organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of tris­­[(pyridin-1-ium-2-yl)meth­yl]amine trichloride–methanol–water (1/1.829/0.342)

aDepartment of Chemistry, Creighton University, Omaha, NE 68102, USA
*Correspondence e-mail: kayodeoshin@creighton.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 24 May 2018; accepted 4 June 2018; online 8 June 2018)

In the title mol­ecular salt, C18H21N43+·3Cl.1.829CH4O.0.342H2O, the three pyridyl secondary amine N atoms are protonated with N—H⋯Cl hydrogen bonds present. The crystal structure contains a region of partially occupied and disordered methanol and water solvent. One of the three chloride anions is involved in hydrogen bonding to three methanol mol­ecules, two of which are disordered.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tris(2-pyridyl­meth­yl)amine (TPMA) is one of the two most studied tetra­dentate tripodal amine ligands with complexes reported with all first row transition metals (except titanium), most second and third row metals, and majority of the lanthanide ions (Blackman, 2005[Blackman, A. (2005). Polyhedron, 24, 1-39.]). Complexes employing the TPMA ligand framework are used in many reactions such as alkane hy­droxy­lation (Costas et al., 2004[Costas, M., Mehn, M., Jensen, M. & Que, L. (2004). Chem. Rev. 104, 939-986.]), ethane polymerization (Robertson et al., 2003[Robertson, N., Carney, M. & Halfen, J. (2003). Inorg. Chem. 42, 6876-6885.]), radical polymerization (Schroder et al., 2012[Schroder, K., Mathers, R., Buback, J., Konkolewicz, D., Magenau, A. & Matyjaszewski, K. (2012). ACS Macro Lett. 1, 1037-1040.]), and photocaging (Sharma et al., 2014[Sharma, R., Knoll, J., Martin, P., Podgorski, I., Turro, C. & Kodanko, J. (2014). Inorg. Chem. 53, 3272-3274.]), to name a few. In addition to the neutral form of TPMA, the triprotonated salt has also been reported with the following counter-ions: 3HClO4 (Britton et al., 1991[Britton, D., Norman, R. E. & Que, L. (1991). Acta Cryst. C47, 2415-2417.]), (SO4)(NO3) (Hazell et al., 1999[Hazell, A., McGinley, J. & Toftlund, H. (1999). J. Chem. Soc. Dalton Trans. pp. 1271-1276.]), (CF3SO3)2(PF6), (Br)(PF6)2, and (Cl)(PF6)2 (Sugimoto et al., 2002[Sugimoto, H., Miyake, H. & Tsukube, H. (2002). J. Chem. Soc. Dalton Trans. pp. 4535-4540.]). There are over 700 reported structures incorporating the tris(2-pyridyl­meth­yl)amine ligand derivative and to date only seven have been published of just the ligand with three of its pyridyl amine N atoms protonated (CSD Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The protonated form of TPMA introduces new coordination modes and reaction possibilities for the ligand. Given the diverse application of compounds incorporating the tris(2-pyridyl­meth­yl)amine moiety, herein we report on the synthesis and crystal structure obtained for the title compound.

The asymmetric unit is shown in Fig. 1[link]. The three pyridyl secondary amine nitro­gen atoms are protonated with N—H⋯Cl hydrogen bonds present (Table 1[link]). The crystal structure contains a region of partially occupied and disordered methanol and water solvent. One of the three chloride anions is involved in hydrogen bonding to three methanol mol­ecules, two of which are disordered.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.88 2.15 3.018 (2) 167
N3—H3A⋯Cl2 0.88 2.13 3.007 (2) 173
N4—H4A⋯Cl3 0.88 2.18 3.062 (2) 176
O1—H1⋯Cl3 0.84 2.32 3.145 (2) 168
O2—H2A⋯Cl3 0.84 2.34 3.174 (6) 171
O2B—H2B⋯Cl1i 0.84 2.42 3.241 (19) 167
O2C—H2C⋯Cl1 0.83 2.53 3.36 (2) 173
O2D—H2E⋯Cl3 0.84 1.93 2.727 (16) 158
Symmetry code: (i) -x+2, -y+2, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dotted lines.

