organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Chloro­naphthalen-1-yl 4-methyl­benzene­sulfonate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by J. Simpson, University of Otago, New Zealand (Received 12 June 2018; accepted 18 June 2018; online 22 June 2018)

In the title compound, C17H13ClO3S, the naphthalene ring system and the benzene ring of the tosyl­ate substituent are inclined to one another by 55.32 (5)°. The crystal structure features weak inter­molecular C—H⋯O hydrogen bonds, one of which forms inversion dimers. Additional C—H⋯O hydrogen bonds and weak Cl⋯Cl halogen bonds stack the mol­ecules along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl tosyl­ates are important inter­mediates in organic synthesis (Hugo et al., 2014[Hugo, A. G., Jimena, M. M., Gladys, M. C., Carlos, E. T. & Carlos, R. P. (2014). Bioorg. Med. Chem. Lett. 24, 760-764.]; Xu & Zhang, 2011[Xu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5177-5180.]; Grandane et al., 2012[Grandane, A., Belyakov, S., Trapencieris, P. & Zalubovskis, R. (2012). Tetrahedron, 68, 5541-5546.]). These compounds are easily prepared from cheap, readily available starting materials and are convenient to handle, stable crystalline solids (Bisz & Szostak, 2017a[Bisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964-3981.],b[Bisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361-5366.]). These advantages make them ideal substrates in cross-coupling reactions (Piontek et al., 2017[Piontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272-7276.]; Ackermann et al., 2006[Ackermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619-2622.]; Bisz et al., 2018[Bisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290-1294.]).

There is one independent mol­ecule in the asymmetric unit of the title compound. The mol­ecular structure is shown in Fig. 1[link]. The mol­ecule consists of a naphthalene ring system substituted at C1 by a 4-methyl­benzene­sulfonate group and with a chlorine substituent at C4. The dihedral angle between the naphthalene ring system (r.m.s. deviation = 0.0104 Å) and the benzene ring is 55.32 (5)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, C2—H2⋯O2 hydrogen bonds, Table 1[link], form inversion dimers that enclose R22(14) rings. Additional C12—H12⋯O3 and C16—H16⋯O1 hydrogen bonds link adjacent dimers, forming double rows of mol­ecules along the bc diagonal, Fig. 2[link]. Weak Cl1⋯Cl1(1 − x, 1 − y, −z) halogen bonds [3.6817 (8) Å] also occur. These contacts combine to stack the mol­ecules along the b-axis direction, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.53 3.2651 (19) 136
C12—H12⋯O3ii 0.93 2.53 3.3050 (18) 141
C16—H16⋯O1iii 0.93 2.53 3.3192 (18) 143
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Rows of mol­ecules along the bc diagonal. Hydrogen bonds are shown as blue dashed lines.
[Figure 3]
Figure 3
Overall packing viewed along the b-axis direction. Representative Cl⋯Cl contacts are shown as green dotted lines.

Synthesis and crystallization

The compound was synthesized according to a previously described procedure (Murai et al., 2012[Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818-2821.]). The crystallization was carried out in diethyl ether, previously stored over sodium. Diethyl ether (0.8 ml) was placed in a storage reaction vial (8 ml) provided with a silicone septum. The title compound was added to diethyl ether until a saturated solution was obtained. The solution was then heated to the boiling point of the solvent and the vial was screwed off with a silicone septum stopper. The resulting solution was then heated and left to stand in a refrigerator (−20°C), yielding colourless crystals suitable for data collection.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13ClO3S
Mr 332.78
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.1301 (3), 11.9592 (2), 10.3738 (3)
β (°) 112.041 (3)
V3) 1509.90 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.5 × 0.45 × 0.4
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 10121, 2950, 2515
Rint 0.017
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.06
No. of reflections 2950
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.34
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction, (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

4-Chloronaphthalen-1-yl 4-methylbenzenesulfonate top
Crystal data top
C17H13ClO3SF(000) = 688
Mr = 332.78Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.1301 (3) ÅCell parameters from 10121 reflections
b = 11.9592 (2) Åθ = 3.4–26.0°
c = 10.3738 (3) ŵ = 0.40 mm1
β = 112.041 (3)°T = 100 K
V = 1509.90 (7) Å3Irregular, colourless
Z = 40.5 × 0.45 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2515 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scanh = 1616
10121 measured reflectionsk = 148
2950 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4347P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2950 reflectionsΔρmax = 0.40 e Å3
200 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03474 (3)0.34571 (3)0.29668 (4)0.01694 (11)
Cl10.44738 (3)0.56968 (3)0.12070 (4)0.02886 (12)
O10.13270 (8)0.29057 (8)0.26065 (11)0.0190 (2)
O20.04014 (9)0.39892 (9)0.17485 (11)0.0238 (3)
O30.00103 (9)0.25441 (9)0.35695 (11)0.0234 (3)
C10.20522 (12)0.36011 (12)0.22530 (15)0.0175 (3)
C20.16998 (13)0.42354 (13)0.10778 (15)0.0213 (3)
H20.09630.42360.04900.026*
C30.24673 (13)0.48882 (13)0.07683 (15)0.0226 (3)
H30.22360.53400.00190.027*
C40.35509 (13)0.48629 (13)0.16182 (16)0.0204 (3)
C50.50724 (12)0.41223 (12)0.37265 (16)0.0199 (3)
H50.55920.45340.35180.024*
C60.53989 (13)0.34678 (13)0.48863 (17)0.0227 (3)
H60.61380.34360.54610.027*
C70.46217 (13)0.28373 (13)0.52221 (17)0.0232 (3)
H70.48520.23990.60210.028*
C80.35365 (13)0.28673 (12)0.43820 (16)0.0199 (3)
H80.30330.24440.46080.024*
C90.31700 (12)0.35393 (12)0.31654 (15)0.0162 (3)
C100.39536 (12)0.41840 (12)0.28356 (15)0.0169 (3)
C110.10147 (11)0.44694 (12)0.42155 (14)0.0144 (3)
C120.09851 (12)0.55841 (12)0.38264 (15)0.0178 (3)
H120.06030.58020.29100.021*
C130.15371 (12)0.63630 (12)0.48313 (16)0.0195 (3)
H130.15210.71120.45840.023*
C140.21162 (11)0.60499 (13)0.62050 (15)0.0174 (3)
C150.21289 (12)0.49281 (13)0.65634 (15)0.0202 (3)
H150.25110.47090.74790.024*
C160.15807 (13)0.41343 (13)0.55780 (15)0.0196 (3)
H160.15920.33860.58260.023*
C170.26993 (13)0.69201 (14)0.72763 (17)0.0246 (4)
H17A0.31850.73420.69650.037*
H17B0.31160.65600.81410.037*
H17C0.21690.74130.74060.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01306 (18)0.01679 (19)0.0198 (2)0.00117 (14)0.00481 (15)0.00584 (14)
Cl10.0303 (2)0.0307 (2)0.0308 (2)0.00058 (17)0.01738 (19)0.00840 (17)
O10.0171 (5)0.0170 (5)0.0246 (6)0.0006 (4)0.0096 (5)0.0057 (4)
O20.0168 (5)0.0287 (6)0.0202 (6)0.0022 (5)0.0003 (5)0.0063 (5)
O30.0215 (6)0.0195 (6)0.0312 (6)0.0065 (4)0.0123 (5)0.0071 (5)
C10.0184 (7)0.0157 (7)0.0203 (8)0.0004 (6)0.0093 (6)0.0057 (6)
C20.0192 (8)0.0254 (8)0.0166 (7)0.0034 (6)0.0037 (6)0.0050 (6)
C30.0273 (8)0.0244 (8)0.0159 (7)0.0077 (7)0.0079 (7)0.0026 (6)
C40.0242 (8)0.0200 (8)0.0213 (8)0.0022 (6)0.0136 (7)0.0002 (6)
C50.0181 (7)0.0181 (8)0.0264 (8)0.0017 (6)0.0116 (7)0.0015 (6)
C60.0181 (8)0.0228 (8)0.0251 (8)0.0056 (6)0.0057 (7)0.0002 (7)
C70.0240 (8)0.0229 (8)0.0226 (8)0.0075 (7)0.0087 (7)0.0062 (7)
C80.0223 (8)0.0174 (7)0.0237 (8)0.0028 (6)0.0126 (7)0.0010 (6)
C90.0178 (7)0.0148 (7)0.0175 (7)0.0033 (6)0.0084 (6)0.0031 (6)
C100.0192 (7)0.0152 (7)0.0181 (7)0.0031 (6)0.0090 (6)0.0025 (6)
C110.0126 (7)0.0146 (7)0.0163 (7)0.0010 (5)0.0056 (6)0.0038 (6)
C120.0189 (7)0.0181 (7)0.0150 (7)0.0033 (6)0.0047 (6)0.0013 (6)
C130.0218 (8)0.0142 (7)0.0230 (8)0.0003 (6)0.0088 (7)0.0002 (6)
C140.0123 (7)0.0215 (8)0.0205 (8)0.0026 (6)0.0085 (6)0.0057 (6)
C150.0209 (8)0.0248 (8)0.0133 (7)0.0008 (6)0.0047 (6)0.0013 (6)
C160.0243 (8)0.0161 (7)0.0190 (7)0.0001 (6)0.0089 (7)0.0023 (6)
C170.0193 (8)0.0290 (9)0.0248 (8)0.0070 (7)0.0075 (7)0.0108 (7)
Geometric parameters (Å, º) top
S1—O31.4226 (11)C7—H70.9300
S1—O21.4270 (11)C8—C91.419 (2)
S1—O11.6093 (10)C8—H80.9300
S1—C111.7491 (14)C9—C101.426 (2)
Cl1—C41.7415 (16)C11—C161.386 (2)
O1—C11.4124 (17)C11—C121.389 (2)
C1—C21.361 (2)C12—C131.383 (2)
C1—C91.419 (2)C12—H120.9300
C2—C31.404 (2)C13—C141.391 (2)
C2—H20.9300C13—H130.9300
C3—C41.364 (2)C14—C151.391 (2)
C3—H30.9300C14—C171.505 (2)
C4—C101.426 (2)C15—C161.383 (2)
C5—C61.363 (2)C15—H150.9300
C5—C101.414 (2)C16—H160.9300
C5—H50.9300C17—H17A0.9600
C6—C71.414 (2)C17—H17B0.9600
C6—H60.9300C17—H17C0.9600
C7—C81.363 (2)
O3—S1—O2120.01 (7)C1—C9—C8122.92 (14)
O3—S1—O1102.24 (6)C1—C9—C10118.07 (13)
O2—S1—O1108.79 (6)C8—C9—C10119.01 (13)
O3—S1—C11111.22 (7)C5—C10—C4123.91 (14)
O2—S1—C11109.54 (7)C5—C10—C9118.76 (13)
O1—S1—C11103.51 (6)C4—C10—C9117.33 (13)
C1—O1—S1119.63 (9)C16—C11—C12121.29 (13)
C2—C1—O1121.67 (13)C16—C11—S1118.87 (11)
C2—C1—C9123.06 (14)C12—C11—S1119.83 (11)
O1—C1—C9115.18 (13)C13—C12—C11118.54 (13)
C1—C2—C3118.87 (14)C13—C12—H12120.7
C1—C2—H2120.6C11—C12—H12120.7
C3—C2—H2120.6C12—C13—C14121.41 (14)
C4—C3—C2120.26 (14)C12—C13—H13119.3
C4—C3—H3119.9C14—C13—H13119.3
C2—C3—H3119.9C15—C14—C13118.72 (13)
C3—C4—C10122.37 (14)C15—C14—C17121.19 (14)
C3—C4—Cl1118.80 (12)C13—C14—C17120.08 (14)
C10—C4—Cl1118.83 (12)C16—C15—C14120.93 (14)
C6—C5—C10120.84 (14)C16—C15—H15119.5
C6—C5—H5119.6C14—C15—H15119.5
C10—C5—H5119.6C15—C16—C11119.10 (14)
C5—C6—C7120.46 (14)C15—C16—H16120.4
C5—C6—H6119.8C11—C16—H16120.4
C7—C6—H6119.8C14—C17—H17A109.5
C8—C7—C6120.43 (14)C14—C17—H17B109.5
C8—C7—H7119.8H17A—C17—H17B109.5
C6—C7—H7119.8C14—C17—H17C109.5
C7—C8—C9120.50 (14)H17A—C17—H17C109.5
C7—C8—H8119.8H17B—C17—H17C109.5
C9—C8—H8119.8
O3—S1—O1—C1166.82 (10)C3—C4—C10—C91.6 (2)
O2—S1—O1—C165.27 (11)Cl1—C4—C10—C9178.03 (10)
C11—S1—O1—C151.16 (11)C1—C9—C10—C5179.34 (13)
S1—O1—C1—C265.00 (16)C8—C9—C10—C50.6 (2)
S1—O1—C1—C9118.30 (12)C1—C9—C10—C41.07 (19)
O1—C1—C2—C3178.46 (12)C8—C9—C10—C4178.95 (13)
C9—C1—C2—C32.0 (2)O3—S1—C11—C1630.20 (14)
C1—C2—C3—C41.5 (2)O2—S1—C11—C16165.20 (12)
C2—C3—C4—C100.3 (2)O1—S1—C11—C1678.90 (13)
C2—C3—C4—Cl1179.32 (11)O3—S1—C11—C12150.85 (12)
C10—C5—C6—C70.1 (2)O2—S1—C11—C1215.85 (14)
C5—C6—C7—C80.7 (2)O1—S1—C11—C12100.05 (12)
C6—C7—C8—C90.6 (2)C16—C11—C12—C130.1 (2)
C2—C1—C9—C8179.28 (13)S1—C11—C12—C13178.83 (11)
O1—C1—C9—C82.6 (2)C11—C12—C13—C140.2 (2)
C2—C1—C9—C100.7 (2)C12—C13—C14—C150.4 (2)
O1—C1—C9—C10177.35 (11)C12—C13—C14—C17179.41 (14)
C7—C8—C9—C1179.90 (14)C13—C14—C15—C160.2 (2)
C7—C8—C9—C100.1 (2)C17—C14—C15—C16179.22 (14)
C6—C5—C10—C4179.00 (14)C14—C15—C16—C110.1 (2)
C6—C5—C10—C90.6 (2)C12—C11—C16—C150.3 (2)
C3—C4—C10—C5178.87 (15)S1—C11—C16—C15178.66 (11)
Cl1—C4—C10—C51.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.533.2651 (19)136
C12—H12···O3ii0.932.533.3050 (18)141
C16—H16···O1iii0.932.533.3192 (18)143
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Funding information

We gratefully acknowledge Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

References

First citationAckermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619–2622.  Web of Science CrossRef CAS Google Scholar
First citationBisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964–3981.  Web of Science CrossRef Google Scholar
First citationBisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361–5366.  Web of Science CrossRef Google Scholar
First citationBisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290–1294.  Web of Science CrossRef Google Scholar
First citationGrandane, A., Belyakov, S., Trapencieris, P. & Zalubovskis, R. (2012). Tetrahedron, 68, 5541–5546.  Web of Science CrossRef Google Scholar
First citationHugo, A. G., Jimena, M. M., Gladys, M. C., Carlos, E. T. & Carlos, R. P. (2014). Bioorg. Med. Chem. Lett. 24, 760–764.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction, (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPiontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272–7276.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, H. & Zhang, J.-L. (2011). Bioorg. Med. Chem. Lett. 21, 5177–5180.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds