metal-organic compounds
cis-Bromidobis(ethylene-1,2-diamine)(methylamine)cobalt(III) dibromide
aDepartment of Physics, Thanthai Hans Rover College, Perambalur 621 220, India, bDepartment of Chemistry, BWDA Arts and Science College, Tindivanam 604 304, India, cDepartment of Physics, Thiruvalluvar University College of Arts and Science, Thiruvennainallur 607 203, India, dP. G. & Research Department of Physics, A. A. Govt. Arts College, Villupuram, India, and eDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: drmanirec@gmail.com
In the title compound, [CoBr(CH5N)(C2H8N2)2]Br2, the cobalt(III) ion has a distorted octahedral coordination environment and is ligated by four N atoms in the equatorial plane, with an additional N atom and a Br− ion occupying the axial positions. In the crystal, the complex cation and the two counter-anions are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming a supramolecular framework.
Keywords: crystal structure; cobalt(III) dibromide; methylamine; ethylene-1,2-diamine; hydrogen bonding.
CCDC reference: 894718
Structure description
Mixed-ligand cobalt(III) complexes exhibit antitumor, antibacterial, antimicrobial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992; Teicher et al., 1990; Arslan et al., 2009; Delehanty et al., 2008). Cobalt is an essential and integral component of vitamin B12 and is therefore found physiologically in most tissues. Cobalt(III) complexes are known for their involvement in electron-transfer and ligand-substitution reactions, which find applications in chemical and biological systems. Our present research concerns the design and synthesis of cobalt(III) complexes with the objective of understanding of their structure–reactivity correlations. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates (Anbalagan, 2011; Anbalagan et al., 2011).
The molecular structure of the title compound is illustrated in Fig. 1. The cobalt(III) ion has a distorted octahedral coordination environment and is ligated by four N atoms (N1, N2, N3 and N5) in the equatorial plane, with N atom (N4) and the Br− ion (Br1) occupying the axial positions. The Co1—N(ethylene-1,2-diamine) bond lengths vary from 1.958 (7) to 1.966 (7) Å, comparable with the values reported [1.962 (7) to 1.957 (8) Å] in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009). The Co1—N5 (methylamine) bond length is 1.983 (7) Å, which is also similar to the values of 1.9722 (2) to 1.988 (2) Å reported previously (Manimaran et al., 2018). Both five-membered chelate rings adopts twisted conformations (on the C1—C2 and C3—C4 bonds), and their mean planes are inclined to each other by 80.2 (5)°.
In the crystal, molecules are linked by a series of N—H⋯Br hydrogen bonds and a C—H⋯Br hydrogen bond, leading to the formation of a supramolecular framework (Fig. 2 and Table 1)
Synthesis and crystallization
To a suspension of 2 g of trans-[Co(en)2Br2]Br, made into a paste using 3–4 drops of water, ca 2 ml of methylamine was added dropwise over 20 min with mixing. The mixture was ground until the colour changed from dull green to red. The reaction mixture was set aside until no further change was observed and then left to stand overnight. Finally, the solid was washed with ethanol, then dissolved in 5–10 ml of water pre-heated to 343 K and allowed to crystallize using hot acidified water (yield 0.75 g). The crystals were filtered off, washed with ethanol and dried under vacuum. Pink block-like crystals were obtained by repeated recrystallization from hot acidified distilled water.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 894718
https://doi.org/10.1107/S2414314618008192/su5443sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618008192/su5443Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[CoBr(CH5N)(C2H8N2)2]Br2 | F(000) = 872 |
Mr = 449.90 | Dx = 2.126 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2458 reflections |
a = 13.2883 (8) Å | θ = 2.9–25.0° |
b = 7.5686 (5) Å | µ = 9.73 mm−1 |
c = 14.3602 (9) Å | T = 293 K |
β = 103.261 (6)° | Block, pink |
V = 1405.75 (15) Å3 | 0.23 × 0.17 × 0.11 mm |
Z = 4 |
Bruker SMART APEXII area-detector diffractometer | 2458 independent reflections |
Radiation source: fine-focus sealed tube | 1398 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
ω and φ scans | θmax = 25.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→15 |
Tmin = 0.165, Tmax = 0.361 | k = −9→8 |
5583 measured reflections | l = −9→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.89 | w = 1/[σ2(Fo2) + (0.0788P)2] where P = (Fo2 + 2Fc2)/3 |
2458 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 1.31 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br3 | −0.00338 (8) | 0.22334 (16) | 0.61657 (8) | 0.0449 (4) | |
Br2 | 0.37617 (8) | 0.41487 (18) | 0.63897 (7) | 0.0469 (4) | |
Br1 | 0.32768 (9) | −0.27534 (18) | 0.87914 (9) | 0.0592 (4) | |
Co1 | 0.27166 (8) | 0.01016 (18) | 0.82199 (8) | 0.0246 (3) | |
N1 | 0.1517 (5) | −0.0985 (11) | 0.7355 (5) | 0.032 (2) | |
HB | 0.1244 | −0.1818 | 0.7670 | 0.038* | |
HA | 0.1030 | −0.0159 | 0.7145 | 0.038* | |
N4 | 0.2206 (5) | 0.2493 (10) | 0.7838 (5) | 0.0280 (19) | |
H0AB | 0.2733 | 0.3175 | 0.7753 | 0.034* | |
H0AA | 0.1731 | 0.2444 | 0.7280 | 0.034* | |
N2 | 0.3397 (6) | −0.0143 (13) | 0.7154 (5) | 0.043 (2) | |
H3AA | 0.3696 | 0.0888 | 0.7059 | 0.051* | |
H3AB | 0.3894 | −0.0972 | 0.7295 | 0.051* | |
C3 | 0.1739 (8) | 0.3276 (15) | 0.8585 (8) | 0.047 (3) | |
HC | 0.1244 | 0.4184 | 0.8312 | 0.057* | |
HD | 0.2269 | 0.3804 | 0.9086 | 0.057* | |
C2 | 0.2630 (8) | −0.0653 (17) | 0.6268 (6) | 0.048 (3) | |
H0AC | 0.2306 | 0.0396 | 0.5944 | 0.058* | |
H0AD | 0.2974 | −0.1275 | 0.5838 | 0.058* | |
C5 | 0.4424 (9) | 0.2794 (17) | 0.9017 (9) | 0.060 (4) | |
H11A | 0.4280 | 0.3193 | 0.8365 | 0.090* | |
H11B | 0.5157 | 0.2798 | 0.9275 | 0.090* | |
H11C | 0.4096 | 0.3569 | 0.9387 | 0.090* | |
C1 | 0.1843 (8) | −0.1797 (16) | 0.6525 (7) | 0.043 (3) | |
H1AB | 0.2126 | −0.2965 | 0.6694 | 0.051* | |
H1AA | 0.1253 | −0.1908 | 0.5987 | 0.051* | |
N5 | 0.4021 (5) | 0.0986 (11) | 0.9053 (5) | 0.028 (2) | |
H2AB | 0.3964 | 0.0815 | 0.9659 | 0.033* | |
H2AA | 0.4524 | 0.0254 | 0.8962 | 0.033* | |
N3 | 0.1931 (6) | 0.0318 (11) | 0.9218 (5) | 0.033 (2) | |
H1AC | 0.1588 | −0.0694 | 0.9258 | 0.039* | |
H1AD | 0.2368 | 0.0513 | 0.9787 | 0.039* | |
C4 | 0.1200 (7) | 0.1775 (16) | 0.8991 (8) | 0.043 (3) | |
H2AD | 0.0993 | 0.2165 | 0.9563 | 0.052* | |
H2AC | 0.0588 | 0.1402 | 0.8524 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br3 | 0.0442 (6) | 0.0487 (8) | 0.0409 (6) | 0.0165 (5) | 0.0082 (5) | 0.0065 (6) |
Br2 | 0.0452 (7) | 0.0633 (10) | 0.0341 (6) | −0.0063 (6) | 0.0131 (5) | 0.0105 (6) |
Br1 | 0.0710 (8) | 0.0415 (9) | 0.0602 (8) | 0.0087 (6) | 0.0049 (6) | 0.0089 (7) |
Co1 | 0.0289 (7) | 0.0234 (8) | 0.0218 (6) | 0.0044 (6) | 0.0064 (5) | 0.0027 (6) |
N1 | 0.046 (5) | 0.028 (6) | 0.024 (4) | 0.006 (4) | 0.012 (4) | 0.000 (4) |
N4 | 0.031 (4) | 0.019 (5) | 0.037 (5) | 0.004 (3) | 0.013 (4) | 0.004 (4) |
N2 | 0.048 (5) | 0.046 (7) | 0.039 (5) | 0.006 (5) | 0.021 (4) | 0.002 (5) |
C3 | 0.061 (7) | 0.025 (7) | 0.060 (8) | 0.003 (6) | 0.023 (6) | −0.007 (6) |
C2 | 0.064 (7) | 0.062 (9) | 0.017 (5) | 0.008 (6) | 0.007 (5) | −0.003 (6) |
C5 | 0.055 (7) | 0.052 (10) | 0.060 (8) | −0.007 (6) | −0.013 (6) | 0.007 (7) |
C1 | 0.056 (7) | 0.037 (8) | 0.035 (6) | 0.004 (6) | 0.010 (5) | −0.002 (6) |
N5 | 0.021 (4) | 0.035 (6) | 0.025 (4) | 0.006 (3) | 0.001 (3) | 0.006 (4) |
N3 | 0.036 (5) | 0.035 (6) | 0.028 (4) | −0.012 (4) | 0.011 (4) | −0.004 (4) |
C4 | 0.034 (6) | 0.051 (9) | 0.052 (7) | 0.003 (5) | 0.023 (5) | −0.018 (6) |
Br1—Co1 | 2.3699 (18) | C3—HD | 0.9700 |
Co1—N2 | 1.958 (7) | C2—C1 | 1.468 (14) |
Co1—N1 | 1.962 (7) | C2—H0AC | 0.9700 |
Co1—N3 | 1.963 (7) | C2—H0AD | 0.9700 |
Co1—N4 | 1.966 (7) | C5—N5 | 1.475 (14) |
Co1—N5 | 1.983 (7) | C5—H11A | 0.9600 |
N1—C1 | 1.490 (11) | C5—H11B | 0.9600 |
N1—HB | 0.9000 | C5—H11C | 0.9600 |
N1—HA | 0.9000 | C1—H1AB | 0.9700 |
N4—C3 | 1.482 (12) | C1—H1AA | 0.9700 |
N4—H0AB | 0.9000 | N5—H2AB | 0.9000 |
N4—H0AA | 0.9000 | N5—H2AA | 0.9000 |
N2—C2 | 1.487 (12) | N3—C4 | 1.456 (13) |
N2—H3AA | 0.9000 | N3—H1AC | 0.9000 |
N2—H3AB | 0.9000 | N3—H1AD | 0.9000 |
C3—C4 | 1.528 (15) | C4—H2AD | 0.9700 |
C3—HC | 0.9700 | C4—H2AC | 0.9700 |
N2—Co1—N1 | 85.3 (3) | HC—C3—HD | 108.6 |
N2—Co1—N3 | 175.5 (3) | C1—C2—N2 | 109.1 (8) |
N1—Co1—N3 | 90.4 (3) | C1—C2—H0AC | 109.9 |
N2—Co1—N4 | 93.4 (3) | N2—C2—H0AC | 109.9 |
N1—Co1—N4 | 91.8 (3) | C1—C2—H0AD | 109.9 |
N3—Co1—N4 | 85.4 (3) | N2—C2—H0AD | 109.9 |
N2—Co1—N5 | 90.4 (3) | H0AC—C2—H0AD | 108.3 |
N1—Co1—N5 | 173.7 (3) | N5—C5—H11A | 109.5 |
N3—Co1—N5 | 93.9 (3) | N5—C5—H11B | 109.5 |
N4—Co1—N5 | 93.2 (3) | H11A—C5—H11B | 109.5 |
N2—Co1—Br1 | 91.2 (3) | N5—C5—H11C | 109.5 |
N1—Co1—Br1 | 89.0 (2) | H11A—C5—H11C | 109.5 |
N3—Co1—Br1 | 90.0 (3) | H11B—C5—H11C | 109.5 |
N4—Co1—Br1 | 175.4 (2) | C2—C1—N1 | 108.2 (9) |
N5—Co1—Br1 | 86.4 (2) | C2—C1—H1AB | 110.1 |
C1—N1—Co1 | 109.6 (5) | N1—C1—H1AB | 110.1 |
C1—N1—HB | 109.7 | C2—C1—H1AA | 110.1 |
Co1—N1—HB | 109.7 | N1—C1—H1AA | 110.1 |
C1—N1—HA | 109.7 | H1AB—C1—H1AA | 108.4 |
Co1—N1—HA | 109.7 | C5—N5—Co1 | 124.5 (6) |
HB—N1—HA | 108.2 | C5—N5—H2AB | 106.2 |
C3—N4—Co1 | 109.9 (6) | Co1—N5—H2AB | 106.2 |
C3—N4—H0AB | 109.7 | C5—N5—H2AA | 106.2 |
Co1—N4—H0AB | 109.7 | Co1—N5—H2AA | 106.2 |
C3—N4—H0AA | 109.7 | H2AB—N5—H2AA | 106.4 |
Co1—N4—H0AA | 109.7 | C4—N3—Co1 | 109.8 (6) |
H0AB—N4—H0AA | 108.2 | C4—N3—H1AC | 109.7 |
C2—N2—Co1 | 110.1 (6) | Co1—N3—H1AC | 109.7 |
C2—N2—H3AA | 109.6 | C4—N3—H1AD | 109.7 |
Co1—N2—H3AA | 109.6 | Co1—N3—H1AD | 109.7 |
C2—N2—H3AB | 109.6 | H1AC—N3—H1AD | 108.2 |
Co1—N2—H3AB | 109.6 | N3—C4—C3 | 107.5 (7) |
H3AA—N2—H3AB | 108.1 | N3—C4—H2AD | 110.2 |
N4—C3—C4 | 106.8 (9) | C3—C4—H2AD | 110.2 |
N4—C3—HC | 110.4 | N3—C4—H2AC | 110.2 |
C4—C3—HC | 110.4 | C3—C4—H2AC | 110.2 |
N4—C3—HD | 110.4 | H2AD—C4—H2AC | 108.5 |
C4—C3—HD | 110.4 | ||
N2—Co1—N1—C1 | 14.7 (7) | Co1—N2—C2—C1 | −33.9 (11) |
N3—Co1—N1—C1 | −166.6 (7) | N2—C2—C1—N1 | 45.9 (11) |
N4—Co1—N1—C1 | 108.0 (7) | Co1—N1—C1—C2 | −37.0 (10) |
N5—Co1—N1—C1 | −33 (3) | N2—Co1—N5—C5 | 77.4 (9) |
Br1—Co1—N1—C1 | −76.6 (6) | N1—Co1—N5—C5 | 125 (3) |
N2—Co1—N4—C3 | −172.2 (6) | N3—Co1—N5—C5 | −101.7 (9) |
N1—Co1—N4—C3 | 102.4 (6) | N4—Co1—N5—C5 | −16.1 (9) |
N3—Co1—N4—C3 | 12.1 (6) | Br1—Co1—N5—C5 | 168.5 (8) |
N5—Co1—N4—C3 | −81.6 (6) | N2—Co1—N3—C4 | −59 (5) |
Br1—Co1—N4—C3 | 3 (3) | N1—Co1—N3—C4 | −75.9 (7) |
N1—Co1—N2—C2 | 10.4 (7) | N4—Co1—N3—C4 | 15.9 (7) |
N3—Co1—N2—C2 | −6 (5) | N5—Co1—N3—C4 | 108.8 (7) |
N4—Co1—N2—C2 | −81.1 (8) | Br1—Co1—N3—C4 | −164.8 (6) |
N5—Co1—N2—C2 | −174.3 (8) | Co1—N3—C4—C3 | −39.5 (9) |
Br1—Co1—N2—C2 | 99.3 (7) | N4—C3—C4—N3 | 49.1 (10) |
Co1—N4—C3—C4 | −36.0 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HB···Br3i | 0.90 | 2.67 | 3.484 (7) | 151 |
N1—HA···Br3 | 0.90 | 2.52 | 3.389 (8) | 163 |
N4—H0AB···Br2 | 0.90 | 2.73 | 3.485 (7) | 142 |
N4—H0AA···Br3 | 0.90 | 2.52 | 3.374 (7) | 158 |
N2—H3AA···Br2 | 0.90 | 2.66 | 3.498 (10) | 156 |
N5—H2AB···Br2ii | 0.90 | 2.56 | 3.452 (7) | 171 |
N5—H2AA···Br2iii | 0.90 | 2.58 | 3.447 (7) | 161 |
N3—H1AC···Br3 | 0.90 | 2.55 | 3.387 (8) | 154 |
N3—H1AD···Br2ii | 0.90 | 2.61 | 3.511 (7) | 174 |
C5—H11A···Br2 | 0.96 | 2.85 | 3.813 (13) | 176 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors thank the Department of Chemistry, Pondicherry University, for the data collection.
Funding information
SM gratefully acknowledges the DST–SERB for a young scientist start-up research grant (YSS/2014/000561) and the DST–FIST for providing NMR facilities to the department.
References
Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832. Web of Science CrossRef CAS Google Scholar
Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52. Web of Science CSD CrossRef CAS Google Scholar
Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527. Web of Science CrossRef PubMed Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837. Web of Science CrossRef Google Scholar
Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Manimaran, S. M., Manjunathan, M., Anbalagan, K., Sambathkumar, K. & Govindan, E. (2018). IUCrData. manuscript t4e0093 for review. Submitted [bh4035]. Google Scholar
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975. CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.