organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Naphthalene-2,6-diyl bis­­(4-methyl­benzene­sulfonate)

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 June 2018; accepted 18 June 2018; online 22 June 2018)

The complete mol­ecule of the title compound, C24H20O6S2, is generated by a crystallographic inversion centre at the middle of the naphthalene ring system. The dihedral angle between the naphthalene ring system and the pendant benzene ring is 10.23 (6)° and the C—S—O—C torsion angle is −172.05 (10)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into (10[\overline{1}]) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aryl tosyl­ates have attracted considerable attention as electrophiles in transition-metal catalyzed cross-coupling reactions (Piontek & Szostak, 2017[Piontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272-7276.]; Chen et al., 2015[Chen, X., Quan, Z.-J. & Wang, X.-C. (2015). Appl. Organomet. Chem. 29, 296-300.]; Ackermann et al., 2006[Ackermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619-2622.]). The use of these compounds can have advantages over the corresponding aryl halides in that the phenol group is a useful directing group for the introduction of other functional groups on the aromatic ring and as such can allow access to a wider substrate scope (Bisz & Szostak, 2017a[Bisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964-3981.],b[Bisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361-5366.], 2018[Bisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290-1294.]; Ackermann et al., 2006[Ackermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619-2622.]).

The asymmetric unit of the title compound consists of one independent half-mol­ecule. The complete mol­ecule is generated by an inversion centre at the middle of the C4—C4(2 − x, 1 − y, 1 − z) bond. The mol­ecular structure is shown in Fig. 1[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are generated by the symmetry operation 2 − x, 1 − y, 1 − z.

In the crystal, C—H⋯O hydrogen bonds (Table 1[link]) connect the mol­ecules into (10[\overline{1}]) sheets (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.46 3.3261 (18) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis.

Synthesis and crystallization

The title compound was synthesized according to the procedure described by Murai et al. (2012[Murai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818-2821.]). Diethyl ether (0.8 ml) was placed in a reaction vial (8 ml) provided with a rubber septum. The title compound was added to the diethyl ether until a saturated solution was obtained. The resulting solution was then heated and left to stand in a refrigerator (−20°C) and colourless irregular crystals formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H20O6S2
Mr 468.52
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.2270 (3), 5.7229 (1), 15.9353 (5)
β (°) 109.869 (3)
V3) 1048.68 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.5 × 0.45 × 0.4
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 6789, 2046, 1806
Rint 0.016
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.08
No. of reflections 2046
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.34
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]b) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Naphthalene-2,6-diyl bis(4-methylbenzenesulfonate) top
Crystal data top
C24H20O6S2F(000) = 488
Mr = 468.52Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2270 (3) ÅCell parameters from 6789 reflections
b = 5.7229 (1) Åθ = 3.5–26.0°
c = 15.9353 (5) ŵ = 0.30 mm1
β = 109.869 (3)°T = 100 K
V = 1048.68 (5) Å3Irregular, colourless
Z = 20.5 × 0.45 × 0.4 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1806 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scanh = 1515
6789 measured reflectionsk = 67
2046 independent reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.3531P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2046 reflectionsΔρmax = 0.37 e Å3
146 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for C—H and with C—H3 = 0.96 Å and Uiso = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.60178 (3)0.69746 (7)0.34689 (2)0.01589 (13)
O10.69632 (9)0.56049 (19)0.31607 (7)0.0179 (3)
O20.61916 (9)0.9428 (2)0.34060 (7)0.0237 (3)
O30.60474 (9)0.6029 (2)0.43036 (7)0.0226 (3)
C10.81150 (12)0.5696 (3)0.37842 (9)0.0152 (3)
C20.88107 (13)0.7606 (3)0.37395 (10)0.0180 (3)
H20.85230.87690.33140.022*
C30.99199 (13)0.7727 (3)0.43334 (10)0.0171 (3)
H31.03920.89810.43080.021*
C40.96386 (12)0.4036 (3)0.50119 (9)0.0137 (3)
C50.84882 (13)0.3929 (3)0.43857 (10)0.0157 (3)
H50.80020.26800.43870.019*
C60.47502 (12)0.6087 (3)0.26206 (10)0.0145 (3)
C70.42327 (13)0.7571 (3)0.19026 (10)0.0156 (3)
H70.45820.89780.18480.019*
C80.31833 (13)0.6905 (3)0.12701 (10)0.0162 (3)
H80.28270.78830.07880.019*
C90.26556 (12)0.4792 (3)0.13462 (10)0.0159 (3)
C100.32065 (13)0.3337 (3)0.20673 (10)0.0170 (3)
H100.28660.19160.21190.020*
C110.42491 (13)0.3965 (3)0.27083 (10)0.0173 (3)
H110.46080.29840.31890.021*
C120.15007 (14)0.4100 (3)0.06714 (11)0.0222 (4)
H12A0.08890.49590.07820.033*
H12B0.13780.24560.07210.033*
H12C0.15000.44450.00820.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0119 (2)0.0182 (2)0.0144 (2)0.00249 (14)0.00038 (15)0.00300 (14)
O10.0111 (5)0.0247 (6)0.0138 (5)0.0040 (4)0.0010 (4)0.0040 (4)
O20.0192 (6)0.0180 (6)0.0273 (6)0.0006 (5)0.0008 (5)0.0049 (5)
O30.0187 (6)0.0327 (7)0.0141 (5)0.0033 (5)0.0024 (4)0.0015 (5)
C10.0104 (7)0.0217 (8)0.0115 (7)0.0021 (6)0.0011 (6)0.0036 (6)
C20.0187 (8)0.0200 (8)0.0148 (7)0.0046 (6)0.0051 (6)0.0052 (6)
C30.0164 (7)0.0168 (8)0.0190 (8)0.0009 (6)0.0072 (6)0.0028 (6)
C40.0135 (7)0.0141 (7)0.0140 (7)0.0012 (6)0.0054 (6)0.0014 (6)
C50.0131 (7)0.0160 (8)0.0179 (8)0.0006 (6)0.0051 (6)0.0027 (6)
C60.0102 (7)0.0169 (8)0.0145 (7)0.0017 (6)0.0016 (6)0.0013 (6)
C70.0152 (7)0.0146 (7)0.0167 (8)0.0010 (6)0.0049 (6)0.0003 (6)
C80.0151 (7)0.0178 (8)0.0142 (7)0.0037 (6)0.0031 (6)0.0025 (6)
C90.0126 (7)0.0198 (8)0.0160 (7)0.0009 (6)0.0058 (6)0.0031 (6)
C100.0171 (8)0.0142 (8)0.0205 (8)0.0014 (6)0.0073 (6)0.0004 (6)
C110.0171 (8)0.0166 (8)0.0168 (7)0.0042 (6)0.0038 (6)0.0031 (6)
C120.0164 (8)0.0271 (9)0.0210 (8)0.0036 (7)0.0036 (6)0.0012 (7)
Geometric parameters (Å, º) top
S1—O31.4249 (12)C6—C111.389 (2)
S1—O21.4285 (12)C6—C71.392 (2)
S1—O11.6056 (11)C7—C81.389 (2)
S1—C61.7503 (15)C7—H70.9300
O1—C11.4220 (17)C8—C91.395 (2)
C1—C51.361 (2)C8—H80.9300
C1—C21.401 (2)C9—C101.393 (2)
C2—C31.366 (2)C9—C121.508 (2)
C2—H20.9300C10—C111.383 (2)
C3—C4i1.419 (2)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C3i1.419 (2)C12—H12A0.9600
C4—C4i1.422 (3)C12—H12B0.9600
C4—C51.423 (2)C12—H12C0.9600
C5—H50.9300
O3—S1—O2118.79 (7)C11—C6—S1118.77 (11)
O3—S1—O1107.92 (6)C7—C6—S1119.57 (12)
O2—S1—O1108.58 (7)C8—C7—C6118.61 (14)
O3—S1—C6110.22 (7)C8—C7—H7120.7
O2—S1—C6110.17 (7)C6—C7—H7120.7
O1—S1—C699.36 (6)C7—C8—C9121.02 (14)
C1—O1—S1114.41 (9)C7—C8—H8119.5
C5—C1—C2123.45 (14)C9—C8—H8119.5
C5—C1—O1118.69 (13)C10—C9—C8118.78 (13)
C2—C1—O1117.86 (13)C10—C9—C12120.27 (14)
C3—C2—C1118.76 (14)C8—C9—C12120.94 (14)
C3—C2—H2120.6C11—C10—C9121.33 (14)
C1—C2—H2120.6C11—C10—H10119.3
C2—C3—C4i120.85 (14)C9—C10—H10119.3
C2—C3—H3119.6C10—C11—C6118.70 (14)
C4i—C3—H3119.6C10—C11—H11120.6
C3i—C4—C4i119.12 (16)C6—C11—H11120.6
C3i—C4—C5121.55 (14)C9—C12—H12A109.5
C4i—C4—C5119.33 (17)C9—C12—H12B109.5
C1—C5—C4118.48 (14)H12A—C12—H12B109.5
C1—C5—H5120.8C9—C12—H12C109.5
C4—C5—H5120.8H12A—C12—H12C109.5
C11—C6—C7121.55 (14)H12B—C12—H12C109.5
O3—S1—O1—C157.12 (12)O1—S1—C6—C1184.27 (13)
O2—S1—O1—C172.86 (11)O3—S1—C6—C7147.51 (12)
C6—S1—O1—C1172.05 (10)O2—S1—C6—C714.51 (14)
S1—O1—C1—C593.80 (14)O1—S1—C6—C799.35 (13)
S1—O1—C1—C286.75 (14)C11—C6—C7—C80.8 (2)
C5—C1—C2—C30.6 (2)S1—C6—C7—C8175.44 (11)
O1—C1—C2—C3179.94 (13)C6—C7—C8—C90.2 (2)
C1—C2—C3—C4i0.4 (2)C7—C8—C9—C100.6 (2)
C2—C1—C5—C41.0 (2)C7—C8—C9—C12178.42 (14)
O1—C1—C5—C4179.60 (12)C8—C9—C10—C110.9 (2)
C3i—C4—C5—C1179.05 (14)C12—C9—C10—C11178.12 (14)
C4i—C4—C5—C10.3 (2)C9—C10—C11—C60.3 (2)
O3—S1—C6—C1128.87 (14)C7—C6—C11—C100.6 (2)
O2—S1—C6—C11161.87 (12)S1—C6—C11—C10175.75 (11)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1ii0.932.463.3261 (18)156
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.
 

Funding information

We gratefully acknowledge Narodowe Centrum Nauki (grant No. 2014/15/D/ST5/02731).

References

First citationAckermann, L., Althammer, A. & Born, R. (2006). Angew. Chem. Int. Ed. 45, 2619–2622.  Web of Science CrossRef CAS Google Scholar
First citationBisz, E. & Szostak, M. (2017a). ChemSusChem, 10, 3964–3981.  Web of Science CrossRef Google Scholar
First citationBisz, E. & Szostak, M. (2017b). Green Chem. 19, 5361–5366.  Web of Science CrossRef Google Scholar
First citationBisz, E. & Szostak, M. (2018). ChemSusChem, 11, 1290–1294.  Web of Science CrossRef Google Scholar
First citationChen, X., Quan, Z.-J. & Wang, X.-C. (2015). Appl. Organomet. Chem. 29, 296–300.  Web of Science CrossRef CAS Google Scholar
First citationMurai, N., Miyano, M., Yonaga, M. & Tanaka, K. (2012). Org. Lett. 14, 2818–2821.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPiontek, A. & Szostak, M. (2017). Eur. J. Org. Chem. 7272–7276.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds