organic compounds
Naphthalene-2,6-diyl bis(4-methylbenzenesulfonate)
aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl
The complete molecule of the title compound, C24H20O6S2, is generated by a crystallographic inversion centre at the middle of the naphthalene ring system. The dihedral angle between the naphthalene ring system and the pendant benzene ring is 10.23 (6)° and the C—S—O—C torsion angle is −172.05 (10)°. In the crystal, weak C—H⋯O interactions link the molecules into (10) sheets.
Keywords: tosylates; crystal structure; cross-coupling reactions.
CCDC reference: 1849908
Structure description
Aryl tosylates have attracted considerable attention as electrophiles in transition-metal catalyzed cross-coupling reactions (Piontek & Szostak, 2017; Chen et al., 2015; Ackermann et al., 2006). The use of these compounds can have advantages over the corresponding aryl halides in that the phenol group is a useful directing group for the introduction of other functional groups on the aromatic ring and as such can allow access to a wider substrate scope (Bisz & Szostak, 2017a,b, 2018; Ackermann et al., 2006).
The x, 1 − y, 1 − z) bond. The molecular structure is shown in Fig. 1.
of the title compound consists of one independent half-molecule. The complete molecule is generated by an inversion centre at the middle of the C4—C4(2 −In the crystal, C—H⋯O hydrogen bonds (Table 1) connect the molecules into (10) sheets (Fig. 2).
Synthesis and crystallization
The title compound was synthesized according to the procedure described by Murai et al. (2012). Diethyl ether (0.8 ml) was placed in a reaction vial (8 ml) provided with a rubber septum. The title compound was added to the diethyl ether until a was obtained. The resulting solution was then heated and left to stand in a refrigerator (−20°C) and colourless irregular crystals formed.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1849908
https://doi.org/10.1107/S2414314618008908/hb4242sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618008908/hb4242Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618008908/hb4242Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C24H20O6S2 | F(000) = 488 |
Mr = 468.52 | Dx = 1.484 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.2270 (3) Å | Cell parameters from 6789 reflections |
b = 5.7229 (1) Å | θ = 3.5–26.0° |
c = 15.9353 (5) Å | µ = 0.30 mm−1 |
β = 109.869 (3)° | T = 100 K |
V = 1048.68 (5) Å3 | Irregular, colourless |
Z = 2 | 0.5 × 0.45 × 0.4 mm |
Oxford Diffraction Xcalibur diffractometer | 1806 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scan | h = −15→15 |
6789 measured reflections | k = −6→7 |
2046 independent reflections | l = −19→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.3531P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2046 reflections | Δρmax = 0.37 e Å−3 |
146 parameters | Δρmin = −0.34 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and with C—H3 = 0.96 Å and Uiso = 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.60178 (3) | 0.69746 (7) | 0.34689 (2) | 0.01589 (13) | |
O1 | 0.69632 (9) | 0.56049 (19) | 0.31607 (7) | 0.0179 (3) | |
O2 | 0.61916 (9) | 0.9428 (2) | 0.34060 (7) | 0.0237 (3) | |
O3 | 0.60474 (9) | 0.6029 (2) | 0.43036 (7) | 0.0226 (3) | |
C1 | 0.81150 (12) | 0.5696 (3) | 0.37842 (9) | 0.0152 (3) | |
C2 | 0.88107 (13) | 0.7606 (3) | 0.37395 (10) | 0.0180 (3) | |
H2 | 0.8523 | 0.8769 | 0.3314 | 0.022* | |
C3 | 0.99199 (13) | 0.7727 (3) | 0.43334 (10) | 0.0171 (3) | |
H3 | 1.0392 | 0.8981 | 0.4308 | 0.021* | |
C4 | 0.96386 (12) | 0.4036 (3) | 0.50119 (9) | 0.0137 (3) | |
C5 | 0.84882 (13) | 0.3929 (3) | 0.43857 (10) | 0.0157 (3) | |
H5 | 0.8002 | 0.2680 | 0.4387 | 0.019* | |
C6 | 0.47502 (12) | 0.6087 (3) | 0.26206 (10) | 0.0145 (3) | |
C7 | 0.42327 (13) | 0.7571 (3) | 0.19026 (10) | 0.0156 (3) | |
H7 | 0.4582 | 0.8978 | 0.1848 | 0.019* | |
C8 | 0.31833 (13) | 0.6905 (3) | 0.12701 (10) | 0.0162 (3) | |
H8 | 0.2827 | 0.7883 | 0.0788 | 0.019* | |
C9 | 0.26556 (12) | 0.4792 (3) | 0.13462 (10) | 0.0159 (3) | |
C10 | 0.32065 (13) | 0.3337 (3) | 0.20673 (10) | 0.0170 (3) | |
H10 | 0.2866 | 0.1916 | 0.2119 | 0.020* | |
C11 | 0.42491 (13) | 0.3965 (3) | 0.27083 (10) | 0.0173 (3) | |
H11 | 0.4608 | 0.2984 | 0.3189 | 0.021* | |
C12 | 0.15007 (14) | 0.4100 (3) | 0.06714 (11) | 0.0222 (4) | |
H12A | 0.0889 | 0.4959 | 0.0782 | 0.033* | |
H12B | 0.1378 | 0.2456 | 0.0721 | 0.033* | |
H12C | 0.1500 | 0.4445 | 0.0082 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0119 (2) | 0.0182 (2) | 0.0144 (2) | 0.00249 (14) | 0.00038 (15) | −0.00300 (14) |
O1 | 0.0111 (5) | 0.0247 (6) | 0.0138 (5) | 0.0040 (4) | −0.0010 (4) | −0.0040 (4) |
O2 | 0.0192 (6) | 0.0180 (6) | 0.0273 (6) | 0.0006 (5) | −0.0008 (5) | −0.0049 (5) |
O3 | 0.0187 (6) | 0.0327 (7) | 0.0141 (5) | 0.0033 (5) | 0.0024 (4) | −0.0015 (5) |
C1 | 0.0104 (7) | 0.0217 (8) | 0.0115 (7) | 0.0021 (6) | 0.0011 (6) | −0.0036 (6) |
C2 | 0.0187 (8) | 0.0200 (8) | 0.0148 (7) | 0.0046 (6) | 0.0051 (6) | 0.0052 (6) |
C3 | 0.0164 (7) | 0.0168 (8) | 0.0190 (8) | −0.0009 (6) | 0.0072 (6) | 0.0028 (6) |
C4 | 0.0135 (7) | 0.0141 (7) | 0.0140 (7) | 0.0012 (6) | 0.0054 (6) | −0.0014 (6) |
C5 | 0.0131 (7) | 0.0160 (8) | 0.0179 (8) | −0.0006 (6) | 0.0051 (6) | −0.0027 (6) |
C6 | 0.0102 (7) | 0.0169 (8) | 0.0145 (7) | 0.0017 (6) | 0.0016 (6) | −0.0013 (6) |
C7 | 0.0152 (7) | 0.0146 (7) | 0.0167 (8) | 0.0010 (6) | 0.0049 (6) | 0.0003 (6) |
C8 | 0.0151 (7) | 0.0178 (8) | 0.0142 (7) | 0.0037 (6) | 0.0031 (6) | 0.0025 (6) |
C9 | 0.0126 (7) | 0.0198 (8) | 0.0160 (7) | 0.0009 (6) | 0.0058 (6) | −0.0031 (6) |
C10 | 0.0171 (8) | 0.0142 (8) | 0.0205 (8) | −0.0014 (6) | 0.0073 (6) | −0.0004 (6) |
C11 | 0.0171 (8) | 0.0166 (8) | 0.0168 (7) | 0.0042 (6) | 0.0038 (6) | 0.0031 (6) |
C12 | 0.0164 (8) | 0.0271 (9) | 0.0210 (8) | −0.0036 (7) | 0.0036 (6) | −0.0012 (7) |
S1—O3 | 1.4249 (12) | C6—C11 | 1.389 (2) |
S1—O2 | 1.4285 (12) | C6—C7 | 1.392 (2) |
S1—O1 | 1.6056 (11) | C7—C8 | 1.389 (2) |
S1—C6 | 1.7503 (15) | C7—H7 | 0.9300 |
O1—C1 | 1.4220 (17) | C8—C9 | 1.395 (2) |
C1—C5 | 1.361 (2) | C8—H8 | 0.9300 |
C1—C2 | 1.401 (2) | C9—C10 | 1.393 (2) |
C2—C3 | 1.366 (2) | C9—C12 | 1.508 (2) |
C2—H2 | 0.9300 | C10—C11 | 1.383 (2) |
C3—C4i | 1.419 (2) | C10—H10 | 0.9300 |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C3i | 1.419 (2) | C12—H12A | 0.9600 |
C4—C4i | 1.422 (3) | C12—H12B | 0.9600 |
C4—C5 | 1.423 (2) | C12—H12C | 0.9600 |
C5—H5 | 0.9300 | ||
O3—S1—O2 | 118.79 (7) | C11—C6—S1 | 118.77 (11) |
O3—S1—O1 | 107.92 (6) | C7—C6—S1 | 119.57 (12) |
O2—S1—O1 | 108.58 (7) | C8—C7—C6 | 118.61 (14) |
O3—S1—C6 | 110.22 (7) | C8—C7—H7 | 120.7 |
O2—S1—C6 | 110.17 (7) | C6—C7—H7 | 120.7 |
O1—S1—C6 | 99.36 (6) | C7—C8—C9 | 121.02 (14) |
C1—O1—S1 | 114.41 (9) | C7—C8—H8 | 119.5 |
C5—C1—C2 | 123.45 (14) | C9—C8—H8 | 119.5 |
C5—C1—O1 | 118.69 (13) | C10—C9—C8 | 118.78 (13) |
C2—C1—O1 | 117.86 (13) | C10—C9—C12 | 120.27 (14) |
C3—C2—C1 | 118.76 (14) | C8—C9—C12 | 120.94 (14) |
C3—C2—H2 | 120.6 | C11—C10—C9 | 121.33 (14) |
C1—C2—H2 | 120.6 | C11—C10—H10 | 119.3 |
C2—C3—C4i | 120.85 (14) | C9—C10—H10 | 119.3 |
C2—C3—H3 | 119.6 | C10—C11—C6 | 118.70 (14) |
C4i—C3—H3 | 119.6 | C10—C11—H11 | 120.6 |
C3i—C4—C4i | 119.12 (16) | C6—C11—H11 | 120.6 |
C3i—C4—C5 | 121.55 (14) | C9—C12—H12A | 109.5 |
C4i—C4—C5 | 119.33 (17) | C9—C12—H12B | 109.5 |
C1—C5—C4 | 118.48 (14) | H12A—C12—H12B | 109.5 |
C1—C5—H5 | 120.8 | C9—C12—H12C | 109.5 |
C4—C5—H5 | 120.8 | H12A—C12—H12C | 109.5 |
C11—C6—C7 | 121.55 (14) | H12B—C12—H12C | 109.5 |
O3—S1—O1—C1 | −57.12 (12) | O1—S1—C6—C11 | 84.27 (13) |
O2—S1—O1—C1 | 72.86 (11) | O3—S1—C6—C7 | 147.51 (12) |
C6—S1—O1—C1 | −172.05 (10) | O2—S1—C6—C7 | 14.51 (14) |
S1—O1—C1—C5 | 93.80 (14) | O1—S1—C6—C7 | −99.35 (13) |
S1—O1—C1—C2 | −86.75 (14) | C11—C6—C7—C8 | 0.8 (2) |
C5—C1—C2—C3 | −0.6 (2) | S1—C6—C7—C8 | −175.44 (11) |
O1—C1—C2—C3 | 179.94 (13) | C6—C7—C8—C9 | −0.2 (2) |
C1—C2—C3—C4i | −0.4 (2) | C7—C8—C9—C10 | −0.6 (2) |
C2—C1—C5—C4 | 1.0 (2) | C7—C8—C9—C12 | 178.42 (14) |
O1—C1—C5—C4 | −179.60 (12) | C8—C9—C10—C11 | 0.9 (2) |
C3i—C4—C5—C1 | 179.05 (14) | C12—C9—C10—C11 | −178.12 (14) |
C4i—C4—C5—C1 | −0.3 (2) | C9—C10—C11—C6 | −0.3 (2) |
O3—S1—C6—C11 | −28.87 (14) | C7—C6—C11—C10 | −0.6 (2) |
O2—S1—C6—C11 | −161.87 (12) | S1—C6—C11—C10 | 175.75 (11) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1ii | 0.93 | 2.46 | 3.3261 (18) | 156 |
Symmetry code: (ii) −x+3/2, y+1/2, −z+1/2. |
Funding information
We gratefully acknowledge Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).
References
Ackermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619–2622. Web of Science CrossRef CAS Google Scholar
Bisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964–3981. Web of Science CrossRef Google Scholar
Bisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361–5366. Web of Science CrossRef Google Scholar
Bisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290–1294. Web of Science CrossRef Google Scholar
Chen, X., Quan, Z.-J. & Wang, X.-C. (2015). Appl. Organomet. Chem. 29, 296–300. Web of Science CrossRef CAS Google Scholar
Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Piontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272–7276. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.