organic compounds
2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetic acid dihydrate
aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP, 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mohcinemissioui@yahoo.com
In the title compound, C11H10N2O3·2H2O, the constituent atoms of the dihydroquinoxaline moiety deviate from the mean plane of the unit by +0.0572 (8) to −0.0874 (8) Å while the acetic acid substituent is nearly orthogonal to this plane. The crystal packing consists of corrugated layers constructed by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, which also involve the lattice water molecules. O—H⋯O hydrogen bonds and π–π stacking interactions hold these layers together.
Keywords: crystal structure; dihydroquinoxaline; hydrogen bond; π–π stacking.
CCDC reference: 1849737
Structure description
Quinoxaline derivatives have attracted interest because of their biological and pharmacological activities (Ramli et al., 2014; Ramli & Essassi, 2015). As a continuation of our work on the synthesis of 3-methylquinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al. 2010a,b, 2011, 2013, 2017, 2018; Caleb et al., 2016; Missioui et al., 2017), the title compound (Fig. 1) was synthesized and its is reported here.
The dihydroquinoxaline portion of the molecule is not completely planar, as can be seen from the displacements [+0.0572 (8) (N2) to −0.0874 (8) Å (C9)] from the mean plane (r.m.s. deviation = 0.0411 Å) of the bicyclic unit. In addition, a puckering analysis of the heterocyclic ring gave the parameters Q = 0.0893 (11) Å. θ = 72.7 (7)° and φ = 205.6 (8)°. The N2/C10/C11 unit is inclined to the mean plane of the dihydroquinoxaline portion by 82.91 (8)° while the C11/O2/O3 unit is rotated from the N2/C10/C11 unit by 8.4 (2)°.
In the crystal, the main molecule, together with the lattice water molecules, form zigzag chains along the b-axis direction through O3—H3A⋯O4 and O4—H4B⋯N1 hydrogen bonds (Table 1 and Fig. 2). The chains are connected into corrugated layers parallel to the bc plane by O5—H5B⋯O1 hydrogen bonds and the layers are then associated through inversion-related pairs of O5—H5A⋯O2 hydrogen bonds and head-to-tail π–π stacking interactions between inversion-related dihydroquinoxaline moieties [centroid–centroid distance = 3.5295 (7) Å; dihedral angle = 3.33 (5)°; symmetry code 1 − x, 1 − y, 2 − z; Table 1 and Fig. 3].
Synthesis and crystallization
1 g of ethyl 2- (3-methyl-2-oxoquinoxalin-1(2H)-yl) acetate in 15 ml of a mixture of H2O/EtOH (50:50 v/v) and 5 ml of 10% NaOH were stirred at room temperature for 1 h. After completion of the reaction (monitored by TLC), the medium was acidified with HCl (3 M). The precipitate obtained was crystallized from ethanol to afford colourless crystals in 55% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1849737
https://doi.org/10.1107/S2414314618008829/rz4025sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618008829/rz4025Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618008829/rz4025Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H10N2O3·2H2O | F(000) = 536 |
Mr = 254.24 | Dx = 1.427 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 7.7306 (5) Å | Cell parameters from 7699 reflections |
b = 16.8048 (11) Å | θ = 5.3–74.5° |
c = 9.3113 (6) Å | µ = 0.97 mm−1 |
β = 102.001 (2)° | T = 150 K |
V = 1183.20 (13) Å3 | Block, colourless |
Z = 4 | 0.21 × 0.15 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2359 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2163 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 5.3° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→21 |
Tmin = 0.86, Tmax = 0.93 | l = −11→11 |
9051 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3842P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2359 reflections | Δρmax = 0.22 e Å−3 |
200 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0073 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The C-bound H atoms were located in a difference Fourier map and refined freely. As independent refinement of the H atoms attached to oxygen gave unsatisfactory geometries, particularly for H3A, the positions of these atoms were idealized and they were included as riding contributions with Uiso(H) = 1.5 Ueq(O). Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to oxygen were placed in locations derived from a difference map, their coordinates were adjusted to give O—H = 0.87 Å and were included as riding contributions. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.29637 (11) | 0.52589 (5) | 0.56060 (9) | 0.0275 (2) | |
O2 | 0.23074 (10) | 0.31882 (5) | 0.56225 (9) | 0.0284 (2) | |
O3 | 0.49925 (11) | 0.28631 (5) | 0.52405 (9) | 0.0275 (2) | |
H3A | 0.449130 | 0.245199 | 0.475735 | 0.041* | |
N1 | 0.20378 (12) | 0.53983 (6) | 0.91754 (10) | 0.0229 (2) | |
N2 | 0.37927 (11) | 0.44157 (5) | 0.75315 (10) | 0.0198 (2) | |
C1 | 0.35985 (13) | 0.41602 (6) | 0.89191 (12) | 0.0201 (2) | |
C2 | 0.42554 (15) | 0.34290 (7) | 0.95184 (13) | 0.0258 (3) | |
H2 | 0.487 (2) | 0.3067 (10) | 0.8985 (18) | 0.038 (4)* | |
C3 | 0.39994 (17) | 0.32121 (8) | 1.08882 (14) | 0.0308 (3) | |
H3 | 0.443 (2) | 0.2703 (10) | 1.1277 (17) | 0.038 (4)* | |
C4 | 0.31163 (17) | 0.37105 (8) | 1.16941 (13) | 0.0307 (3) | |
H4 | 0.297 (2) | 0.3572 (10) | 1.2651 (19) | 0.040 (4)* | |
C5 | 0.24815 (15) | 0.44351 (7) | 1.11188 (13) | 0.0262 (3) | |
H5 | 0.188 (2) | 0.4802 (9) | 1.1667 (16) | 0.033 (4)* | |
C6 | 0.27024 (14) | 0.46666 (6) | 0.97219 (12) | 0.0209 (2) | |
C7 | 0.21326 (15) | 0.55956 (7) | 0.78503 (12) | 0.0227 (2) | |
C8 | 0.1406 (2) | 0.63718 (8) | 0.72178 (14) | 0.0340 (3) | |
H8A | 0.226 (2) | 0.6636 (11) | 0.672 (2) | 0.052 (5)* | |
H8B | 0.029 (2) | 0.6263 (10) | 0.6467 (19) | 0.044 (4)* | |
H8C | 0.109 (3) | 0.6704 (12) | 0.798 (2) | 0.058 (5)* | |
C9 | 0.29624 (14) | 0.50840 (6) | 0.68914 (12) | 0.0209 (2) | |
C10 | 0.48739 (14) | 0.39698 (7) | 0.67001 (12) | 0.0217 (2) | |
H10A | 0.5238 (19) | 0.4329 (9) | 0.5980 (16) | 0.028 (3)* | |
H10B | 0.592 (2) | 0.3753 (9) | 0.7384 (16) | 0.031 (4)* | |
C11 | 0.38939 (14) | 0.32998 (7) | 0.58021 (11) | 0.0214 (2) | |
O4 | 0.13522 (11) | 0.66176 (5) | 0.10852 (9) | 0.0262 (2) | |
H4A | 0.091253 | 0.642524 | 0.180009 | 0.039* | |
H4B | 0.144293 | 0.623447 | 0.047672 | 0.039* | |
O5 | 0.03254 (10) | 0.59251 (5) | 0.33839 (8) | 0.0271 (2) | |
H5A | −0.048291 | 0.617676 | 0.373004 | 0.041* | |
H5B | 0.113130 | 0.576940 | 0.412786 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0292 (4) | 0.0330 (5) | 0.0219 (4) | 0.0051 (3) | 0.0089 (3) | 0.0055 (3) |
O2 | 0.0208 (4) | 0.0309 (4) | 0.0330 (4) | −0.0003 (3) | 0.0045 (3) | −0.0072 (4) |
O3 | 0.0254 (4) | 0.0258 (4) | 0.0329 (5) | 0.0021 (3) | 0.0099 (3) | −0.0062 (3) |
N1 | 0.0235 (5) | 0.0236 (5) | 0.0208 (4) | 0.0005 (4) | 0.0027 (4) | −0.0018 (4) |
N2 | 0.0186 (4) | 0.0208 (4) | 0.0203 (4) | −0.0003 (3) | 0.0043 (3) | −0.0004 (4) |
C1 | 0.0169 (5) | 0.0222 (5) | 0.0204 (5) | −0.0037 (4) | 0.0015 (4) | −0.0003 (4) |
C2 | 0.0245 (5) | 0.0238 (6) | 0.0282 (6) | 0.0003 (4) | 0.0036 (4) | 0.0014 (5) |
C3 | 0.0311 (6) | 0.0279 (6) | 0.0314 (6) | 0.0007 (5) | 0.0024 (5) | 0.0082 (5) |
C4 | 0.0323 (6) | 0.0362 (7) | 0.0231 (6) | −0.0028 (5) | 0.0045 (5) | 0.0085 (5) |
C5 | 0.0253 (6) | 0.0310 (6) | 0.0219 (5) | −0.0022 (5) | 0.0040 (4) | −0.0008 (5) |
C6 | 0.0188 (5) | 0.0219 (5) | 0.0208 (5) | −0.0022 (4) | 0.0012 (4) | −0.0009 (4) |
C7 | 0.0235 (5) | 0.0230 (5) | 0.0209 (5) | 0.0002 (4) | 0.0028 (4) | −0.0013 (4) |
C8 | 0.0493 (8) | 0.0278 (6) | 0.0250 (6) | 0.0129 (6) | 0.0079 (6) | 0.0016 (5) |
C9 | 0.0191 (5) | 0.0221 (5) | 0.0211 (5) | −0.0016 (4) | 0.0036 (4) | 0.0010 (4) |
C10 | 0.0187 (5) | 0.0239 (5) | 0.0231 (5) | 0.0015 (4) | 0.0060 (4) | 0.0004 (4) |
C11 | 0.0217 (5) | 0.0230 (5) | 0.0196 (5) | 0.0028 (4) | 0.0049 (4) | 0.0031 (4) |
O4 | 0.0319 (4) | 0.0259 (4) | 0.0219 (4) | 0.0014 (3) | 0.0080 (3) | 0.0012 (3) |
O5 | 0.0235 (4) | 0.0364 (5) | 0.0216 (4) | 0.0037 (3) | 0.0051 (3) | 0.0016 (3) |
O1—C9 | 1.2326 (14) | C4—H4 | 0.950 (17) |
O2—C11 | 1.2173 (14) | C5—C6 | 1.4017 (16) |
O3—C11 | 1.3107 (13) | C5—H5 | 0.978 (16) |
O3—H3A | 0.8703 | C7—C9 | 1.4785 (15) |
N1—C7 | 1.2944 (15) | C7—C8 | 1.4919 (16) |
N1—C6 | 1.3878 (15) | C8—H8A | 0.989 (19) |
N2—C9 | 1.3673 (14) | C8—H8B | 1.011 (18) |
N2—C1 | 1.3989 (14) | C8—H8C | 0.98 (2) |
N2—C10 | 1.4589 (14) | C10—C11 | 1.5092 (15) |
C1—C2 | 1.4005 (16) | C10—H10A | 0.986 (15) |
C1—C6 | 1.4064 (16) | C10—H10B | 0.989 (15) |
C2—C3 | 1.3797 (18) | O4—H4A | 0.8702 |
C2—H2 | 0.972 (16) | O4—H4B | 0.8701 |
C3—C4 | 1.3941 (19) | O5—H5A | 0.8700 |
C3—H3 | 0.961 (17) | O5—H5B | 0.8700 |
C4—C5 | 1.3788 (18) | ||
C11—O3—H3A | 113.3 | N1—C7—C9 | 122.98 (10) |
C7—N1—C6 | 119.11 (10) | N1—C7—C8 | 120.60 (10) |
C9—N2—C1 | 121.59 (9) | C9—C7—C8 | 116.42 (10) |
C9—N2—C10 | 117.35 (9) | C7—C8—H8A | 110.1 (11) |
C1—N2—C10 | 121.05 (9) | C7—C8—H8B | 108.2 (10) |
N2—C1—C2 | 122.52 (10) | H8A—C8—H8B | 108.6 (14) |
N2—C1—C6 | 117.68 (10) | C7—C8—H8C | 110.1 (12) |
C2—C1—C6 | 119.80 (10) | H8A—C8—H8C | 112.3 (15) |
C3—C2—C1 | 119.36 (11) | H8B—C8—H8C | 107.4 (15) |
C3—C2—H2 | 119.2 (10) | O1—C9—N2 | 121.60 (10) |
C1—C2—H2 | 121.4 (10) | O1—C9—C7 | 122.39 (10) |
C2—C3—C4 | 121.28 (11) | N2—C9—C7 | 115.96 (9) |
C2—C3—H3 | 118.5 (9) | N2—C10—C11 | 113.59 (9) |
C4—C3—H3 | 120.2 (9) | N2—C10—H10A | 108.8 (8) |
C5—C4—C3 | 119.73 (11) | C11—C10—H10A | 105.1 (8) |
C5—C4—H4 | 118.5 (10) | N2—C10—H10B | 109.2 (8) |
C3—C4—H4 | 121.7 (10) | C11—C10—H10B | 109.4 (9) |
C4—C5—C6 | 120.23 (11) | H10A—C10—H10B | 110.6 (12) |
C4—C5—H5 | 121.6 (9) | O2—C11—O3 | 125.23 (10) |
C6—C5—H5 | 118.2 (9) | O2—C11—C10 | 124.50 (10) |
N1—C6—C5 | 118.61 (10) | O3—C11—C10 | 110.27 (9) |
N1—C6—C1 | 121.80 (10) | H4A—O4—H4B | 108.7 |
C5—C6—C1 | 119.59 (10) | H5A—O5—H5B | 107.6 |
C9—N2—C1—C2 | 171.99 (10) | C2—C1—C6—C5 | 0.25 (15) |
C10—N2—C1—C2 | −7.10 (15) | C6—N1—C7—C9 | −1.59 (16) |
C9—N2—C1—C6 | −7.91 (14) | C6—N1—C7—C8 | 179.03 (11) |
C10—N2—C1—C6 | 172.99 (9) | C1—N2—C9—O1 | −171.44 (10) |
N2—C1—C2—C3 | −179.34 (10) | C10—N2—C9—O1 | 7.68 (15) |
C6—C1—C2—C3 | 0.55 (16) | C1—N2—C9—C7 | 10.93 (14) |
C1—C2—C3—C4 | −0.71 (18) | C10—N2—C9—C7 | −169.95 (9) |
C2—C3—C4—C5 | 0.03 (19) | N1—C7—C9—O1 | 176.13 (11) |
C3—C4—C5—C6 | 0.79 (18) | C8—C7—C9—O1 | −4.46 (16) |
C7—N1—C6—C5 | −175.57 (10) | N1—C7—C9—N2 | −6.26 (16) |
C7—N1—C6—C1 | 5.03 (16) | C8—C7—C9—N2 | 173.15 (10) |
C4—C5—C6—N1 | 179.66 (10) | C9—N2—C10—C11 | −93.62 (11) |
C4—C5—C6—C1 | −0.93 (17) | C1—N2—C10—C11 | 85.51 (12) |
N2—C1—C6—N1 | −0.45 (15) | N2—C10—C11—O2 | 8.67 (16) |
C2—C1—C6—N1 | 179.64 (10) | N2—C10—C11—O3 | −171.79 (9) |
N2—C1—C6—C5 | −179.85 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4i | 0.87 | 1.67 | 2.5400 (12) | 176 |
C10—H10A···O1ii | 0.986 (15) | 2.334 (15) | 3.2524 (14) | 154.7 (11) |
C10—H10B···O4ii | 0.989 (15) | 2.369 (15) | 3.3520 (14) | 172.1 (12) |
O4—H4A···O5 | 0.87 | 1.83 | 2.6966 (11) | 171 |
O4—H4B···N1iii | 0.87 | 1.97 | 2.8344 (13) | 171 |
O5—H5A···O2iv | 0.87 | 1.96 | 2.8287 (12) | 175 |
O5—H5B···O1 | 0.87 | 1.96 | 2.8177 (11) | 170 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) −x, −y+1, −z+1. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND- Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109–123. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763. Google Scholar
Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. 11, 67–90. Google Scholar
Ramli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390. Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160. Google Scholar
Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. CSD CrossRef IUCr Journals Google Scholar
Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424. Google Scholar
Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21. Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o992. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.