Synthesis and crystallization

Synthesis of tris(2-pyridyl­meth­yl)amine (TPMA): TPMA was synthesized according to modified literature procedures (Britovsek et al., 2005[Britovsek, G., England, J. & White, A. (2005). Inorg. Chem. 44, 8125-8134.]). A 500 ml round-bottom flask was charged with 100 ml of di­chloro­methane solvent. While mixing, 2-(amino­meth­yl)pyridine (1.62 ml, 15.0 mmol) and sodium tri­acet­oxy­borohydride (9.63 g, 44.2 mmol) were added, generating a clear solution. 2-Pyridine­carboxaldehyde (3.38 g, 31.54 mmol) was slowly added to the mixture, producing a yellow-colored solution. The reaction was allowed to mix for 24 h and inter­rupted with the addition of sodium hydrogen carbonate until a pH of 10 was achieved. Extractions were performed on the resulting solution with ethyl acetate and the organic layers collected and combined. The organic layer was subsequently dried using magnesium sulfate (MgSO4) and solvent removed using a rotary evaporator to generate a yellow residue. This residue was dried under vacuum for three h to produce the desired ligand as a yellow solid (4.43 g, 97%). 1H NMR (CDCl3, 400 MHz): δ3.86 (s, 2H), δ7.51 (d, 1H), δ7.63 (t, 1H), δ 8.52 (d, 1H). 13C NMR (CDCl3, 400 MHz): δ 60.60, 122.35, 123.32, 136.59, 149.35, 159.81. FT–IR (solid) ν (cm−1): 3048 (s), 3009 (s), 2920 (s), 2803 (s), 1585 (s), 1566 (s), 970 (s), 745 (s).

Synthesis of tris(2-pyridiniummeth­yl)amine trichloride salt: TPMA (0.100 g, 0.344 mmol) was dissolved in 10 ml methanol in a 100 ml round-bottom flask. Titanium(III) chloride, 20% w/v solution in 2 M HCl (0.266 g, 0.344 mmol) was added to the flask to give a dark-brown-colored solution. This reaction was allowed to mix for 1 h then 30 ml of diethyl ether was transferred into the flask, facilitating the precipitation of product as a light-brown powder. The mixture was filtered and the precipitate washed with excess diethyl ether solvent. The precipitate was dried under vacuum for 30 minutes to yield a light brown colored solid (0.130 g, 85%). Colorless single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a concentrated solution of the compound in methanol. The reaction scheme is shown in Fig. 2[link].

[Figure 2]
Figure 2
Synthetic scheme for the title compound, [C18H21N43+·Cl] (1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A solvent-occupied site around an inversion center features alternatively two methanol mol­ecules, or one methanol and two water mol­ecules. The latter methanol and water mol­ecules are disordered around the inversion center and hydrogen bonded to each other and neighboring chloride anions. The former methanol mol­ecules are hydrogen-bonded solely to the chloride anions. The disordered methanol mol­ecules were restrained to have similar C—O bond distances. Uij components of all disordered atoms were restrained to be similar for atoms closer to each other than 1.7 Å. Water H-atom positions were initially restrained based on hydrogen-bonding considerations. In the final refinement cycles they were set to ride on their carrier oxygen atoms. Subject to these conditions, the occupancy rates refined to 0.658 (12) for the methanol sites and to two times 0.171 (6) for the disordered water/methanol site.

Table 2
Experimental details

Crystal data
Chemical formula C18H21N43+·3Cl·1.829CH4O·0.342H2O
Mr 464.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.0118 (10), 11.7295 (11), 11.7453 (11)
α, β, γ (°) 66.009 (4), 67.120 (4), 66.057 (4)
V3) 1220.4 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.59
Crystal size (mm) 0.21 × 0.17 × 0.03
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.343, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 31160, 5201, 4537
Rint 0.106
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.186, 1.09
No. of reflections 5201
No. of parameters 305
No. of restraints 25
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.50
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris[(pyridin-1-ium-2-yl)methyl]amine trichloride–methanol–water (1/1.829/0.342) top
Crystal data top
C18H21N43+·3Cl·1.829CH4O·0.342H2OZ = 2
Mr = 464.50F(000) = 489
Triclinic, P1Dx = 1.264 Mg m3
a = 11.0118 (10) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.7295 (11) ÅCell parameters from 9629 reflections
c = 11.7453 (11) Åθ = 4.3–79.1°
α = 66.009 (4)°µ = 3.59 mm1
β = 67.120 (4)°T = 100 K
γ = 66.057 (4)°Plate, colourless
V = 1220.4 (2) Å30.21 × 0.17 × 0.03 mm
Data collection top
Bruker D8 Quest CMOS
diffractometer
5201 independent reflections
Radiation source: I-mu-S microsource X-ray tube4537 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.106
ω and phi scansθmax = 80.3°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1413
Tmin = 0.343, Tmax = 0.754k = 1413
31160 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: mixed
wR(F2) = 0.186H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1049P)2 + 0.6234P]
where P = (Fo2 + 2Fc2)/3
5201 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.65 e Å3
25 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A solvate occupied site around an inversion center features alternatively two methanol molecules, or one methanol and two water molecules. The latter methanol and water molecules are disordered around the inversion center and hydrogen bonded with each other and neighboring chloride anions. The former methanol molecules are H-bonded solely to the chloride anions. The disordered methanol molecules were restrained to have similar C-O bond distances. Uij components of all disordered atoms were restrained to be similar for atoms closer to each other than 1.7 Angstrom. Water H atom positions were initially restrained based on H-bonding considerations. In the final refinement cycles they were set to ride on their carrier oxygen atoms. Subject to these conditions the occupancy rates refined to 0.658 (12) for the methanol sites and to two times 0.171 (12) for the disordered water/methanol site.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7392 (2)0.7069 (2)0.4204 (2)0.0305 (5)
H1A0.7618110.7562600.4566840.037*
H1B0.7920220.6137930.4483840.037*
C20.5876 (2)0.7207 (2)0.4709 (2)0.0295 (4)
C30.5218 (3)0.6746 (2)0.4280 (2)0.0348 (5)
H30.5722150.6332150.3617210.042*
C40.3821 (3)0.6886 (3)0.4815 (3)0.0412 (6)
H40.3364340.6564890.4523910.049*
C50.3088 (3)0.7499 (3)0.5781 (3)0.0448 (6)
H50.2129200.7602070.6157500.054*
C60.3774 (3)0.7947 (3)0.6176 (3)0.0425 (6)
H60.3289580.8371080.6832640.051*
C70.7324 (2)0.8986 (2)0.2344 (2)0.0290 (4)
H7A0.7978230.9335600.2392890.035*
H7B0.6407320.9311710.2912060.035*
C80.7236 (2)0.9456 (2)0.0975 (2)0.0287 (4)
C90.6717 (2)0.8883 (2)0.0512 (2)0.0319 (5)
H90.6415730.8136550.1061050.038*
C100.6643 (2)0.9409 (3)0.0761 (3)0.0380 (5)
H100.6297870.9015580.1087520.046*
C110.7067 (3)1.0498 (3)0.1552 (3)0.0438 (6)
H110.7016451.0862070.2423810.053*
C120.7566 (3)1.1056 (3)0.1060 (3)0.0428 (6)
H120.7847451.1817190.1585490.051*
C130.9275 (2)0.7057 (2)0.2246 (2)0.0286 (4)
H13A0.9779260.7032630.2796850.034*
H13B0.9563300.7645550.1371020.034*
C140.9630 (2)0.5706 (2)0.2164 (2)0.0301 (5)
C150.8830 (2)0.5325 (2)0.1812 (2)0.0339 (5)
H150.7975960.5913640.1650250.041*
C160.9277 (3)0.4074 (3)0.1696 (3)0.0394 (5)
H160.8742420.3817000.1427610.047*
C171.0499 (3)0.3208 (3)0.1970 (3)0.0439 (6)
H171.0802280.2346620.1909650.053*
C181.1263 (3)0.3607 (3)0.2329 (3)0.0459 (6)
H181.2103760.3021250.2524130.055*
N10.77877 (18)0.75601 (17)0.27902 (17)0.0268 (4)
N20.5133 (2)0.7793 (2)0.56423 (18)0.0328 (4)
H20.5552390.8089110.5916210.039*
N30.7651 (2)1.05090 (19)0.01713 (19)0.0328 (4)
H3A0.7995821.0860010.0463470.039*
N41.0823 (2)0.4836 (2)0.2407 (2)0.0356 (4)
H4A1.1339560.5078660.2625580.043*
Cl10.61836 (6)0.91845 (6)0.65626 (6)0.0409 (2)
Cl20.90850 (6)1.15367 (6)0.10913 (6)0.0426 (2)
Cl31.27468 (7)0.56406 (7)0.30465 (8)0.0527 (2)
O11.5645 (3)0.6130 (3)0.1571 (3)0.0642 (7)
H11.4892510.5995210.2064230.096*
C191.5992 (7)0.5753 (9)0.0479 (6)0.127 (3)
H19A1.5360950.6363470.0056990.191*
H19B1.5918650.4871270.0741780.191*
H19C1.6939850.5759500.0019600.191*
O21.0260 (6)0.7171 (6)0.4915 (4)0.0664 (15)0.658 (12)
H2A1.0889910.6834970.4352590.100*0.658 (12)
C200.9976 (7)0.8532 (7)0.4447 (6)0.0545 (15)0.658 (12)
H20A0.9851630.8841940.3577780.082*0.658 (12)
H20B1.0746210.8774450.4412060.082*0.658 (12)
H20C0.9131070.8932800.5025270.082*0.658 (12)
O2B1.0765 (19)1.046 (2)0.4480 (15)0.082 (6)0.171 (6)
H2B1.1598841.0413050.4278880.123*0.171 (6)
C20B1.009 (3)1.073 (4)0.564 (2)0.071 (6)0.171 (6)
H20D0.9809691.1678710.5490050.107*0.171 (6)
H20E1.0714331.0296120.6206320.107*0.171 (6)
H20F0.9275841.0422090.6060310.107*0.171 (6)
O2C0.924 (2)0.902 (2)0.432 (2)0.077 (5)0.171 (6)
H2C0.8521030.8989030.4917720.116*0.171 (6)
H2D0.9477020.9648860.4266820.116*0.171 (6)
O2D1.0703 (18)0.642 (3)0.506 (2)0.082 (7)0.171 (6)
H2E1.1168770.6309240.4329400.122*0.171 (6)
H2F1.0062500.7112600.4963880.122*0.171 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (10)0.0306 (11)0.0301 (10)0.0057 (8)0.0062 (8)0.0141 (8)
C20.0326 (11)0.0278 (10)0.0286 (10)0.0066 (8)0.0055 (8)0.0137 (8)
C30.0391 (12)0.0345 (12)0.0360 (11)0.0129 (10)0.0065 (9)0.0167 (9)
C40.0413 (13)0.0413 (14)0.0446 (13)0.0161 (11)0.0123 (11)0.0114 (11)
C50.0345 (12)0.0495 (15)0.0436 (14)0.0133 (11)0.0020 (10)0.0143 (12)
C60.0371 (12)0.0469 (14)0.0366 (12)0.0063 (11)0.0001 (10)0.0211 (11)
C70.0313 (10)0.0227 (10)0.0334 (11)0.0022 (8)0.0075 (8)0.0155 (8)
C80.0246 (9)0.0248 (10)0.0345 (11)0.0001 (8)0.0052 (8)0.0165 (8)
C90.0297 (10)0.0296 (11)0.0386 (12)0.0015 (9)0.0094 (9)0.0190 (9)
C100.0329 (11)0.0408 (13)0.0418 (13)0.0029 (10)0.0144 (10)0.0232 (10)
C110.0472 (14)0.0430 (14)0.0362 (12)0.0005 (11)0.0170 (11)0.0142 (11)
C120.0486 (14)0.0353 (13)0.0365 (12)0.0070 (11)0.0101 (11)0.0097 (10)
C130.0263 (10)0.0255 (10)0.0347 (11)0.0041 (8)0.0047 (8)0.0162 (8)
C140.0289 (10)0.0276 (10)0.0316 (10)0.0041 (8)0.0038 (8)0.0148 (8)
C150.0348 (11)0.0304 (11)0.0390 (12)0.0041 (9)0.0079 (9)0.0200 (9)
C160.0437 (13)0.0366 (13)0.0416 (13)0.0108 (10)0.0037 (10)0.0232 (10)
C170.0463 (14)0.0297 (12)0.0521 (15)0.0040 (10)0.0043 (11)0.0242 (11)
C180.0377 (13)0.0317 (13)0.0596 (16)0.0031 (10)0.0118 (12)0.0197 (12)
N10.0276 (8)0.0232 (8)0.0287 (9)0.0033 (7)0.0041 (7)0.0142 (7)
N20.0343 (10)0.0342 (10)0.0304 (9)0.0071 (8)0.0045 (8)0.0169 (8)
N30.0356 (10)0.0274 (9)0.0353 (10)0.0059 (8)0.0072 (8)0.0148 (8)
N40.0310 (9)0.0298 (10)0.0438 (11)0.0021 (8)0.0097 (8)0.0160 (8)
Cl10.0433 (3)0.0357 (3)0.0502 (4)0.0041 (2)0.0214 (3)0.0262 (3)
Cl20.0456 (3)0.0473 (4)0.0439 (3)0.0208 (3)0.0041 (3)0.0301 (3)
Cl30.0524 (4)0.0438 (4)0.0657 (5)0.0210 (3)0.0312 (3)0.0017 (3)
O10.0560 (13)0.0882 (18)0.0741 (15)0.0317 (13)0.0074 (11)0.0474 (14)
C190.116 (4)0.234 (9)0.091 (4)0.102 (5)0.015 (3)0.095 (5)
O20.066 (3)0.078 (3)0.050 (2)0.023 (3)0.008 (2)0.035 (2)
C200.043 (3)0.068 (4)0.059 (3)0.012 (3)0.009 (2)0.033 (3)
O2B0.078 (10)0.102 (13)0.059 (8)0.029 (9)0.010 (7)0.022 (8)
C20B0.078 (14)0.082 (16)0.069 (12)0.015 (12)0.020 (10)0.045 (11)
O2C0.064 (9)0.075 (9)0.080 (9)0.000 (8)0.015 (8)0.036 (7)
O2D0.041 (8)0.12 (2)0.064 (10)0.002 (10)0.009 (7)0.062 (13)
Geometric parameters (Å, º) top
C1—N11.464 (3)C14—N41.347 (3)
C1—C21.500 (3)C14—C151.379 (3)
C1—H1A0.9900C15—C161.392 (3)
C1—H1B0.9900C15—H150.9500
C2—N21.343 (3)C16—C171.381 (4)
C2—C31.377 (3)C16—H160.9500
C3—C41.384 (4)C17—C181.364 (4)
C3—H30.9500C17—H170.9500
C4—C51.391 (4)C18—N41.352 (3)
C4—H40.9500C18—H180.9500
C5—C61.363 (4)N2—H20.8800
C5—H50.9500N3—H3A0.8800
C6—N21.344 (3)N4—H4A0.8800
C6—H60.9500O1—C191.389 (5)
C7—N11.462 (3)O1—H10.8400
C7—C81.503 (3)C19—H19A0.9800
C7—H7A0.9900C19—H19B0.9800
C7—H7B0.9900C19—H19C0.9800
C8—N31.342 (3)O2—C201.402 (10)
C8—C91.387 (3)O2—H2A0.8400
C9—C101.388 (3)C20—H20A0.9800
C9—H90.9500C20—H20B0.9800
C10—C111.377 (4)C20—H20C0.9800
C10—H100.9500O2B—C20B1.378 (18)
C11—C121.382 (4)O2B—H2B0.8400
C11—H110.9500C20B—H20D0.9800
C12—N31.347 (3)C20B—H20E0.9800
C12—H120.9500C20B—H20F0.9800
C13—N11.466 (3)O2C—H2C0.8344
C13—C141.504 (3)O2C—H2D0.8490
C13—H13A0.9900O2D—H2E0.8422
C13—H13B0.9900O2D—H2F0.8339
N1—C1—C2110.62 (18)N4—C14—C13117.9 (2)
N1—C1—H1A109.5C15—C14—C13123.8 (2)
C2—C1—H1A109.5C14—C15—C16119.8 (2)
N1—C1—H1B109.5C14—C15—H15120.1
C2—C1—H1B109.5C16—C15—H15120.1
H1A—C1—H1B108.1C17—C16—C15120.0 (2)
N2—C2—C3118.5 (2)C17—C16—H16120.0
N2—C2—C1118.0 (2)C15—C16—H16120.0
C3—C2—C1123.4 (2)C18—C17—C16119.0 (2)
C2—C3—C4120.0 (2)C18—C17—H17120.5
C2—C3—H3120.0C16—C17—H17120.5
C4—C3—H3120.0N4—C18—C17120.0 (2)
C3—C4—C5119.6 (2)N4—C18—H18120.0
C3—C4—H4120.2C17—C18—H18120.0
C5—C4—H4120.2C7—N1—C1111.28 (17)
C6—C5—C4118.7 (2)C7—N1—C13111.07 (17)
C6—C5—H5120.6C1—N1—C13111.83 (17)
C4—C5—H5120.6C2—N2—C6122.8 (2)
N2—C6—C5120.3 (2)C2—N2—H2118.6
N2—C6—H6119.8C6—N2—H2118.6
C5—C6—H6119.8C8—N3—C12123.2 (2)
N1—C7—C8110.26 (17)C8—N3—H3A118.4
N1—C7—H7A109.6C12—N3—H3A118.4
C8—C7—H7A109.6C14—N4—C18122.9 (2)
N1—C7—H7B109.6C14—N4—H4A118.5
C8—C7—H7B109.6C18—N4—H4A118.5
H7A—C7—H7B108.1C19—O1—H1109.5
N3—C8—C9118.6 (2)O1—C19—H19A109.5
N3—C8—C7117.7 (2)O1—C19—H19B109.5
C9—C8—C7123.6 (2)H19A—C19—H19B109.5
C8—C9—C10119.4 (2)O1—C19—H19C109.5
C8—C9—H9120.3H19A—C19—H19C109.5
C10—C9—H9120.3H19B—C19—H19C109.5
C11—C10—C9120.2 (2)C20—O2—H2A109.5
C11—C10—H10119.9O2—C20—H20A109.5
C9—C10—H10119.9O2—C20—H20B109.5
C10—C11—C12119.0 (2)H20A—C20—H20B109.5
C10—C11—H11120.5O2—C20—H20C109.5
C12—C11—H11120.5H20A—C20—H20C109.5
N3—C12—C11119.4 (2)H20B—C20—H20C109.5
N3—C12—H12120.3C20B—O2B—H2B109.5
C11—C12—H12120.3O2B—C20B—H20D109.5
N1—C13—C14110.35 (17)O2B—C20B—H20E109.5
N1—C13—H13A109.6H20D—C20B—H20E109.5
C14—C13—H13A109.6O2B—C20B—H20F109.5
N1—C13—H13B109.6H20D—C20B—H20F109.5
C14—C13—H13B109.6H20E—C20B—H20F109.5
H13A—C13—H13B108.1H2C—O2C—H2D107.6
N4—C14—C15118.3 (2)H2E—O2D—H2F108.9
N1—C1—C2—N2128.9 (2)C14—C15—C16—C171.9 (4)
N1—C1—C2—C352.2 (3)C15—C16—C17—C181.3 (4)
N2—C2—C3—C40.3 (4)C16—C17—C18—N40.3 (4)
C1—C2—C3—C4178.6 (2)C8—C7—N1—C1158.24 (18)
C2—C3—C4—C50.3 (4)C8—C7—N1—C1376.5 (2)
C3—C4—C5—C60.0 (4)C2—C1—N1—C774.3 (2)
C4—C5—C6—N20.2 (4)C2—C1—N1—C13160.82 (18)
N1—C7—C8—N3140.4 (2)C14—C13—N1—C7153.39 (18)
N1—C7—C8—C941.4 (3)C14—C13—N1—C181.6 (2)
N3—C8—C9—C100.1 (3)C3—C2—N2—C60.1 (4)
C7—C8—C9—C10178.2 (2)C1—C2—N2—C6178.9 (2)
C8—C9—C10—C110.7 (3)C5—C6—N2—C20.2 (4)
C9—C10—C11—C120.1 (4)C9—C8—N3—C121.3 (3)
C10—C11—C12—N31.2 (4)C7—C8—N3—C12177.0 (2)
N1—C13—C14—N4143.1 (2)C11—C12—N3—C81.9 (4)
N1—C13—C14—C1539.2 (3)C15—C14—N4—C180.5 (4)
N4—C14—C15—C161.1 (3)C13—C14—N4—C18178.2 (2)
C13—C14—C15—C16176.5 (2)C17—C18—N4—C141.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.882.153.018 (2)167
N3—H3A···Cl20.882.133.007 (2)173
N4—H4A···Cl30.882.183.062 (2)176
O1—H1···Cl30.842.323.145 (2)168
O2—H2A···Cl30.842.343.174 (6)171
O2B—H2B···Cl1i0.842.423.241 (19)167
O2C—H2C···Cl10.832.533.36 (2)173
O2D—H2E···Cl30.841.932.727 (16)158
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors would like to thank Creighton University and Cambridge Isotope Laboratories Inc. for funding support. X-ray crystallography support provided by Dr Matthias Zeller is gratefully acknowledged.

Funding information

This material was supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543.

References

First citationBlackman, A. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef Google Scholar
First citationBritovsek, G., England, J. & White, A. (2005). Inorg. Chem. 44, 8125–8134.  Web of Science CrossRef Google Scholar
First citationBritton, D., Norman, R. E. & Que, L. (1991). Acta Cryst. C47, 2415–2417.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostas, M., Mehn, M., Jensen, M. & Que, L. (2004). Chem. Rev. 104, 939–986.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHazell, A., McGinley, J. & Toftlund, H. (1999). J. Chem. Soc. Dalton Trans. pp. 1271–1276.  Web of Science CSD CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRobertson, N., Carney, M. & Halfen, J. (2003). Inorg. Chem. 42, 6876–6885.  Web of Science CrossRef Google Scholar
First citationSchroder, K., Mathers, R., Buback, J., Konkolewicz, D., Magenau, A. & Matyjaszewski, K. (2012). ACS Macro Lett. 1, 1037-1040.  Google Scholar
First citationSharma, R., Knoll, J., Martin, P., Podgorski, I., Turro, C. & Kodanko, J. (2014). Inorg. Chem. 53, 3272–3274.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSugimoto, H., Miyake, H. & Tsukube, H. (2002). J. Chem. Soc. Dalton Trans. pp. 4535–4540.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds