organic compounds
of tris[(pyridin-1-ium-2-yl)methyl]amine trichloride–methanol–water (1/1.829/0.342)
aDepartment of Chemistry, Creighton University, Omaha, NE 68102, USA
*Correspondence e-mail: kayodeoshin@creighton.edu
In the title molecular salt, C18H21N43+·3Cl−.1.829CH4O.0.342H2O, the three pyridyl secondary amine N atoms are protonated with N—H⋯Cl hydrogen bonds present. The contains a region of partially occupied and disordered methanol and water solvent. One of the three chloride anions is involved in hydrogen bonding to three methanol molecules, two of which are disordered.
Keywords: crystal structure; protonated ligand; hydrogen bonding.
CCDC reference: 1847161
Structure description
Tris(2-pyridylmethyl)amine (TPMA) is one of the two most studied tetradentate tripodal amine ligands with complexes reported with all first row transition metals (except titanium), most second and third row metals, and majority of the lanthanide ions (Blackman, 2005). Complexes employing the TPMA ligand framework are used in many reactions such as alkane hydroxylation (Costas et al., 2004), ethane polymerization (Robertson et al., 2003), (Schroder et al., 2012), and photocaging (Sharma et al., 2014), to name a few. In addition to the neutral form of TPMA, the triprotonated salt has also been reported with the following counter-ions: 3HClO4 (Britton et al., 1991), (SO4)(NO3) (Hazell et al., 1999), (CF3SO3)2(PF6), (Br)(PF6)2, and (Cl)(PF6)2 (Sugimoto et al., 2002). There are over 700 reported structures incorporating the tris(2-pyridylmethyl)amine ligand derivative and to date only seven have been published of just the ligand with three of its pyridyl amine N atoms protonated (CSD Version 5.38; Groom et al., 2016). The protonated form of TPMA introduces new coordination modes and reaction possibilities for the ligand. Given the diverse application of compounds incorporating the tris(2-pyridylmethyl)amine moiety, herein we report on the synthesis and obtained for the title compound.
The . The three pyridyl secondary amine nitrogen atoms are protonated with N—H⋯Cl hydrogen bonds present (Table 1). The contains a region of partially occupied and disordered methanol and water solvent. One of the three chloride anions is involved in hydrogen bonding to three methanol molecules, two of which are disordered.
is shown in Fig. 1Synthesis and crystallization
Synthesis of tris(2-pyridylmethyl)amine (TPMA): TPMA was synthesized according to modified literature procedures (Britovsek et al., 2005). A 500 ml round-bottom flask was charged with 100 ml of dichloromethane solvent. While mixing, 2-(aminomethyl)pyridine (1.62 ml, 15.0 mmol) and sodium triacetoxyborohydride (9.63 g, 44.2 mmol) were added, generating a clear solution. 2-Pyridinecarboxaldehyde (3.38 g, 31.54 mmol) was slowly added to the mixture, producing a yellow-colored solution. The reaction was allowed to mix for 24 h and interrupted with the addition of sodium hydrogen carbonate until a pH of 10 was achieved. Extractions were performed on the resulting solution with ethyl acetate and the organic layers collected and combined. The organic layer was subsequently dried using magnesium sulfate (MgSO4) and solvent removed using a rotary evaporator to generate a yellow residue. This residue was dried under vacuum for three h to produce the desired ligand as a yellow solid (4.43 g, 97%). 1H NMR (CDCl3, 400 MHz): δ3.86 (s, 2H), δ7.51 (d, 1H), δ7.63 (t, 1H), δ 8.52 (d, 1H). 13C NMR (CDCl3, 400 MHz): δ 60.60, 122.35, 123.32, 136.59, 149.35, 159.81. FT–IR (solid) ν (cm−1): 3048 (s), 3009 (s), 2920 (s), 2803 (s), 1585 (s), 1566 (s), 970 (s), 745 (s).
Synthesis of tris(2-pyridiniummethyl)amine trichloride salt: TPMA (0.100 g, 0.344 mmol) was dissolved in 10 ml methanol in a 100 ml round-bottom flask. Titanium(III) chloride, 20% w/v solution in 2 M HCl (0.266 g, 0.344 mmol) was added to the flask to give a dark-brown-colored solution. This reaction was allowed to mix for 1 h then 30 ml of diethyl ether was transferred into the flask, facilitating the precipitation of product as a light-brown powder. The mixture was filtered and the precipitate washed with excess diethyl ether solvent. The precipitate was dried under vacuum for 30 minutes to yield a light brown colored solid (0.130 g, 85%). Colorless single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a concentrated solution of the compound in methanol. The reaction scheme is shown in Fig. 2.
Refinement
Crystal data, data collection and structure . A solvent-occupied site around an inversion center features alternatively two methanol molecules, or one methanol and two water molecules. The latter methanol and water molecules are disordered around the inversion center and hydrogen bonded to each other and neighboring chloride anions. The former methanol molecules are hydrogen-bonded solely to the chloride anions. The disordered methanol molecules were restrained to have similar C—O bond distances. Uij components of all disordered atoms were restrained to be similar for atoms closer to each other than 1.7 Å. Water H-atom positions were initially restrained based on hydrogen-bonding considerations. In the final cycles they were set to ride on their carrier oxygen atoms. Subject to these conditions, the occupancy rates refined to 0.658 (12) for the methanol sites and to two times 0.171 (6) for the disordered water/methanol site.
details are summarized in Table 2
|
Structural data
CCDC reference: 1847161
https://doi.org/10.1107/S241431461800826X/lh4035sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461800826X/lh4035Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H21N43+·3Cl−·1.829CH4O·0.342H2O | Z = 2 |
Mr = 464.50 | F(000) = 489 |
Triclinic, P1 | Dx = 1.264 Mg m−3 |
a = 11.0118 (10) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 11.7295 (11) Å | Cell parameters from 9629 reflections |
c = 11.7453 (11) Å | θ = 4.3–79.1° |
α = 66.009 (4)° | µ = 3.59 mm−1 |
β = 67.120 (4)° | T = 100 K |
γ = 66.057 (4)° | Plate, colourless |
V = 1220.4 (2) Å3 | 0.21 × 0.17 × 0.03 mm |
Bruker D8 Quest CMOS diffractometer | 5201 independent reflections |
Radiation source: I-mu-S microsource X-ray tube | 4537 reflections with I > 2σ(I) |
Laterally graded multilayer (Goebel) mirror monochromator | Rint = 0.106 |
ω and phi scans | θmax = 80.3°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→13 |
Tmin = 0.343, Tmax = 0.754 | k = −14→13 |
31160 measured reflections | l = −14→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: mixed |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.1049P)2 + 0.6234P] where P = (Fo2 + 2Fc2)/3 |
5201 reflections | (Δ/σ)max = 0.001 |
305 parameters | Δρmax = 0.65 e Å−3 |
25 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A solvate occupied site around an inversion center features alternatively two methanol molecules, or one methanol and two water molecules. The latter methanol and water molecules are disordered around the inversion center and hydrogen bonded with each other and neighboring chloride anions. The former methanol molecules are H-bonded solely to the chloride anions. The disordered methanol molecules were restrained to have similar C-O bond distances. Uij components of all disordered atoms were restrained to be similar for atoms closer to each other than 1.7 Angstrom. Water H atom positions were initially restrained based on H-bonding considerations. In the final refinement cycles they were set to ride on their carrier oxygen atoms. Subject to these conditions the occupancy rates refined to 0.658 (12) for the methanol sites and to two times 0.171 (12) for the disordered water/methanol site. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7392 (2) | 0.7069 (2) | 0.4204 (2) | 0.0305 (5) | |
H1A | 0.761811 | 0.756260 | 0.456684 | 0.037* | |
H1B | 0.792022 | 0.613793 | 0.448384 | 0.037* | |
C2 | 0.5876 (2) | 0.7207 (2) | 0.4709 (2) | 0.0295 (4) | |
C3 | 0.5218 (3) | 0.6746 (2) | 0.4280 (2) | 0.0348 (5) | |
H3 | 0.572215 | 0.633215 | 0.361721 | 0.042* | |
C4 | 0.3821 (3) | 0.6886 (3) | 0.4815 (3) | 0.0412 (6) | |
H4 | 0.336434 | 0.656489 | 0.452391 | 0.049* | |
C5 | 0.3088 (3) | 0.7499 (3) | 0.5781 (3) | 0.0448 (6) | |
H5 | 0.212920 | 0.760207 | 0.615750 | 0.054* | |
C6 | 0.3774 (3) | 0.7947 (3) | 0.6176 (3) | 0.0425 (6) | |
H6 | 0.328958 | 0.837108 | 0.683264 | 0.051* | |
C7 | 0.7324 (2) | 0.8986 (2) | 0.2344 (2) | 0.0290 (4) | |
H7A | 0.797823 | 0.933560 | 0.239289 | 0.035* | |
H7B | 0.640732 | 0.931171 | 0.291206 | 0.035* | |
C8 | 0.7236 (2) | 0.9456 (2) | 0.0975 (2) | 0.0287 (4) | |
C9 | 0.6717 (2) | 0.8883 (2) | 0.0512 (2) | 0.0319 (5) | |
H9 | 0.641573 | 0.813655 | 0.106105 | 0.038* | |
C10 | 0.6643 (2) | 0.9409 (3) | −0.0761 (3) | 0.0380 (5) | |
H10 | 0.629787 | 0.901558 | −0.108752 | 0.046* | |
C11 | 0.7067 (3) | 1.0498 (3) | −0.1552 (3) | 0.0438 (6) | |
H11 | 0.701645 | 1.086207 | −0.242381 | 0.053* | |
C12 | 0.7566 (3) | 1.1056 (3) | −0.1060 (3) | 0.0428 (6) | |
H12 | 0.784745 | 1.181719 | −0.158549 | 0.051* | |
C13 | 0.9275 (2) | 0.7057 (2) | 0.2246 (2) | 0.0286 (4) | |
H13A | 0.977926 | 0.703263 | 0.279685 | 0.034* | |
H13B | 0.956330 | 0.764555 | 0.137102 | 0.034* | |
C14 | 0.9630 (2) | 0.5706 (2) | 0.2164 (2) | 0.0301 (5) | |
C15 | 0.8830 (2) | 0.5325 (2) | 0.1812 (2) | 0.0339 (5) | |
H15 | 0.797596 | 0.591364 | 0.165025 | 0.041* | |
C16 | 0.9277 (3) | 0.4074 (3) | 0.1696 (3) | 0.0394 (5) | |
H16 | 0.874242 | 0.381700 | 0.142761 | 0.047* | |
C17 | 1.0499 (3) | 0.3208 (3) | 0.1970 (3) | 0.0439 (6) | |
H17 | 1.080228 | 0.234662 | 0.190965 | 0.053* | |
C18 | 1.1263 (3) | 0.3607 (3) | 0.2329 (3) | 0.0459 (6) | |
H18 | 1.210376 | 0.302125 | 0.252413 | 0.055* | |
N1 | 0.77877 (18) | 0.75601 (17) | 0.27902 (17) | 0.0268 (4) | |
N2 | 0.5133 (2) | 0.7793 (2) | 0.56423 (18) | 0.0328 (4) | |
H2 | 0.555239 | 0.808911 | 0.591621 | 0.039* | |
N3 | 0.7651 (2) | 1.05090 (19) | 0.01713 (19) | 0.0328 (4) | |
H3A | 0.799582 | 1.086001 | 0.046347 | 0.039* | |
N4 | 1.0823 (2) | 0.4836 (2) | 0.2407 (2) | 0.0356 (4) | |
H4A | 1.133956 | 0.507866 | 0.262558 | 0.043* | |
Cl1 | 0.61836 (6) | 0.91845 (6) | 0.65626 (6) | 0.0409 (2) | |
Cl2 | 0.90850 (6) | 1.15367 (6) | 0.10913 (6) | 0.0426 (2) | |
Cl3 | 1.27468 (7) | 0.56406 (7) | 0.30465 (8) | 0.0527 (2) | |
O1 | 1.5645 (3) | 0.6130 (3) | 0.1571 (3) | 0.0642 (7) | |
H1 | 1.489251 | 0.599521 | 0.206423 | 0.096* | |
C19 | 1.5992 (7) | 0.5753 (9) | 0.0479 (6) | 0.127 (3) | |
H19A | 1.536095 | 0.636347 | −0.005699 | 0.191* | |
H19B | 1.591865 | 0.487127 | 0.074178 | 0.191* | |
H19C | 1.693985 | 0.575950 | −0.001960 | 0.191* | |
O2 | 1.0260 (6) | 0.7171 (6) | 0.4915 (4) | 0.0664 (15) | 0.658 (12) |
H2A | 1.088991 | 0.683497 | 0.435259 | 0.100* | 0.658 (12) |
C20 | 0.9976 (7) | 0.8532 (7) | 0.4447 (6) | 0.0545 (15) | 0.658 (12) |
H20A | 0.985163 | 0.884194 | 0.357778 | 0.082* | 0.658 (12) |
H20B | 1.074621 | 0.877445 | 0.441206 | 0.082* | 0.658 (12) |
H20C | 0.913107 | 0.893280 | 0.502527 | 0.082* | 0.658 (12) |
O2B | 1.0765 (19) | 1.046 (2) | 0.4480 (15) | 0.082 (6) | 0.171 (6) |
H2B | 1.159884 | 1.041305 | 0.427888 | 0.123* | 0.171 (6) |
C20B | 1.009 (3) | 1.073 (4) | 0.564 (2) | 0.071 (6) | 0.171 (6) |
H20D | 0.980969 | 1.167871 | 0.549005 | 0.107* | 0.171 (6) |
H20E | 1.071433 | 1.029612 | 0.620632 | 0.107* | 0.171 (6) |
H20F | 0.927584 | 1.042209 | 0.606031 | 0.107* | 0.171 (6) |
O2C | 0.924 (2) | 0.902 (2) | 0.432 (2) | 0.077 (5) | 0.171 (6) |
H2C | 0.852103 | 0.898903 | 0.491772 | 0.116* | 0.171 (6) |
H2D | 0.947702 | 0.964886 | 0.426682 | 0.116* | 0.171 (6) |
O2D | 1.0703 (18) | 0.642 (3) | 0.506 (2) | 0.082 (7) | 0.171 (6) |
H2E | 1.116877 | 0.630924 | 0.432940 | 0.122* | 0.171 (6) |
H2F | 1.006250 | 0.711260 | 0.496388 | 0.122* | 0.171 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0308 (10) | 0.0306 (11) | 0.0301 (10) | −0.0057 (8) | −0.0062 (8) | −0.0141 (8) |
C2 | 0.0326 (11) | 0.0278 (10) | 0.0286 (10) | −0.0066 (8) | −0.0055 (8) | −0.0137 (8) |
C3 | 0.0391 (12) | 0.0345 (12) | 0.0360 (11) | −0.0129 (10) | −0.0065 (9) | −0.0167 (9) |
C4 | 0.0413 (13) | 0.0413 (14) | 0.0446 (13) | −0.0161 (11) | −0.0123 (11) | −0.0114 (11) |
C5 | 0.0345 (12) | 0.0495 (15) | 0.0436 (14) | −0.0133 (11) | −0.0020 (10) | −0.0143 (12) |
C6 | 0.0371 (12) | 0.0469 (14) | 0.0366 (12) | −0.0063 (11) | −0.0001 (10) | −0.0211 (11) |
C7 | 0.0313 (10) | 0.0227 (10) | 0.0334 (11) | −0.0022 (8) | −0.0075 (8) | −0.0155 (8) |
C8 | 0.0246 (9) | 0.0248 (10) | 0.0345 (11) | −0.0001 (8) | −0.0052 (8) | −0.0165 (8) |
C9 | 0.0297 (10) | 0.0296 (11) | 0.0386 (12) | −0.0015 (9) | −0.0094 (9) | −0.0190 (9) |
C10 | 0.0329 (11) | 0.0408 (13) | 0.0418 (13) | 0.0029 (10) | −0.0144 (10) | −0.0232 (10) |
C11 | 0.0472 (14) | 0.0430 (14) | 0.0362 (12) | −0.0005 (11) | −0.0170 (11) | −0.0142 (11) |
C12 | 0.0486 (14) | 0.0353 (13) | 0.0365 (12) | −0.0070 (11) | −0.0101 (11) | −0.0097 (10) |
C13 | 0.0263 (10) | 0.0255 (10) | 0.0347 (11) | −0.0041 (8) | −0.0047 (8) | −0.0162 (8) |
C14 | 0.0289 (10) | 0.0276 (10) | 0.0316 (10) | −0.0041 (8) | −0.0038 (8) | −0.0148 (8) |
C15 | 0.0348 (11) | 0.0304 (11) | 0.0390 (12) | −0.0041 (9) | −0.0079 (9) | −0.0200 (9) |
C16 | 0.0437 (13) | 0.0366 (13) | 0.0416 (13) | −0.0108 (10) | −0.0037 (10) | −0.0232 (10) |
C17 | 0.0463 (14) | 0.0297 (12) | 0.0521 (15) | −0.0040 (10) | −0.0043 (11) | −0.0242 (11) |
C18 | 0.0377 (13) | 0.0317 (13) | 0.0596 (16) | 0.0031 (10) | −0.0118 (12) | −0.0197 (12) |
N1 | 0.0276 (8) | 0.0232 (8) | 0.0287 (9) | −0.0033 (7) | −0.0041 (7) | −0.0142 (7) |
N2 | 0.0343 (10) | 0.0342 (10) | 0.0304 (9) | −0.0071 (8) | −0.0045 (8) | −0.0169 (8) |
N3 | 0.0356 (10) | 0.0274 (9) | 0.0353 (10) | −0.0059 (8) | −0.0072 (8) | −0.0148 (8) |
N4 | 0.0310 (9) | 0.0298 (10) | 0.0438 (11) | −0.0021 (8) | −0.0097 (8) | −0.0160 (8) |
Cl1 | 0.0433 (3) | 0.0357 (3) | 0.0502 (4) | 0.0041 (2) | −0.0214 (3) | −0.0262 (3) |
Cl2 | 0.0456 (3) | 0.0473 (4) | 0.0439 (3) | −0.0208 (3) | 0.0041 (3) | −0.0301 (3) |
Cl3 | 0.0524 (4) | 0.0438 (4) | 0.0657 (5) | −0.0210 (3) | −0.0312 (3) | 0.0017 (3) |
O1 | 0.0560 (13) | 0.0882 (18) | 0.0741 (15) | −0.0317 (13) | −0.0074 (11) | −0.0474 (14) |
C19 | 0.116 (4) | 0.234 (9) | 0.091 (4) | −0.102 (5) | 0.015 (3) | −0.095 (5) |
O2 | 0.066 (3) | 0.078 (3) | 0.050 (2) | −0.023 (3) | 0.008 (2) | −0.035 (2) |
C20 | 0.043 (3) | 0.068 (4) | 0.059 (3) | −0.012 (3) | −0.009 (2) | −0.033 (3) |
O2B | 0.078 (10) | 0.102 (13) | 0.059 (8) | −0.029 (9) | −0.010 (7) | −0.022 (8) |
C20B | 0.078 (14) | 0.082 (16) | 0.069 (12) | −0.015 (12) | −0.020 (10) | −0.045 (11) |
O2C | 0.064 (9) | 0.075 (9) | 0.080 (9) | 0.000 (8) | −0.015 (8) | −0.036 (7) |
O2D | 0.041 (8) | 0.12 (2) | 0.064 (10) | 0.002 (10) | 0.009 (7) | −0.062 (13) |
C1—N1 | 1.464 (3) | C14—N4 | 1.347 (3) |
C1—C2 | 1.500 (3) | C14—C15 | 1.379 (3) |
C1—H1A | 0.9900 | C15—C16 | 1.392 (3) |
C1—H1B | 0.9900 | C15—H15 | 0.9500 |
C2—N2 | 1.343 (3) | C16—C17 | 1.381 (4) |
C2—C3 | 1.377 (3) | C16—H16 | 0.9500 |
C3—C4 | 1.384 (4) | C17—C18 | 1.364 (4) |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C4—C5 | 1.391 (4) | C18—N4 | 1.352 (3) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.363 (4) | N2—H2 | 0.8800 |
C5—H5 | 0.9500 | N3—H3A | 0.8800 |
C6—N2 | 1.344 (3) | N4—H4A | 0.8800 |
C6—H6 | 0.9500 | O1—C19 | 1.389 (5) |
C7—N1 | 1.462 (3) | O1—H1 | 0.8400 |
C7—C8 | 1.503 (3) | C19—H19A | 0.9800 |
C7—H7A | 0.9900 | C19—H19B | 0.9800 |
C7—H7B | 0.9900 | C19—H19C | 0.9800 |
C8—N3 | 1.342 (3) | O2—C20 | 1.402 (10) |
C8—C9 | 1.387 (3) | O2—H2A | 0.8400 |
C9—C10 | 1.388 (3) | C20—H20A | 0.9800 |
C9—H9 | 0.9500 | C20—H20B | 0.9800 |
C10—C11 | 1.377 (4) | C20—H20C | 0.9800 |
C10—H10 | 0.9500 | O2B—C20B | 1.378 (18) |
C11—C12 | 1.382 (4) | O2B—H2B | 0.8400 |
C11—H11 | 0.9500 | C20B—H20D | 0.9800 |
C12—N3 | 1.347 (3) | C20B—H20E | 0.9800 |
C12—H12 | 0.9500 | C20B—H20F | 0.9800 |
C13—N1 | 1.466 (3) | O2C—H2C | 0.8344 |
C13—C14 | 1.504 (3) | O2C—H2D | 0.8490 |
C13—H13A | 0.9900 | O2D—H2E | 0.8422 |
C13—H13B | 0.9900 | O2D—H2F | 0.8339 |
N1—C1—C2 | 110.62 (18) | N4—C14—C13 | 117.9 (2) |
N1—C1—H1A | 109.5 | C15—C14—C13 | 123.8 (2) |
C2—C1—H1A | 109.5 | C14—C15—C16 | 119.8 (2) |
N1—C1—H1B | 109.5 | C14—C15—H15 | 120.1 |
C2—C1—H1B | 109.5 | C16—C15—H15 | 120.1 |
H1A—C1—H1B | 108.1 | C17—C16—C15 | 120.0 (2) |
N2—C2—C3 | 118.5 (2) | C17—C16—H16 | 120.0 |
N2—C2—C1 | 118.0 (2) | C15—C16—H16 | 120.0 |
C3—C2—C1 | 123.4 (2) | C18—C17—C16 | 119.0 (2) |
C2—C3—C4 | 120.0 (2) | C18—C17—H17 | 120.5 |
C2—C3—H3 | 120.0 | C16—C17—H17 | 120.5 |
C4—C3—H3 | 120.0 | N4—C18—C17 | 120.0 (2) |
C3—C4—C5 | 119.6 (2) | N4—C18—H18 | 120.0 |
C3—C4—H4 | 120.2 | C17—C18—H18 | 120.0 |
C5—C4—H4 | 120.2 | C7—N1—C1 | 111.28 (17) |
C6—C5—C4 | 118.7 (2) | C7—N1—C13 | 111.07 (17) |
C6—C5—H5 | 120.6 | C1—N1—C13 | 111.83 (17) |
C4—C5—H5 | 120.6 | C2—N2—C6 | 122.8 (2) |
N2—C6—C5 | 120.3 (2) | C2—N2—H2 | 118.6 |
N2—C6—H6 | 119.8 | C6—N2—H2 | 118.6 |
C5—C6—H6 | 119.8 | C8—N3—C12 | 123.2 (2) |
N1—C7—C8 | 110.26 (17) | C8—N3—H3A | 118.4 |
N1—C7—H7A | 109.6 | C12—N3—H3A | 118.4 |
C8—C7—H7A | 109.6 | C14—N4—C18 | 122.9 (2) |
N1—C7—H7B | 109.6 | C14—N4—H4A | 118.5 |
C8—C7—H7B | 109.6 | C18—N4—H4A | 118.5 |
H7A—C7—H7B | 108.1 | C19—O1—H1 | 109.5 |
N3—C8—C9 | 118.6 (2) | O1—C19—H19A | 109.5 |
N3—C8—C7 | 117.7 (2) | O1—C19—H19B | 109.5 |
C9—C8—C7 | 123.6 (2) | H19A—C19—H19B | 109.5 |
C8—C9—C10 | 119.4 (2) | O1—C19—H19C | 109.5 |
C8—C9—H9 | 120.3 | H19A—C19—H19C | 109.5 |
C10—C9—H9 | 120.3 | H19B—C19—H19C | 109.5 |
C11—C10—C9 | 120.2 (2) | C20—O2—H2A | 109.5 |
C11—C10—H10 | 119.9 | O2—C20—H20A | 109.5 |
C9—C10—H10 | 119.9 | O2—C20—H20B | 109.5 |
C10—C11—C12 | 119.0 (2) | H20A—C20—H20B | 109.5 |
C10—C11—H11 | 120.5 | O2—C20—H20C | 109.5 |
C12—C11—H11 | 120.5 | H20A—C20—H20C | 109.5 |
N3—C12—C11 | 119.4 (2) | H20B—C20—H20C | 109.5 |
N3—C12—H12 | 120.3 | C20B—O2B—H2B | 109.5 |
C11—C12—H12 | 120.3 | O2B—C20B—H20D | 109.5 |
N1—C13—C14 | 110.35 (17) | O2B—C20B—H20E | 109.5 |
N1—C13—H13A | 109.6 | H20D—C20B—H20E | 109.5 |
C14—C13—H13A | 109.6 | O2B—C20B—H20F | 109.5 |
N1—C13—H13B | 109.6 | H20D—C20B—H20F | 109.5 |
C14—C13—H13B | 109.6 | H20E—C20B—H20F | 109.5 |
H13A—C13—H13B | 108.1 | H2C—O2C—H2D | 107.6 |
N4—C14—C15 | 118.3 (2) | H2E—O2D—H2F | 108.9 |
N1—C1—C2—N2 | −128.9 (2) | C14—C15—C16—C17 | 1.9 (4) |
N1—C1—C2—C3 | 52.2 (3) | C15—C16—C17—C18 | −1.3 (4) |
N2—C2—C3—C4 | −0.3 (4) | C16—C17—C18—N4 | −0.3 (4) |
C1—C2—C3—C4 | 178.6 (2) | C8—C7—N1—C1 | −158.24 (18) |
C2—C3—C4—C5 | 0.3 (4) | C8—C7—N1—C13 | 76.5 (2) |
C3—C4—C5—C6 | 0.0 (4) | C2—C1—N1—C7 | 74.3 (2) |
C4—C5—C6—N2 | −0.2 (4) | C2—C1—N1—C13 | −160.82 (18) |
N1—C7—C8—N3 | −140.4 (2) | C14—C13—N1—C7 | −153.39 (18) |
N1—C7—C8—C9 | 41.4 (3) | C14—C13—N1—C1 | 81.6 (2) |
N3—C8—C9—C10 | 0.1 (3) | C3—C2—N2—C6 | 0.1 (4) |
C7—C8—C9—C10 | 178.2 (2) | C1—C2—N2—C6 | −178.9 (2) |
C8—C9—C10—C11 | −0.7 (3) | C5—C6—N2—C2 | 0.2 (4) |
C9—C10—C11—C12 | 0.1 (4) | C9—C8—N3—C12 | 1.3 (3) |
C10—C11—C12—N3 | 1.2 (4) | C7—C8—N3—C12 | −177.0 (2) |
N1—C13—C14—N4 | −143.1 (2) | C11—C12—N3—C8 | −1.9 (4) |
N1—C13—C14—C15 | 39.2 (3) | C15—C14—N4—C18 | −0.5 (4) |
N4—C14—C15—C16 | −1.1 (3) | C13—C14—N4—C18 | −178.2 (2) |
C13—C14—C15—C16 | 176.5 (2) | C17—C18—N4—C14 | 1.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.88 | 2.15 | 3.018 (2) | 167 |
N3—H3A···Cl2 | 0.88 | 2.13 | 3.007 (2) | 173 |
N4—H4A···Cl3 | 0.88 | 2.18 | 3.062 (2) | 176 |
O1—H1···Cl3 | 0.84 | 2.32 | 3.145 (2) | 168 |
O2—H2A···Cl3 | 0.84 | 2.34 | 3.174 (6) | 171 |
O2B—H2B···Cl1i | 0.84 | 2.42 | 3.241 (19) | 167 |
O2C—H2C···Cl1 | 0.83 | 2.53 | 3.36 (2) | 173 |
O2D—H2E···Cl3 | 0.84 | 1.93 | 2.727 (16) | 158 |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Acknowledgements
The authors would like to thank Creighton University and Cambridge Isotope Laboratories Inc. for funding support. X-ray crystallography support provided by Dr Matthias Zeller is gratefully acknowledged.
Funding information
This material was supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543.
References
Blackman, A. (2005). Polyhedron, 24, 1–39. Web of Science CrossRef Google Scholar
Britovsek, G., England, J. & White, A. (2005). Inorg. Chem. 44, 8125–8134. Web of Science CrossRef Google Scholar
Britton, D., Norman, R. E. & Que, L. (1991). Acta Cryst. C47, 2415–2417. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costas, M., Mehn, M., Jensen, M. & Que, L. (2004). Chem. Rev. 104, 939–986. Web of Science CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hazell, A., McGinley, J. & Toftlund, H. (1999). J. Chem. Soc. Dalton Trans. pp. 1271–1276. Web of Science CSD CrossRef Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Robertson, N., Carney, M. & Halfen, J. (2003). Inorg. Chem. 42, 6876–6885. Web of Science CrossRef Google Scholar
Schroder, K., Mathers, R., Buback, J., Konkolewicz, D., Magenau, A. & Matyjaszewski, K. (2012). ACS Macro Lett. 1, 1037-1040. Google Scholar
Sharma, R., Knoll, J., Martin, P., Podgorski, I., Turro, C. & Kodanko, J. (2014). Inorg. Chem. 53, 3272–3274. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sugimoto, H., Miyake, H. & Tsukube, H. (2002). J. Chem. Soc. Dalton Trans. pp. 4535–4540. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.