metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Bromidobis(ethyl­ene-1,2-di­amine)(methyl­amine)­cobalt(III) dibromide

aDepartment of Physics, Thanthai Hans Rover College, Perambalur 621 220, India, bDepartment of Chemistry, BWDA Arts and Science College, Tindivanam 604 304, India, cDepartment of Physics, Thiruvalluvar University College of Arts and Science, Thiruvennainallur 607 203, India, dP. G. & Research Department of Physics, A. A. Govt. Arts College, Villupuram, India, and eDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: drmanirec@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 May 2018; accepted 4 June 2018; online 8 June 2018)

In the title compound, [CoBr(CH5N)(C2H8N2)2]Br2, the cobalt(III) ion has a distorted octa­hedral coordination environment and is ligated by four N atoms in the equatorial plane, with an additional N atom and a Br ion occupying the axial positions. In the crystal, the complex cation and the two counter-anions are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming a supra­molecular framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mixed-ligand cobalt(III) complexes exhibit anti­tumor, anti­bacterial, anti­microbial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992[Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475-480.]; Teicher et al., 1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]; Arslan et al., 2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]; Delehanty et al., 2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]). Cobalt is an essential and integral component of vitamin B12 and is therefore found physiologically in most tissues. Cobalt(III) complexes are known for their involvement in electron-transfer and ligand-substitution reactions, which find applications in chemical and biological systems. Our present research concerns the design and synthesis of cobalt(III) complexes with the objective of understanding of their structure–reactivity correlations. Substituting an amino ligand for the MeNH2 moiety can yield complexes of similar structure, but with differing electron-transfer rates (Anbalagan, 2011[Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.]; Anbalagan et al., 2011[Anbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45-52.]).

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The cobalt(III) ion has a distorted octa­hedral coordination environment and is ligated by four N atoms (N1, N2, N3 and N5) in the equatorial plane, with N atom (N4) and the Br ion (Br1) occupying the axial positions. The Co1—N(ethyl­ene-1,2-di­amine) bond lengths vary from 1.958 (7) to 1.966 (7) Å, comparable with the values reported [1.962 (7) to 1.957 (8) Å] in the literature (Lee et al., 2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]; Ramesh et al., 2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]; Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]; Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174-m1175.]). The Co1—N5 (methyl­amine) bond length is 1.983 (7) Å, which is also similar to the values of 1.9722 (2) to 1.988 (2) Å reported previously (Manimaran et al., 2018[Manimaran, S. M., Manjunathan, M., Anbalagan, K., Sambathkumar, K. & Govindan, E. (2018). IUCrData. manuscript t4e0093 for review. Submitted [bh4035].]). Both five-membered chelate rings adopts twisted conformations (on the C1—C2 and C3—C4 bonds), and their mean planes are inclined to each other by 80.2 (5)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are linked by a series of N—H⋯Br hydrogen bonds and a C—H⋯Br hydrogen bond, leading to the formation of a supra­molecular framework (Fig. 2[link] and Table 1[link])

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HB⋯Br3i 0.90 2.67 3.484 (7) 151
N1—HA⋯Br3 0.90 2.52 3.389 (8) 163
N4—H0AB⋯Br2 0.90 2.73 3.485 (7) 142
N4—H0AA⋯Br3 0.90 2.52 3.374 (7) 158
N2—H3AA⋯Br2 0.90 2.66 3.498 (10) 156
N5—H2AB⋯Br2ii 0.90 2.56 3.452 (7) 171
N5—H2AA⋯Br2iii 0.90 2.58 3.447 (7) 161
N3—H1AC⋯Br3 0.90 2.55 3.387 (8) 154
N3—H1AD⋯Br2ii 0.90 2.61 3.511 (7) 174
C5—H11A⋯Br2 0.96 2.85 3.813 (13) 176
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The N—H⋯Br hydrogen bonds are shown as dashed lines (Table 1[link]). For clarity, C-bound H atoms have been omitted unless involved in hydrogen bonding.

Synthesis and crystallization

To a suspension of 2 g of trans-[Co(en)2Br2]Br, made into a paste using 3–4 drops of water, ca 2 ml of methyl­amine was added dropwise over 20 min with mixing. The mixture was ground until the colour changed from dull green to red. The reaction mixture was set aside until no further change was observed and then left to stand overnight. Finally, the solid was washed with ethanol, then dissolved in 5–10 ml of water pre-heated to 343 K and allowed to crystallize using hot acidified water (yield 0.75 g). The crystals were filtered off, washed with ethanol and dried under vacuum. Pink block-like crystals were obtained by repeated recrystallization from hot acidified distilled water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CoBr(CH5N)(C2H8N2)2]Br2
Mr 449.90
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 13.2883 (8), 7.5686 (5), 14.3602 (9)
β (°) 103.261 (6)
V3) 1405.75 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.73
Crystal size (mm) 0.23 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.165, 0.361
No. of measured, independent and observed [I > 2σ(I)] reflections 5583, 2458, 1398
Rint 0.076
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.143, 0.89
No. of reflections 2458
No. of parameters 128
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.31, −1.14
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

cis-Bromidobis(ethylene-1,2-diamine)(methylamine)cobalt(III) dibromide top
Crystal data top
[CoBr(CH5N)(C2H8N2)2]Br2F(000) = 872
Mr = 449.90Dx = 2.126 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2458 reflections
a = 13.2883 (8) Åθ = 2.9–25.0°
b = 7.5686 (5) ŵ = 9.73 mm1
c = 14.3602 (9) ÅT = 293 K
β = 103.261 (6)°Block, pink
V = 1405.75 (15) Å30.23 × 0.17 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube1398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω and φ scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.165, Tmax = 0.361k = 98
5583 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 1.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.00338 (8)0.22334 (16)0.61657 (8)0.0449 (4)
Br20.37617 (8)0.41487 (18)0.63897 (7)0.0469 (4)
Br10.32768 (9)0.27534 (18)0.87914 (9)0.0592 (4)
Co10.27166 (8)0.01016 (18)0.82199 (8)0.0246 (3)
N10.1517 (5)0.0985 (11)0.7355 (5)0.032 (2)
HB0.12440.18180.76700.038*
HA0.10300.01590.71450.038*
N40.2206 (5)0.2493 (10)0.7838 (5)0.0280 (19)
H0AB0.27330.31750.77530.034*
H0AA0.17310.24440.72800.034*
N20.3397 (6)0.0143 (13)0.7154 (5)0.043 (2)
H3AA0.36960.08880.70590.051*
H3AB0.38940.09720.72950.051*
C30.1739 (8)0.3276 (15)0.8585 (8)0.047 (3)
HC0.12440.41840.83120.057*
HD0.22690.38040.90860.057*
C20.2630 (8)0.0653 (17)0.6268 (6)0.048 (3)
H0AC0.23060.03960.59440.058*
H0AD0.29740.12750.58380.058*
C50.4424 (9)0.2794 (17)0.9017 (9)0.060 (4)
H11A0.42800.31930.83650.090*
H11B0.51570.27980.92750.090*
H11C0.40960.35690.93870.090*
C10.1843 (8)0.1797 (16)0.6525 (7)0.043 (3)
H1AB0.21260.29650.66940.051*
H1AA0.12530.19080.59870.051*
N50.4021 (5)0.0986 (11)0.9053 (5)0.028 (2)
H2AB0.39640.08150.96590.033*
H2AA0.45240.02540.89620.033*
N30.1931 (6)0.0318 (11)0.9218 (5)0.033 (2)
H1AC0.15880.06940.92580.039*
H1AD0.23680.05130.97870.039*
C40.1200 (7)0.1775 (16)0.8991 (8)0.043 (3)
H2AD0.09930.21650.95630.052*
H2AC0.05880.14020.85240.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0442 (6)0.0487 (8)0.0409 (6)0.0165 (5)0.0082 (5)0.0065 (6)
Br20.0452 (7)0.0633 (10)0.0341 (6)0.0063 (6)0.0131 (5)0.0105 (6)
Br10.0710 (8)0.0415 (9)0.0602 (8)0.0087 (6)0.0049 (6)0.0089 (7)
Co10.0289 (7)0.0234 (8)0.0218 (6)0.0044 (6)0.0064 (5)0.0027 (6)
N10.046 (5)0.028 (6)0.024 (4)0.006 (4)0.012 (4)0.000 (4)
N40.031 (4)0.019 (5)0.037 (5)0.004 (3)0.013 (4)0.004 (4)
N20.048 (5)0.046 (7)0.039 (5)0.006 (5)0.021 (4)0.002 (5)
C30.061 (7)0.025 (7)0.060 (8)0.003 (6)0.023 (6)0.007 (6)
C20.064 (7)0.062 (9)0.017 (5)0.008 (6)0.007 (5)0.003 (6)
C50.055 (7)0.052 (10)0.060 (8)0.007 (6)0.013 (6)0.007 (7)
C10.056 (7)0.037 (8)0.035 (6)0.004 (6)0.010 (5)0.002 (6)
N50.021 (4)0.035 (6)0.025 (4)0.006 (3)0.001 (3)0.006 (4)
N30.036 (5)0.035 (6)0.028 (4)0.012 (4)0.011 (4)0.004 (4)
C40.034 (6)0.051 (9)0.052 (7)0.003 (5)0.023 (5)0.018 (6)
Geometric parameters (Å, º) top
Br1—Co12.3699 (18)C3—HD0.9700
Co1—N21.958 (7)C2—C11.468 (14)
Co1—N11.962 (7)C2—H0AC0.9700
Co1—N31.963 (7)C2—H0AD0.9700
Co1—N41.966 (7)C5—N51.475 (14)
Co1—N51.983 (7)C5—H11A0.9600
N1—C11.490 (11)C5—H11B0.9600
N1—HB0.9000C5—H11C0.9600
N1—HA0.9000C1—H1AB0.9700
N4—C31.482 (12)C1—H1AA0.9700
N4—H0AB0.9000N5—H2AB0.9000
N4—H0AA0.9000N5—H2AA0.9000
N2—C21.487 (12)N3—C41.456 (13)
N2—H3AA0.9000N3—H1AC0.9000
N2—H3AB0.9000N3—H1AD0.9000
C3—C41.528 (15)C4—H2AD0.9700
C3—HC0.9700C4—H2AC0.9700
N2—Co1—N185.3 (3)HC—C3—HD108.6
N2—Co1—N3175.5 (3)C1—C2—N2109.1 (8)
N1—Co1—N390.4 (3)C1—C2—H0AC109.9
N2—Co1—N493.4 (3)N2—C2—H0AC109.9
N1—Co1—N491.8 (3)C1—C2—H0AD109.9
N3—Co1—N485.4 (3)N2—C2—H0AD109.9
N2—Co1—N590.4 (3)H0AC—C2—H0AD108.3
N1—Co1—N5173.7 (3)N5—C5—H11A109.5
N3—Co1—N593.9 (3)N5—C5—H11B109.5
N4—Co1—N593.2 (3)H11A—C5—H11B109.5
N2—Co1—Br191.2 (3)N5—C5—H11C109.5
N1—Co1—Br189.0 (2)H11A—C5—H11C109.5
N3—Co1—Br190.0 (3)H11B—C5—H11C109.5
N4—Co1—Br1175.4 (2)C2—C1—N1108.2 (9)
N5—Co1—Br186.4 (2)C2—C1—H1AB110.1
C1—N1—Co1109.6 (5)N1—C1—H1AB110.1
C1—N1—HB109.7C2—C1—H1AA110.1
Co1—N1—HB109.7N1—C1—H1AA110.1
C1—N1—HA109.7H1AB—C1—H1AA108.4
Co1—N1—HA109.7C5—N5—Co1124.5 (6)
HB—N1—HA108.2C5—N5—H2AB106.2
C3—N4—Co1109.9 (6)Co1—N5—H2AB106.2
C3—N4—H0AB109.7C5—N5—H2AA106.2
Co1—N4—H0AB109.7Co1—N5—H2AA106.2
C3—N4—H0AA109.7H2AB—N5—H2AA106.4
Co1—N4—H0AA109.7C4—N3—Co1109.8 (6)
H0AB—N4—H0AA108.2C4—N3—H1AC109.7
C2—N2—Co1110.1 (6)Co1—N3—H1AC109.7
C2—N2—H3AA109.6C4—N3—H1AD109.7
Co1—N2—H3AA109.6Co1—N3—H1AD109.7
C2—N2—H3AB109.6H1AC—N3—H1AD108.2
Co1—N2—H3AB109.6N3—C4—C3107.5 (7)
H3AA—N2—H3AB108.1N3—C4—H2AD110.2
N4—C3—C4106.8 (9)C3—C4—H2AD110.2
N4—C3—HC110.4N3—C4—H2AC110.2
C4—C3—HC110.4C3—C4—H2AC110.2
N4—C3—HD110.4H2AD—C4—H2AC108.5
C4—C3—HD110.4
N2—Co1—N1—C114.7 (7)Co1—N2—C2—C133.9 (11)
N3—Co1—N1—C1166.6 (7)N2—C2—C1—N145.9 (11)
N4—Co1—N1—C1108.0 (7)Co1—N1—C1—C237.0 (10)
N5—Co1—N1—C133 (3)N2—Co1—N5—C577.4 (9)
Br1—Co1—N1—C176.6 (6)N1—Co1—N5—C5125 (3)
N2—Co1—N4—C3172.2 (6)N3—Co1—N5—C5101.7 (9)
N1—Co1—N4—C3102.4 (6)N4—Co1—N5—C516.1 (9)
N3—Co1—N4—C312.1 (6)Br1—Co1—N5—C5168.5 (8)
N5—Co1—N4—C381.6 (6)N2—Co1—N3—C459 (5)
Br1—Co1—N4—C33 (3)N1—Co1—N3—C475.9 (7)
N1—Co1—N2—C210.4 (7)N4—Co1—N3—C415.9 (7)
N3—Co1—N2—C26 (5)N5—Co1—N3—C4108.8 (7)
N4—Co1—N2—C281.1 (8)Br1—Co1—N3—C4164.8 (6)
N5—Co1—N2—C2174.3 (8)Co1—N3—C4—C339.5 (9)
Br1—Co1—N2—C299.3 (7)N4—C3—C4—N349.1 (10)
Co1—N4—C3—C436.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HB···Br3i0.902.673.484 (7)151
N1—HA···Br30.902.523.389 (8)163
N4—H0AB···Br20.902.733.485 (7)142
N4—H0AA···Br30.902.523.374 (7)158
N2—H3AA···Br20.902.663.498 (10)156
N5—H2AB···Br2ii0.902.563.452 (7)171
N5—H2AA···Br2iii0.902.583.447 (7)161
N3—H1AC···Br30.902.553.387 (8)154
N3—H1AD···Br2ii0.902.613.511 (7)174
C5—H11A···Br20.962.853.813 (13)176
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, for the data collection.

Funding information

SM gratefully acknowledges the DST–SERB for a young scientist start-up research grant (YSS/2014/000561) and the DST–FIST for providing NMR facilities to the department.

References

First citationAnbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832.  Web of Science CrossRef CAS Google Scholar
First citationAnbalagan, K., Maharaja Mahalakshmi, C. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManimaran, S. M., Manjunathan, M., Anbalagan, K., Sambathkumar, K. & Govindan, E. (2018). IUCrData. manuscript t4e0093 for review. Submitted [bh4035].  Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds