0.027 (2)0.0018 (17)
C40.084 (3)0.037 (2)0.034 (2)0.002 (2)0.018 (2)0.0020 (17)
N10.035 (3)0.037 (4)0.037 (3)0.002 (3)0.006 (3)0.002 (3)
C50.031 (3)0.035 (4)0.038 (3)0.003 (3)0.005 (3)0.001 (3)
C60.034 (4)0.041 (4)0.036 (3)0.005 (3)0.007 (3)0.001 (3)
C70.033 (3)0.040 (3)0.042 (3)0.000 (3)0.007 (3)0.002 (3)
C80.034 (3)0.045 (4)0.046 (4)0.002 (3)0.001 (3)0.002 (3)
C90.040 (4)0.044 (4)0.043 (4)0.005 (3)0.002 (3)0.001 (3)
N20.033 (3)0.048 (4)0.041 (3)0.008 (3)0.013 (3)0.004 (3)
N1A0.036 (4)0.037 (4)0.037 (4)0.001 (4)0.003 (4)0.005 (4)
C5A0.036 (4)0.037 (5)0.041 (4)0.000 (4)0.005 (4)0.000 (4)
C6A0.034 (4)0.041 (5)0.036 (4)0.004 (4)0.007 (4)0.001 (4)
C7A0.035 (3)0.040 (4)0.044 (4)0.002 (3)0.008 (3)0.002 (4)
C8A0.035 (4)0.043 (4)0.037 (4)0.004 (4)0.003 (3)0.006 (4)
C9A0.040 (4)0.043 (5)0.035 (4)0.001 (4)0.005 (4)0.002 (4)
N2A0.037 (4)0.043 (4)0.041 (4)0.004 (4)0.011 (4)0.004 (4)
N30.042 (3)0.043 (4)0.040 (3)0.012 (3)0.008 (3)0.007 (3)
C100.043 (4)0.043 (4)0.039 (3)0.002 (3)0.013 (3)0.000 (3)
C110.041 (4)0.045 (4)0.041 (3)0.005 (3)0.011 (3)0.007 (3)
C120.033 (3)0.047 (3)0.041 (3)0.005 (3)0.009 (3)0.003 (3)
C130.044 (3)0.059 (3)0.042 (3)0.016 (3)0.019 (3)0.005 (3)
C140.048 (3)0.057 (4)0.046 (3)0.013 (3)0.011 (3)0.011 (3)
N3A0.042 (4)0.045 (5)0.040 (4)0.010 (4)0.005 (3)0.003 (3)
C10A0.046 (4)0.041 (4)0.042 (4)0.009 (4)0.011 (4)0.004 (4)
C11A0.040 (4)0.050 (5)0.043 (4)0.005 (4)0.008 (4)0.002 (4)
C12A0.037 (4)0.047 (4)0.045 (4)0.010 (3)0.014 (3)0.003 (3)
C13A0.044 (4)0.052 (4)0.048 (4)0.013 (3)0.012 (3)0.007 (3)
C14A0.043 (4)0.052 (4)0.043 (4)0.013 (4)0.006 (3)0.003 (3)
Geometric parameters (Å, º) top
Ni1—O22.078 (3)N2—C121.391 (10)
Ni1—O32.043 (3)N1A—C5A1.339 (13)
Ni1—O52.095 (3)N1A—C9A1.343 (12)
Ni1—N42.096 (3)C5A—H5AA0.9500
Ni1—N12.086 (14)C5A—C6A1.371 (12)
Ni1—N1A2.02 (2)C6A—H6A0.9500
Ni1—N3i2.132 (10)C6A—C7A1.390 (12)
Ni1—N3Ai2.121 (14)C7A—C8A1.381 (12)
O1—C41.241 (5)C7A—N2A1.400 (13)
O2—C41.257 (5)C8A—H8A0.9500
O3—C11.267 (5)C8A—C9A1.378 (11)
O4—C11.242 (5)C9A—H9A0.9500
O5—H5A0.812 (19)N2A—H2AA0.8800
O5—H5B0.856 (19)N2A—C12A1.395 (13)
N4—H41.0000N3—C101.334 (10)
N4—C21.475 (5)N3—C141.347 (10)
N4—C31.467 (5)C10—H100.9500
C1—C21.520 (6)C10—C111.372 (9)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C11—C121.378 (10)
C3—H3A0.9900C12—C131.397 (11)
C3—H3B0.9900C13—H130.9500
C3—C41.531 (6)C13—C141.357 (8)
N1—C51.341 (10)C14—H140.9500
N1—C91.348 (9)N3A—C10A1.334 (12)
C5—H50.9500N3A—C14A1.351 (12)
C5—C61.374 (9)C10A—H10A0.9500
C6—H60.9500C10A—C11A1.378 (12)
C6—C71.382 (10)C11A—H11A0.9500
C7—C81.388 (10)C11A—C12A1.388 (12)
C7—N21.391 (9)C12A—C13A1.395 (12)
C8—H80.9500C13A—H13A0.9500
C8—C91.373 (9)C13A—C14A1.360 (10)
C9—H90.9500C14A—H14A0.9500
N2—H20.8800
O2—Ni1—O5176.65 (12)C8—C7—N2122.0 (13)
O2—Ni1—N482.18 (11)C7—C8—H8120.8
O2—Ni1—N191.2 (4)C9—C8—C7118.4 (8)
O2—Ni1—N3i93.4 (3)C9—C8—H8120.8
O2—Ni1—N3Ai87.9 (4)N1—C9—C8124.5 (8)
O3—Ni1—O286.66 (11)N1—C9—H9117.7
O3—Ni1—O591.05 (11)C8—C9—H9117.7
O3—Ni1—N482.64 (12)C7—N2—H2115.2
O3—Ni1—N195.3 (5)C7—N2—C12129.6 (13)
O3—Ni1—N3i177.8 (4)C12—N2—H2115.2
O3—Ni1—N3Ai170.6 (5)C5A—N1A—Ni1123.6 (14)
O5—Ni1—N495.11 (12)C5A—N1A—C9A115.3 (14)
O5—Ni1—N3i88.8 (3)C9A—N1A—Ni1120.9 (13)
O5—Ni1—N3Ai94.0 (4)N1A—C5A—H5AA117.8
N4—Ni1—N3i95.2 (4)N1A—C5A—C6A124.3 (16)
N4—Ni1—N3Ai89.0 (6)C6A—C5A—H5AA117.8
N1—Ni1—O591.5 (4)C5A—C6A—H6A120.3
N1—Ni1—N4173.1 (4)C5A—C6A—C7A119.3 (15)
N1—Ni1—N3i87.0 (6)C7A—C6A—H6A120.3
N1—Ni1—N3Ai92.5 (8)C6A—C7A—N2A116.1 (16)
N1A—Ni1—O295.2 (7)C8A—C7A—C6A117.6 (13)
N1A—Ni1—O391.6 (8)C8A—C7A—N2A125.9 (18)
N1A—Ni1—O587.2 (7)C7A—C8A—H8A120.6
N1A—Ni1—N4173.8 (7)C9A—C8A—C7A118.8 (11)
N1A—Ni1—N3Ai96.5 (10)C9A—C8A—H8A120.6
C4—O2—Ni1113.6 (2)N1A—C9A—C8A124.7 (12)
C1—O3—Ni1115.5 (3)N1A—C9A—H9A117.7
Ni1—O5—H5A119 (3)C8A—C9A—H9A117.7
Ni1—O5—H5B112 (3)C7A—N2A—H2AA117.5
H5A—O5—H5B105 (5)C12A—N2A—C7A125 (2)
Ni1—N4—H4110.0C12A—N2A—H2AA117.5
C2—N4—Ni1107.6 (2)C10—N3—Ni1ii126.0 (8)
C2—N4—H4110.0C10—N3—C14115.8 (9)
C3—N4—Ni1105.8 (2)C14—N3—Ni1ii118.2 (7)
C3—N4—H4110.0N3—C10—H10118.4
C3—N4—C2113.2 (4)N3—C10—C11123.1 (9)
O3—C1—C2117.7 (4)C11—C10—H10118.4
O4—C1—O3125.3 (4)C10—C11—H11119.5
O4—C1—C2117.0 (4)C10—C11—C12120.9 (8)
N4—C2—C1113.3 (3)C12—C11—H11119.5
N4—C2—H2A108.9N2—C12—C13124.8 (11)
N4—C2—H2B108.9C11—C12—N2119.3 (11)
C1—C2—H2A108.9C11—C12—C13115.9 (8)
C1—C2—H2B108.9C12—C13—H13120.2
H2A—C2—H2B107.7C14—C13—C12119.6 (7)
N4—C3—H3A108.9C14—C13—H13120.2
N4—C3—H3B108.9N3—C14—C13124.5 (7)
N4—C3—C4113.4 (3)N3—C14—H14117.8
H3A—C3—H3B107.7C13—C14—H14117.8
C4—C3—H3A108.9C10A—N3A—C14A116.2 (13)
C4—C3—H3B108.9N3A—C10A—H10A117.9
O1—C4—O2124.6 (4)N3A—C10A—C11A124.3 (13)
O1—C4—C3117.2 (4)C11A—C10A—H10A117.9
O2—C4—C3118.2 (4)C10A—C11A—H11A120.6
C5—N1—Ni1121.6 (10)C10A—C11A—C12A118.8 (11)
C5—N1—C9116.0 (10)C12A—C11A—H11A120.6
C9—N1—Ni1122.4 (9)N2A—C12A—C13A128.5 (15)
N1—C5—H5118.3C11A—C12A—N2A114.8 (14)
N1—C5—C6123.4 (11)C11A—C12A—C13A116.6 (11)
C6—C5—H5118.3C12A—C13A—H13A120.0
C5—C6—H6120.1C14A—C13A—C12A120.1 (10)
C5—C6—C7119.8 (10)C14A—C13A—H13A120.0
C7—C6—H6120.1N3A—C14A—C13A123.1 (10)
C6—C7—C8117.9 (9)N3A—C14A—H14A118.5
C6—C7—N2119.8 (12)C13A—C14A—H14A118.5
Ni1—O2—C4—O1175.9 (4)C9—N1—C5—C61 (3)
Ni1—O2—C4—C32.7 (5)N2—C7—C8—C9178.4 (14)
Ni1—O3—C1—O4173.2 (4)N2—C12—C13—C14173.6 (14)
Ni1—O3—C1—C28.6 (5)N1A—C5A—C6A—C7A2 (5)
Ni1—N4—C2—C118.7 (4)C5A—N1A—C9A—C8A1 (4)
Ni1—N4—C3—C426.9 (5)C5A—C6A—C7A—C8A2 (5)
Ni1—N1—C5—C6175.7 (14)C5A—C6A—C7A—N2A175 (3)
Ni1—N1—C9—C8176.5 (8)C6A—C7A—C8A—C9A2 (4)
Ni1—N1A—C5A—C6A177 (2)C6A—C7A—N2A—C12A170 (3)
Ni1—N1A—C9A—C8A176.5 (12)C7A—C8A—C9A—N1A1 (3)
Ni1ii—N3—C10—C11175.2 (7)C7A—N2A—C12A—C11A171 (2)
Ni1ii—N3—C14—C13175.3 (7)C7A—N2A—C12A—C13A13 (5)
Ni1ii—N3A—C10A—C11A171.5 (11)C8A—C7A—N2A—C12A18 (5)
Ni1ii—N3A—C14A—C13A174.3 (11)C9A—N1A—C5A—C6A1 (5)
O3—C1—C2—N419.1 (6)N2A—C7A—C8A—C9A174 (2)
O4—C1—C2—N4162.5 (4)N2A—C12A—C13A—C14A173 (2)
N4—C3—C4—O1163.7 (4)N3—C10—C11—C120.6 (17)
N4—C3—C4—O217.6 (6)C10—N3—C14—C133.0 (17)
C2—N4—C3—C490.7 (5)C10—C11—C12—N2173.7 (13)
C3—N4—C2—C197.9 (4)C10—C11—C12—C134.1 (18)
N1—C5—C6—C71 (3)C11—C12—C13—C144.1 (18)
C5—N1—C9—C80 (3)C12—C13—C14—N30.5 (16)
C5—C6—C7—C83 (3)C14—N3—C10—C113.0 (17)
C5—C6—C7—N2177.8 (17)N3A—C10A—C11A—C12A0 (3)
C6—C7—C8—C94 (3)C10A—N3A—C14A—C13A3 (3)
C6—C7—N2—C12157 (2)C10A—C11A—C12A—N2A175.1 (19)
C7—C8—C9—N12.4 (17)C10A—C11A—C12A—C13A8 (3)
C7—N2—C12—C11171.1 (16)C11A—C12A—C13A—C14A11 (3)
C7—N2—C12—C137 (3)C12A—C13A—C14A—N3A6 (2)
C8—C7—N2—C1229 (3)C14A—N3A—C10A—C11A5 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1iii0.81 (2)1.99 (2)2.774 (4)161 (5)
O5—H5B···O1iv0.86 (2)1.86 (2)2.706 (5)172 (5)
N4—H4···O2iv1.002.283.233 (4)158
C2—H2A···O1iv0.992.583.374 (6)137
C6—H6···O3v0.952.323.259 (14)170
C9—H9···N3i0.952.563.037 (16)112
N2—H2···O4v0.881.862.718 (16)166
C6A—H6A···O3v0.952.503.37 (2)152
C9A—H9A···O50.952.472.952 (13)111
N2A—H2AA···O4v0.881.992.82 (2)156
C10A—H10A···O5ii0.952.523.131 (15)123
C14A—H14A···O2ii0.952.282.904 (9)122
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y+1, z+1.
 

Acknowledgements

We thank Mr Andrew R. LaDuca for preparing the mol­ecular graphics.

Funding information

Funding for this research was provided by: Michigan State University, Honors College.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLaDuca, R. L. (2009). Coord. Chem. Rev. 253, 1759–1792.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2018). Crystal Maker. Crystal Maker Software, PO Box 183, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds