organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(3-Methyl-2-oxo-1,2-di­hydro­quinoxalin-1-yl)acetic acid dihydrate

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bLaboratoire de Chimie Organique Heterocyclique URAC 21, Av. Ibn Battouta, BP, 1014, Faculte des Sciences, Universite Mohammed V, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mohcinemissioui@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 8 June 2018; accepted 15 June 2018; online 22 June 2018)

In the title compound, C11H10N2O3·2H2O, the constituent atoms of the di­hydro­quinoxaline moiety deviate from the mean plane of the unit by +0.0572 (8) to −0.0874 (8) Å while the acetic acid substituent is nearly orthogonal to this plane. The crystal packing consists of corrugated layers constructed by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, which also involve the lattice water mol­ecules. O—H⋯O hydrogen bonds and ππ stacking inter­actions hold these layers together.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives have attracted inter­est because of their biological and pharmacological activities (Ramli et al., 2014[Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1-21.]; Ramli & Essassi, 2015[Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109-160.]). As a continuation of our work on the synthesis of 3-methyl­quinoxalin-2-one derivatives in order to evaluate their pharmacological activities (Ramli et al. 2010a[Ramli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. 11, 67-90.],b[Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o992.], 2011[Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.], 2013[Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320-o1321.], 2017[Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.], 2018[Ramli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.]; Caleb et al., 2016[Caleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109-123.]; Missioui et al., 2017[Missioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.]), the title compound (Fig. 1[link]) was synthesized and its crystal structure is reported here.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with labelling scheme and 50% probability ellipsoids. The O—H⋯O hydrogen bonds (Table 1[link]) involving the lattice water mol­ecules are shown as dashed lines.

The di­hydro­quinoxaline portion of the mol­ecule is not completely planar, as can be seen from the displacements [+0.0572 (8) (N2) to −0.0874 (8) Å (C9)] from the mean plane (r.m.s. deviation = 0.0411 Å) of the bicyclic unit. In addition, a puckering analysis of the heterocyclic ring gave the parameters Q = 0.0893 (11) Å. θ = 72.7 (7)° and φ = 205.6 (8)°. The N2/C10/C11 unit is inclined to the mean plane of the di­hydro­quinoxaline portion by 82.91 (8)° while the C11/O2/O3 unit is rotated from the N2/C10/C11 unit by 8.4 (2)°.

In the crystal, the main mol­ecule, together with the lattice water mol­ecules, form zigzag chains along the b-axis direction through O3—H3A⋯O4 and O4—H4B⋯N1 hydrogen bonds (Table 1[link] and Fig. 2[link]). The chains are connected into corrugated layers parallel to the bc plane by O5—H5B⋯O1 hydrogen bonds and the layers are then associated through inversion-related pairs of O5—H5A⋯O2 hydrogen bonds and head-to-tail ππ stacking inter­actions between inversion-related di­hydro­quinoxaline moieties [centroid–centroid distance = 3.5295 (7) Å; dihedral angle = 3.33 (5)°; symmetry code 1 − x, 1 − y, 2 − z; Table 1[link] and Fig. 3[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.87 1.67 2.5400 (12) 176
C10—H10A⋯O1ii 0.986 (15) 2.334 (15) 3.2524 (14) 154.7 (11)
C10—H10B⋯O4ii 0.989 (15) 2.369 (15) 3.3520 (14) 172.1 (12)
O4—H4A⋯O5 0.87 1.83 2.6966 (11) 171
O4—H4B⋯N1iii 0.87 1.97 2.8344 (13) 171
O5—H5A⋯O2iv 0.87 1.96 2.8287 (12) 175
O5—H5B⋯O1 0.87 1.96 2.8177 (11) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y, z-1; (iv) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the c axis with inter­molecular inter­actions shown as in Fig. 2[link].
[Figure 3]
Figure 3
Packing diagram of the title compound viewed along the a axis with O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]) shown, respectively, as red, light-blue and black dashed lines. The ππ stacking inter­actions are shown as orange dashed lines

Synthesis and crystallization

1 g of ethyl 2- (3-methyl-2-oxoquinoxalin-1(2H)-yl) acetate in 15 ml of a mixture of H2O/EtOH (50:50 v/v) and 5 ml of 10% NaOH were stirred at room temperature for 1 h. After completion of the reaction (monitored by TLC), the medium was acidified with HCl (3 M). The precipitate obtained was crystallized from ethanol to afford colourless crystals in 55% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10N2O3·2H2O
Mr 254.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 7.7306 (5), 16.8048 (11), 9.3113 (6)
β (°) 102.001 (2)
V3) 1183.20 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.97
Crystal size (mm) 0.21 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 9051, 2359, 2163
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.02
No. of reflections 2359
No. of parameters 200
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND- Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(3-Methyl-2-oxo-1,2-dihydroquinoxalin-1-yl)acetic acid dihydrate top
Crystal data top
C11H10N2O3·2H2OF(000) = 536
Mr = 254.24Dx = 1.427 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.7306 (5) ÅCell parameters from 7699 reflections
b = 16.8048 (11) Åθ = 5.3–74.5°
c = 9.3113 (6) ŵ = 0.97 mm1
β = 102.001 (2)°T = 150 K
V = 1183.20 (13) Å3Block, colourless
Z = 40.21 × 0.15 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2359 independent reflections
Radiation source: INCOATEC IµS micro-focus source2163 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 5.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1821
Tmin = 0.86, Tmax = 0.93l = 1111
9051 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3842P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2359 reflectionsΔρmax = 0.22 e Å3
200 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were located in a difference Fourier map and refined freely. As independent refinement of the H atoms attached to oxygen gave unsatisfactory geometries, particularly for H3A, the positions of these atoms were idealized and they were included as riding contributions with Uiso(H) = 1.5 Ueq(O).

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to oxygen were placed in locations derived from a difference map, their coordinates were adjusted to give O—H = 0.87 Å and were included as riding contributions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29637 (11)0.52589 (5)0.56060 (9)0.0275 (2)
O20.23074 (10)0.31882 (5)0.56225 (9)0.0284 (2)
O30.49925 (11)0.28631 (5)0.52405 (9)0.0275 (2)
H3A0.4491300.2451990.4757350.041*
N10.20378 (12)0.53983 (6)0.91754 (10)0.0229 (2)
N20.37927 (11)0.44157 (5)0.75315 (10)0.0198 (2)
C10.35985 (13)0.41602 (6)0.89191 (12)0.0201 (2)
C20.42554 (15)0.34290 (7)0.95184 (13)0.0258 (3)
H20.487 (2)0.3067 (10)0.8985 (18)0.038 (4)*
C30.39994 (17)0.32121 (8)1.08882 (14)0.0308 (3)
H30.443 (2)0.2703 (10)1.1277 (17)0.038 (4)*
C40.31163 (17)0.37105 (8)1.16941 (13)0.0307 (3)
H40.297 (2)0.3572 (10)1.2651 (19)0.040 (4)*
C50.24815 (15)0.44351 (7)1.11188 (13)0.0262 (3)
H50.188 (2)0.4802 (9)1.1667 (16)0.033 (4)*
C60.27024 (14)0.46666 (6)0.97219 (12)0.0209 (2)
C70.21326 (15)0.55956 (7)0.78503 (12)0.0227 (2)
C80.1406 (2)0.63718 (8)0.72178 (14)0.0340 (3)
H8A0.226 (2)0.6636 (11)0.672 (2)0.052 (5)*
H8B0.029 (2)0.6263 (10)0.6467 (19)0.044 (4)*
H8C0.109 (3)0.6704 (12)0.798 (2)0.058 (5)*
C90.29624 (14)0.50840 (6)0.68914 (12)0.0209 (2)
C100.48739 (14)0.39698 (7)0.67001 (12)0.0217 (2)
H10A0.5238 (19)0.4329 (9)0.5980 (16)0.028 (3)*
H10B0.592 (2)0.3753 (9)0.7384 (16)0.031 (4)*
C110.38939 (14)0.32998 (7)0.58021 (11)0.0214 (2)
O40.13522 (11)0.66176 (5)0.10852 (9)0.0262 (2)
H4A0.0912530.6425240.1800090.039*
H4B0.1442930.6234470.0476720.039*
O50.03254 (10)0.59251 (5)0.33839 (8)0.0271 (2)
H5A0.0482910.6176760.3730040.041*
H5B0.1131300.5769400.4127860.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0292 (4)0.0330 (5)0.0219 (4)0.0051 (3)0.0089 (3)0.0055 (3)
O20.0208 (4)0.0309 (4)0.0330 (4)0.0003 (3)0.0045 (3)0.0072 (4)
O30.0254 (4)0.0258 (4)0.0329 (5)0.0021 (3)0.0099 (3)0.0062 (3)
N10.0235 (5)0.0236 (5)0.0208 (4)0.0005 (4)0.0027 (4)0.0018 (4)
N20.0186 (4)0.0208 (4)0.0203 (4)0.0003 (3)0.0043 (3)0.0004 (4)
C10.0169 (5)0.0222 (5)0.0204 (5)0.0037 (4)0.0015 (4)0.0003 (4)
C20.0245 (5)0.0238 (6)0.0282 (6)0.0003 (4)0.0036 (4)0.0014 (5)
C30.0311 (6)0.0279 (6)0.0314 (6)0.0007 (5)0.0024 (5)0.0082 (5)
C40.0323 (6)0.0362 (7)0.0231 (6)0.0028 (5)0.0045 (5)0.0085 (5)
C50.0253 (6)0.0310 (6)0.0219 (5)0.0022 (5)0.0040 (4)0.0008 (5)
C60.0188 (5)0.0219 (5)0.0208 (5)0.0022 (4)0.0012 (4)0.0009 (4)
C70.0235 (5)0.0230 (5)0.0209 (5)0.0002 (4)0.0028 (4)0.0013 (4)
C80.0493 (8)0.0278 (6)0.0250 (6)0.0129 (6)0.0079 (6)0.0016 (5)
C90.0191 (5)0.0221 (5)0.0211 (5)0.0016 (4)0.0036 (4)0.0010 (4)
C100.0187 (5)0.0239 (5)0.0231 (5)0.0015 (4)0.0060 (4)0.0004 (4)
C110.0217 (5)0.0230 (5)0.0196 (5)0.0028 (4)0.0049 (4)0.0031 (4)
O40.0319 (4)0.0259 (4)0.0219 (4)0.0014 (3)0.0080 (3)0.0012 (3)
O50.0235 (4)0.0364 (5)0.0216 (4)0.0037 (3)0.0051 (3)0.0016 (3)
Geometric parameters (Å, º) top
O1—C91.2326 (14)C4—H40.950 (17)
O2—C111.2173 (14)C5—C61.4017 (16)
O3—C111.3107 (13)C5—H50.978 (16)
O3—H3A0.8703C7—C91.4785 (15)
N1—C71.2944 (15)C7—C81.4919 (16)
N1—C61.3878 (15)C8—H8A0.989 (19)
N2—C91.3673 (14)C8—H8B1.011 (18)
N2—C11.3989 (14)C8—H8C0.98 (2)
N2—C101.4589 (14)C10—C111.5092 (15)
C1—C21.4005 (16)C10—H10A0.986 (15)
C1—C61.4064 (16)C10—H10B0.989 (15)
C2—C31.3797 (18)O4—H4A0.8702
C2—H20.972 (16)O4—H4B0.8701
C3—C41.3941 (19)O5—H5A0.8700
C3—H30.961 (17)O5—H5B0.8700
C4—C51.3788 (18)
C11—O3—H3A113.3N1—C7—C9122.98 (10)
C7—N1—C6119.11 (10)N1—C7—C8120.60 (10)
C9—N2—C1121.59 (9)C9—C7—C8116.42 (10)
C9—N2—C10117.35 (9)C7—C8—H8A110.1 (11)
C1—N2—C10121.05 (9)C7—C8—H8B108.2 (10)
N2—C1—C2122.52 (10)H8A—C8—H8B108.6 (14)
N2—C1—C6117.68 (10)C7—C8—H8C110.1 (12)
C2—C1—C6119.80 (10)H8A—C8—H8C112.3 (15)
C3—C2—C1119.36 (11)H8B—C8—H8C107.4 (15)
C3—C2—H2119.2 (10)O1—C9—N2121.60 (10)
C1—C2—H2121.4 (10)O1—C9—C7122.39 (10)
C2—C3—C4121.28 (11)N2—C9—C7115.96 (9)
C2—C3—H3118.5 (9)N2—C10—C11113.59 (9)
C4—C3—H3120.2 (9)N2—C10—H10A108.8 (8)
C5—C4—C3119.73 (11)C11—C10—H10A105.1 (8)
C5—C4—H4118.5 (10)N2—C10—H10B109.2 (8)
C3—C4—H4121.7 (10)C11—C10—H10B109.4 (9)
C4—C5—C6120.23 (11)H10A—C10—H10B110.6 (12)
C4—C5—H5121.6 (9)O2—C11—O3125.23 (10)
C6—C5—H5118.2 (9)O2—C11—C10124.50 (10)
N1—C6—C5118.61 (10)O3—C11—C10110.27 (9)
N1—C6—C1121.80 (10)H4A—O4—H4B108.7
C5—C6—C1119.59 (10)H5A—O5—H5B107.6
C9—N2—C1—C2171.99 (10)C2—C1—C6—C50.25 (15)
C10—N2—C1—C27.10 (15)C6—N1—C7—C91.59 (16)
C9—N2—C1—C67.91 (14)C6—N1—C7—C8179.03 (11)
C10—N2—C1—C6172.99 (9)C1—N2—C9—O1171.44 (10)
N2—C1—C2—C3179.34 (10)C10—N2—C9—O17.68 (15)
C6—C1—C2—C30.55 (16)C1—N2—C9—C710.93 (14)
C1—C2—C3—C40.71 (18)C10—N2—C9—C7169.95 (9)
C2—C3—C4—C50.03 (19)N1—C7—C9—O1176.13 (11)
C3—C4—C5—C60.79 (18)C8—C7—C9—O14.46 (16)
C7—N1—C6—C5175.57 (10)N1—C7—C9—N26.26 (16)
C7—N1—C6—C15.03 (16)C8—C7—C9—N2173.15 (10)
C4—C5—C6—N1179.66 (10)C9—N2—C10—C1193.62 (11)
C4—C5—C6—C10.93 (17)C1—N2—C10—C1185.51 (12)
N2—C1—C6—N10.45 (15)N2—C10—C11—O28.67 (16)
C2—C1—C6—N1179.64 (10)N2—C10—C11—O3171.79 (9)
N2—C1—C6—C5179.85 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.871.672.5400 (12)176
C10—H10A···O1ii0.986 (15)2.334 (15)3.2524 (14)154.7 (11)
C10—H10B···O4ii0.989 (15)2.369 (15)3.3520 (14)172.1 (12)
O4—H4A···O50.871.832.6966 (11)171
O4—H4B···N1iii0.871.972.8344 (13)171
O5—H5A···O2iv0.871.962.8287 (12)175
O5—H5B···O10.871.962.8177 (11)170
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z+1.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND- Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaleb, A. A., Ramli, Y., Benabdelkamel, H., Bouhfid, R., Es-Safi, N., Kandri Rodi, Y., Essassi, E. M. & Banoub, J. (2016). J. Marocain Chim. Heterocycl. 15, 109–123.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMissioui, M., Mague, J. T., El Fal, M., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171763.  Google Scholar
First citationRamli, Y., Benzeid, H., Bouhfid, R., Kandri Rodi, Y., Ferfra, S. & Essassi, E. M. (2010a). Sci. Study Res. 11, 67–90.  Google Scholar
First citationRamli, Y., El Bakri, Y., El Ghayati, L. M., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x180390.  Google Scholar
First citationRamli, Y. & Essassi, E. M. (2015). Adv. Chem. Res, 27, 109–160.  Google Scholar
First citationRamli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321.  CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424.  Google Scholar
First citationRamli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.  Google Scholar
First citationRamli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds