metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­carbon­yl[N-(di­phenyl­phosphanyl-κP)-N,N′-diisoprop­yl-P-phenyl­phospho­rus di­amide-κP]molybdenum(0) with an unknown solvent

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 June 2018; accepted 8 June 2018; online 26 June 2018)

The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN(iPr)P(Ph)NH(iPr) and four carbonyl ligands in a distorted octa­hedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex (Fig. 1[link]) contains a molybdenum centre coordinated to a P,P′-cis-chelating Ph2PN(iPr)P(Ph)NH(iPr) ligand and four carbonyl ligands in a distorted octa­hedral geometry, forming a nearly planar four-membered Mo—P—N—P metallacycle (r.m.s. deviation for Mo1, P1, N1, P2 = 0.053 Å). The P—Mo—P bite angle amounts to 64.948 (13)° and complies with those in comparable [Mo(CO)4{Ph2PN(R)PPh2}] (R ≠ H) complexes [range from 64.38 (8) to 66.14 (3)°; Al-Masri et al., 2013[Al-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). Helv. Chim. Acta, 96, 738-746.]; Biricik et al., 2003[Biricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281-3287.]; Gaw et al., 2000[Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429-435.], 2002[Gaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294-297.]; Majoumo et al., 2004[Majoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305-308.]; Majoumo-Mbe et al., 2015[Majoumo-Mbe, F., Mendoza, L., Lönnecke, P., Gómez-Ruiz, S. & Hey-Hawkins, E. (2015). Z. Anorg. Allg. Chem. 641, 2306-2311.]; Payne et al., 1965[Payne, D. S., Mokuolu, J. A. A. & Speakman, J. C. (1965). Chem. Commun. (London), p. 599.]] and is slightly smaller than that found in the analogous chromium complex [P—Cr—P = 67.90 (2), 67.95 (12)°] published by Aluri et al. (2010[Aluri, B. R., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). Dalton Trans. 39, 7911-7920.]) and Dulai et al. (2011[Dulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935-941.]). As a result of the ring strain, the P—N—P bond angle [103.10 (6)°] is clearly smaller than that observed in the uncoordinated Ph2PN(iPr)P(Ph)NH(iPr) mol­ecule [121.53 (11)°; Peitz et al., 2010[Peitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Eur. J. Inorg. Chem. pp. 1167-1171.]] but conforms with comparable [Mo(CO)4{Ph2PN(R)PPh2}] (R ≠ H) complexes (Al-Masri et al., 2013[Al-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). Helv. Chim. Acta, 96, 738-746.]; Biricik et al., 2003[Biricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281-3287.]; Gaw et al., 2000[Gaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429-435.], 2002[Gaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294-297.]; Majoumo et al., 2004[Majoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305-308.]; Majoumo-Mbe et al., 2015[Majoumo-Mbe, F., Mendoza, L., Lönnecke, P., Gómez-Ruiz, S. & Hey-Hawkins, E. (2015). Z. Anorg. Allg. Chem. 641, 2306-2311.]; Payne et al., 1965[Payne, D. S., Mokuolu, J. A. A. & Speakman, J. C. (1965). Chem. Commun. (London), p. 599.]). The P—N bond lengths [range from 1.6462 (13) to 1.7185 (13) Å] are noticeably shortened compared to the calculated sum of the covalent radii by Pyykkö [single: Σrcov(P—N) = 1.82 Å; Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]] and show some multiple-bond character [double: Σrcov(P=N) = 1.62 Å; Pyykkö, 2015[Pyykkö, P. (2015). J. Phys. Chem. A, 119, 2326-2337.]]. Consistent with this geometry, the central N1 atom is nearly trigonal planar [Σ(∠N1) = 359°]. The Mo—P distances are slightly different [Mo1—P1 = 2.4731 (5), Mo1—P2 = 2.5056 (6) Å], which might be an effect of the asymmetric P,P′-cis-ligating Ph2PN(iPr)P(Ph)NH(iPr) ligand.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 30% probability level. C-bound hydrogen atoms are omitted for clarity.

In the crystal, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into layers parallel to the ac plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.95 2.53 3.338 (2) 143
N2—H2⋯O1ii 0.83 (1) 2.54 (1) 3.3419 (18) 163 (1)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Synthesis and crystallization

Mo(CO)4(pip)2 (pip = piperidine; 0.99 g, 2.617 mmol) and Ph2PN(iPr)P(Ph)NH(iPr) (1.305 g, 3.193 mmol), were dissolved in CH2Cl2 (30 ml) at r.t. After 2 h of refluxing, 20 ml CH2Cl2 was removed in vacuo. Ethanol (15 ml) was added and the solution was cooled. The white solid was washed with n-hexane at −78°C and dried under vacuum. Yield 1.45 g (90%). Crystals were obtained from a saturated CH2Cl2/EtOH solution at −78°C.

1H NMR (300 MHz, C6D6, 298 K): δ (p.p.m.) 7.95–7.88 (m, 2H, ArH), 7.69–7.53 (m, 4H, ArH), 7.14–6.98 (m, 9H, ArH), 4.17 (m, 1H, CHCH3), 3.31 (m, 1H, CHCH3), 2.19 (t, 1H, NH), 1.22 (d, 3JH,H = 6.5 Hz, 3H, CHCH3), 1.15 (d, 3JH,H = 6.4 Hz, 3H, CHCH3), 0.89 (d, J = 6.7 Hz, 3H, CHCH3), 0.38 (d, 3JH,H = 6.7 Hz, 3H, CHCH3). 13C NMR (100 MHz, C6D6, 298 K): δ (p.p.m.) 219.7 (m, CO), 212.4 (m, CO), 141.7, 141.0, 138.7, 138.2, 136.2, 138.8, 133.8, 131.3, 130.8, 130.0, 128.9, 128.7, 128.5 (ArC), 55.7 (t, 2JP,C = 6.0 Hz, CHCH3), 49.3 (d, 2JP,C = 18.0 Hz, CHCH3), 26.3 (d, 3JP,C = 4.5 Hz, CHCH3), 25.6 (d, 3JP,C = 4.5 Hz, CHCH3), 24.3 (br s, CHCH3) 24.2 (br s, CHCH3). 31P NMR (121 MHz, CD2Cl2, 298 K): δ = 96.7 (d, 2JPP = 8.7 Hz), 80.2 (d, 2JPP = 8.7 Hz). Elemental analysis calcd. (%) for C28H30MoN2O4P2 (616.44): C 54.56, H 4.91, N 4.54. Found: C 55.42, H 4.96, N 4.65. IR (CH2Cl2, cm−1): ν (CO) 1870, 1896, 1918, 2005. M.p. 180°C (dec.).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Six outliers (4 0 10, 6 3 4, 1 2 11, 5 7 4, 1 2 8, 2 3 8) were omitted in the last cycles of refinement. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). SQUEEZE estimated the electron counts in each of the four voids of 111 and 112 Å3, respectively to be 34.

Table 2
Experimental details

Crystal data
Chemical formula [Mo(C24H30N2P2)(CO)4]
Mr 616.42
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 15.634 (3), 17.716 (4), 21.661 (4)
V3) 5999 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.58
Crystal size (mm) 0.46 × 0.38 × 0.36
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.75, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 95647, 6886, 5657
Rint 0.041
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 0.92
No. of reflections 6886
No. of parameters 342
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.31
Computer programs: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetracarbonyl[N-(diphenylphosphanyl-κP)-N,N'-diisopropyl-P-phenylphosphorus diamide-κP]molybdenum(0) top
Crystal data top
[Mo(C24H30N2P2)(CO)4]Dx = 1.365 Mg m3
Mr = 616.42Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 11600 reflections
a = 15.634 (3) Åθ = 1.8–29.7°
b = 17.716 (4) ŵ = 0.58 mm1
c = 21.661 (4) ÅT = 150 K
V = 5999 (2) Å3Prism, colourless
Z = 80.46 × 0.38 × 0.36 mm
F(000) = 2528
Data collection top
Stoe IPDS II
diffractometer
6886 independent reflections
Radiation source: fine-focus sealed tube5657 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 2020
Tmin = 0.75, Tmax = 0.89k = 2223
95647 measured reflectionsl = 2828
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.002
6886 reflectionsΔρmax = 0.38 e Å3
342 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N-bound H atom was located in a difference Fourier map and refined with the N–H distance constrained to be 0.87 Å. All other H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34111 (9)0.15827 (8)0.28181 (6)0.0269 (3)
C20.28472 (9)0.07619 (8)0.38433 (7)0.0271 (3)
C30.44531 (9)0.01870 (8)0.40890 (7)0.0262 (3)
C40.40591 (9)0.01114 (9)0.28804 (7)0.0288 (3)
C50.40138 (9)0.22378 (9)0.48935 (7)0.0287 (3)
C60.39750 (10)0.15799 (10)0.52376 (7)0.0343 (3)
H60.40400.11060.50370.041*
C70.38431 (11)0.16021 (11)0.58705 (8)0.0416 (4)
H70.38280.11470.61020.050*
C80.37339 (12)0.22824 (12)0.61608 (8)0.0450 (4)
H80.36450.22990.65940.054*
C90.37530 (12)0.29434 (12)0.58244 (9)0.0487 (5)
H90.36650.34130.60260.058*
C100.38998 (11)0.29266 (10)0.51939 (8)0.0399 (4)
H100.39230.33840.49660.048*
C110.37638 (9)0.29940 (8)0.37296 (7)0.0271 (3)
C120.29425 (10)0.32308 (9)0.38861 (7)0.0314 (3)
H120.26420.29870.42110.038*
C130.25641 (11)0.38204 (9)0.35696 (8)0.0372 (4)
H130.20060.39830.36810.045*
C140.29902 (12)0.41738 (9)0.30934 (9)0.0417 (4)
H140.27260.45780.28780.050*
C150.38000 (12)0.39387 (10)0.29309 (9)0.0432 (4)
H150.40950.41820.26030.052*
C160.41847 (10)0.33487 (9)0.32456 (8)0.0354 (4)
H160.47410.31860.31290.042*
C170.63680 (9)0.09612 (8)0.37610 (6)0.0241 (3)
C180.64070 (10)0.08548 (8)0.43972 (7)0.0290 (3)
H180.59870.10800.46550.035*
C190.70499 (11)0.04247 (9)0.46573 (8)0.0361 (3)
H190.70770.03640.50930.043*
C200.76512 (11)0.00839 (9)0.42858 (8)0.0394 (4)
H200.80940.02100.44660.047*
C210.76123 (11)0.01667 (10)0.36556 (8)0.0394 (4)
H210.80250.00740.34010.047*
C220.69701 (10)0.06027 (9)0.33895 (7)0.0310 (3)
H220.69430.06560.29540.037*
C230.54833 (10)0.19268 (10)0.21953 (7)0.0363 (4)
H230.48710.20510.22830.044*
C240.55048 (17)0.12180 (16)0.18082 (10)0.0691 (7)
H24A0.61000.10820.17200.104*
H24B0.52010.13070.14190.104*
H24C0.52280.08060.20340.104*
C250.58778 (15)0.25923 (16)0.18724 (11)0.0718 (8)
H25A0.58160.30430.21300.108*
H25B0.55890.26740.14770.108*
H25C0.64860.24940.18000.108*
C260.58322 (10)0.28343 (9)0.41876 (9)0.0395 (4)
H260.54430.32770.42440.047*
C270.62182 (13)0.26694 (12)0.48171 (10)0.0537 (5)
H27A0.57740.24720.50930.081*
H27B0.64540.31350.49910.081*
H27C0.66750.22950.47740.081*
C280.65060 (13)0.30750 (11)0.37253 (11)0.0554 (5)
H28A0.68860.26480.36370.083*
H28B0.68410.34930.38970.083*
H28C0.62270.32390.33430.083*
N10.52898 (7)0.22025 (7)0.39514 (6)0.0271 (3)
N20.59168 (8)0.18048 (8)0.27863 (6)0.0332 (3)
O10.30266 (7)0.18956 (7)0.24502 (5)0.0397 (3)
O20.22161 (7)0.06770 (8)0.41024 (6)0.0427 (3)
O30.46686 (8)0.03061 (7)0.43865 (5)0.0418 (3)
O40.41082 (8)0.03731 (7)0.25315 (6)0.0459 (3)
P10.42203 (2)0.21436 (2)0.40705 (2)0.02325 (7)
P20.54809 (2)0.14920 (2)0.34291 (2)0.02225 (7)
Mo10.39963 (2)0.09633 (2)0.34827 (2)0.01978 (4)
H20.6430 (9)0.1912 (10)0.2777 (8)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0232 (7)0.0302 (8)0.0274 (7)0.0046 (6)0.0005 (6)0.0038 (6)
C20.0247 (7)0.0285 (7)0.0282 (7)0.0004 (6)0.0026 (6)0.0055 (6)
C30.0255 (7)0.0273 (7)0.0257 (7)0.0001 (6)0.0015 (6)0.0007 (6)
C40.0266 (7)0.0304 (7)0.0294 (7)0.0012 (6)0.0011 (6)0.0013 (6)
C50.0259 (7)0.0305 (8)0.0295 (7)0.0043 (6)0.0041 (6)0.0062 (6)
C60.0389 (8)0.0350 (8)0.0291 (7)0.0049 (7)0.0004 (7)0.0050 (6)
C70.0453 (10)0.0508 (11)0.0286 (8)0.0027 (8)0.0016 (7)0.0017 (7)
C80.0393 (9)0.0657 (13)0.0301 (8)0.0075 (9)0.0017 (7)0.0139 (8)
C90.0477 (10)0.0526 (12)0.0458 (10)0.0118 (9)0.0071 (8)0.0274 (9)
C100.0431 (9)0.0341 (9)0.0425 (9)0.0051 (7)0.0070 (7)0.0109 (7)
C110.0258 (7)0.0204 (7)0.0349 (7)0.0008 (5)0.0041 (6)0.0011 (6)
C120.0273 (7)0.0270 (7)0.0399 (8)0.0027 (6)0.0009 (6)0.0010 (6)
C130.0295 (8)0.0307 (8)0.0515 (10)0.0083 (6)0.0031 (7)0.0012 (7)
C140.0414 (9)0.0284 (8)0.0552 (10)0.0087 (7)0.0069 (8)0.0095 (7)
C150.0405 (9)0.0364 (9)0.0528 (10)0.0021 (7)0.0022 (8)0.0156 (8)
C160.0277 (8)0.0313 (8)0.0471 (9)0.0032 (6)0.0017 (7)0.0065 (7)
C170.0213 (6)0.0214 (6)0.0297 (7)0.0012 (6)0.0017 (5)0.0022 (6)
C180.0285 (7)0.0285 (8)0.0302 (7)0.0021 (6)0.0009 (6)0.0021 (6)
C190.0391 (9)0.0347 (8)0.0345 (8)0.0026 (7)0.0082 (7)0.0071 (7)
C200.0328 (8)0.0316 (8)0.0540 (10)0.0085 (7)0.0092 (7)0.0082 (8)
C210.0334 (8)0.0338 (8)0.0510 (10)0.0109 (7)0.0071 (7)0.0024 (7)
C220.0312 (8)0.0291 (8)0.0325 (8)0.0028 (6)0.0032 (6)0.0015 (6)
C230.0271 (8)0.0521 (10)0.0297 (8)0.0028 (7)0.0024 (6)0.0148 (7)
C240.0814 (17)0.0884 (18)0.0377 (11)0.0139 (14)0.0051 (11)0.0063 (11)
C250.0556 (13)0.0973 (19)0.0625 (14)0.0232 (12)0.0123 (10)0.0524 (14)
C260.0307 (8)0.0263 (8)0.0616 (11)0.0042 (6)0.0097 (7)0.0082 (8)
C270.0471 (11)0.0448 (11)0.0692 (13)0.0016 (9)0.0272 (10)0.0155 (10)
C280.0385 (10)0.0386 (10)0.0891 (16)0.0155 (8)0.0037 (10)0.0024 (10)
N10.0214 (6)0.0224 (6)0.0375 (7)0.0001 (5)0.0035 (5)0.0027 (5)
N20.0200 (6)0.0465 (8)0.0330 (7)0.0036 (6)0.0010 (5)0.0143 (6)
O10.0351 (6)0.0473 (7)0.0368 (6)0.0053 (5)0.0095 (5)0.0157 (5)
O20.0257 (6)0.0557 (8)0.0465 (7)0.0005 (5)0.0076 (5)0.0122 (6)
O30.0477 (7)0.0373 (6)0.0404 (6)0.0068 (5)0.0008 (5)0.0144 (5)
O40.0517 (8)0.0420 (7)0.0440 (7)0.0003 (6)0.0014 (6)0.0174 (6)
P10.02145 (16)0.02076 (17)0.02755 (17)0.00172 (13)0.00178 (13)0.00073 (14)
P20.01931 (16)0.02283 (16)0.02462 (16)0.00003 (13)0.00046 (13)0.00359 (14)
Mo10.01891 (6)0.02026 (6)0.02017 (6)0.00123 (4)0.00037 (4)0.00138 (4)
Geometric parameters (Å, º) top
C1—O11.1417 (17)C15—C161.385 (2)
C1—Mo12.0282 (15)C17—C221.392 (2)
C2—O21.1450 (18)C17—C181.392 (2)
C2—Mo11.9912 (15)C17—P21.8234 (14)
C3—O31.1366 (18)C18—C191.381 (2)
C3—Mo12.0313 (15)C19—C201.377 (2)
C4—O41.1463 (19)C20—C211.374 (3)
C4—Mo11.9973 (15)C21—C221.392 (2)
C5—C61.385 (2)C23—N21.4646 (19)
C5—C101.394 (2)C23—C251.503 (3)
C5—P11.8194 (15)C23—C241.510 (3)
C6—C71.387 (2)C26—N11.4946 (19)
C7—C81.370 (3)C26—C281.515 (3)
C8—C91.380 (3)C26—C271.520 (3)
C9—C101.385 (3)N1—P11.6949 (13)
C11—C161.388 (2)N1—P21.7185 (13)
C11—C121.393 (2)N2—P21.6462 (13)
C11—P11.8232 (15)P1—Mo12.4731 (5)
C12—C131.382 (2)P1—P22.6733 (6)
C13—C141.378 (3)P2—Mo12.5056 (6)
C14—C151.378 (3)
O1—C1—Mo1174.59 (12)C23—N2—P2126.68 (11)
O2—C2—Mo1173.34 (13)N1—P1—C5108.58 (6)
O3—C3—Mo1172.36 (13)N1—P1—C11105.88 (7)
O4—C4—Mo1178.85 (14)C5—P1—C11104.57 (7)
C6—C5—C10118.67 (14)N1—P1—Mo196.51 (4)
C6—C5—P1117.26 (11)C5—P1—Mo1123.84 (5)
C10—C5—P1124.07 (13)C11—P1—Mo1115.77 (5)
C5—C6—C7120.99 (16)N1—P1—P238.76 (4)
C8—C7—C6119.81 (18)C5—P1—P2132.82 (5)
C7—C8—C9120.10 (16)C11—P1—P2115.78 (5)
C8—C9—C10120.40 (17)Mo1—P1—P258.112 (14)
C9—C10—C5120.01 (17)N2—P2—N1112.48 (7)
C16—C11—C12118.98 (14)N2—P2—C17101.08 (7)
C16—C11—P1119.63 (11)N1—P2—C17104.50 (6)
C12—C11—P1120.75 (12)N2—P2—Mo1123.27 (5)
C13—C12—C11120.10 (15)N1—P2—Mo194.72 (4)
C14—C13—C12120.49 (15)C17—P2—Mo1119.57 (5)
C13—C14—C15119.85 (15)N2—P2—P1126.83 (5)
C14—C15—C16120.07 (16)N1—P2—P138.13 (4)
C15—C16—C11120.49 (15)C17—P2—P1125.34 (5)
C22—C17—C18118.74 (13)Mo1—P2—P156.940 (15)
C22—C17—P2121.45 (11)C2—Mo1—C499.51 (6)
C18—C17—P2119.57 (11)C2—Mo1—C188.19 (6)
C19—C18—C17120.68 (15)C4—Mo1—C188.13 (6)
C20—C19—C18120.02 (15)C2—Mo1—C386.69 (6)
C21—C20—C19120.23 (15)C4—Mo1—C383.89 (6)
C20—C21—C22120.17 (15)C1—Mo1—C3169.67 (6)
C21—C22—C17120.11 (14)C2—Mo1—P194.44 (5)
N2—C23—C25109.43 (15)C4—Mo1—P1165.51 (4)
N2—C23—C24110.63 (15)C1—Mo1—P188.39 (4)
C25—C23—C24112.62 (18)C3—Mo1—P1100.94 (4)
N1—C26—C28112.27 (15)C2—Mo1—P2157.06 (4)
N1—C26—C27112.87 (15)C4—Mo1—P2101.93 (4)
C28—C26—C27111.79 (16)C1—Mo1—P2100.52 (4)
C26—N1—P1123.61 (10)C3—Mo1—P287.56 (4)
C26—N1—P2132.47 (11)P1—Mo1—P264.948 (13)
P1—N1—P2103.10 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.952.533.338 (2)143
N2—H2···O1ii0.83 (1)2.54 (1)3.3419 (18)163 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

Funding information

Funding for this research was provided by: Open Access Fund of the Leibniz Association.

References

First citationAl-Masri, H. T., Mohamed, B. M., Moussa, Z. & Alkordi, M. H. (2013). Helv. Chim. Acta, 96, 738–746.  Google Scholar
First citationAluri, B. R., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). Dalton Trans. 39, 7911–7920.  Google Scholar
First citationBiricik, N., Fei, Z., Scopelliti, R. & Dyson, P. J. (2003). Helv. Chim. Acta, 86, 3281–3287.  Web of Science CrossRef Google Scholar
First citationDulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935–941.  Web of Science CrossRef CAS Google Scholar
First citationGaw, K. G., Smith, M. B. & Slawin, A. M. Z. (2000). New J. Chem. 24, 429–435.  Web of Science CSD CrossRef CAS Google Scholar
First citationGaw, K. G., Smith, M. B. & Steed, J. W. (2002). J. Organomet. Chem. 664, 294–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationMajoumo, F., Lönnecke, P., Kühl, O. & Hey-Hawkins, E. (2004). Z. Anorg. Allg. Chem. 630, 305–308.  Web of Science CrossRef Google Scholar
First citationMajoumo-Mbe, F., Mendoza, L., Lönnecke, P., Gómez-Ruiz, S. & Hey-Hawkins, E. (2015). Z. Anorg. Allg. Chem. 641, 2306–2311.  Google Scholar
First citationPayne, D. S., Mokuolu, J. A. A. & Speakman, J. C. (1965). Chem. Commun. (London), p. 599.  Google Scholar
First citationPeitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Eur. J. Inorg. Chem. pp. 1167–1171.  Web of Science CSD CrossRef Google Scholar
First citationPyykkö, P. (2015). J. Phys. Chem. A, 119, 2326–2337.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds