organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-4-phenyl-3-[4-(tri­fluoro­meth­yl)phen­yl]-1H-pyrazolo­[3,4-d]pyrimidine

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: m.elhafi1@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 June 2018; accepted 14 June 2018; online 26 June 2018)

In the title mol­ecule, C19H13F3N4, the pyrazolo­pyrimidine unit is slightly non-planar [dihedral angle between the five- and six-membered rings = 3.03 (15)°]. In the crystal, offset head-to-tail π-stacking inter­actions between pyrazolo­pyrimidine units [centroid–centroid separation = 3.665 (2) Å] together with weak C—H⋯N hydrogen bonds form stepped chains propagating along the c-axis direction. The structure was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolo [3,4-d] pyrimidine derivatives display a broad spectrum of biological properties, such as anti­viral (Bektemirov et al., 1981[Bektemirov, T. A., Chekunova, E. V., Korbukh, I. A., Bulychev, Y. N., Yakunina, N. G. & Preobrazhenskaya, M. N. (1981). Acta Virol. 25, 326-329.]), anti­bacterial (Rostamizadeh et al., 2013[Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629-632.]) and anti­tumor (Tintori et al., 2015[Tintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). J. Med. Chem. 58, 347-361.]). The present work is a continuation of our studies of pyrazolo­[3,4-d]pyrimidine derivatives (El Hafi et al., 2017[El Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927-933.]).

In the title mol­ecule (Fig. 1[link]), the pyrazolo­pyrimidine unit is slightly non-planar as indicated by the dihedral angle of 3.03 (15)° between the mean planes of the five- and six-membered rings. The plane of the C7–C12 benzene ring bearing the CF3 substituent is inclined to the pyrazole moiety by 31.98 (16)° while the plane of the C14–C19 benzene ring is inclined by 50.69 (14)° to that of the pyrimidine ring.

[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.

In the crystal, offset, head-to-tail π-stacking inter­actions between adjacent pyrazolo­pyrimidine units reinforced by weak, complementary C6—H6B⋯N1 hydrogen bonds form centrosymmetric dimers, which are connected into stepped chains along the c axis direction by weak, complementary C4—H4⋯N2 hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]). The centroid–centroid distance for the π-stacking inter­action is 3.665 (2) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.96 (3) 2.66 (3) 3.588 (4) 162 (2)
C6—H6B⋯N1ii 1.01 (4) 2.64 (3) 3.346 (4) 127 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Detail of the stepped chain formed by C—H⋯N hydrogen bonds (black dashed lines) and offset π-stacking inter­actions (orange dashed lines).
[Figure 3]
Figure 3
Packing projected along the c-axis direction giving end views of three adjacent chains. Inter­molecular inter­actions are depicted as in Fig. 2[link].

Synthesis and crystallization

A mixture 1-methyl-4-phenyl-1H-pyrazolo [3,4-d] pyrimidine (0.1 g, 0.47 mmol), 4-iodo­benzotrifluoride (0.26 g, 0.95 mmol), Cs2CO3 (0.46 g, 1.42 mmol), K3PO4 (0.25 g, 1.18 mmol), 1,10- phenanthroline (0.034 g, 0.19 mmol), and Pd(OAc)2 (0.021 g, 0.094 mmol) was dissolved/suspended in DMA (3 ml). The resulting mixture was flushed with argon and heated to 165°C for 48 h. After completion of the reaction, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. Water (15 ml) was added, and the resulting aqueous phase was extracted with CH2Cl2 (3 × 15 ml). The combined organic layers were dried with MgSO4 and concentrated under vacuum. The residue was purified by column chromatography on silica gel (mixed solvents of EtOAc/ petroleum ether). The title compound was recrystallized from ethanol solution at room temperature in the form of colourless plates (yield: 65%; m.p. 418–420 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C19H13F3N4
Mr 354.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 15.0553 (10), 15.7338 (12), 6.9701 (5)
β (°) 99.540 (4)
V3) 1628.2 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.19 × 0.12 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.])
Tmin, Tmax 0.84, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 17099, 16740, 12748
Rint 0.046
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 1.03
No. of reflections 16740
No. of parameters 288
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.45, −0.44
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]) and CELL_NOW (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a), CELL_NOW (Sheldrick, 2008b).

1-Methyl-4-phenyl-3-[4-(trifluoromethyl)phenyl]-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C19H13F3N4F(000) = 728
Mr = 354.33Dx = 1.445 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 15.0553 (10) ÅCell parameters from 9981 reflections
b = 15.7338 (12) Åθ = 3.0–72.5°
c = 6.9701 (5) ŵ = 0.96 mm1
β = 99.540 (4)°T = 150 K
V = 1628.2 (2) Å3Plate, colourless
Z = 40.19 × 0.12 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
16740 independent reflections
Radiation source: INCOATEC IµS micro-focus source12748 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1818
Tmin = 0.84, Tmax = 0.98l = 88
17099 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.147All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.8087P]
where P = (Fo2 + 2Fc2)/3
16740 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.44 e Å3
Special details top

Experimental. Analysis of 1332 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008b) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.93746 (17)0.43794 (15)0.1891 (4)0.0744 (8)
F21.00377 (15)0.3438 (2)0.0044 (4)0.0895 (10)
F30.90729 (18)0.31053 (18)0.2496 (4)0.0824 (9)
N10.64088 (16)0.55427 (16)0.7611 (4)0.0311 (6)
N20.52893 (16)0.44411 (16)0.7545 (4)0.0315 (6)
N30.53400 (15)0.34150 (15)0.4998 (4)0.0300 (6)
N40.58613 (15)0.32541 (15)0.3609 (4)0.0305 (6)
C10.64887 (18)0.38622 (18)0.3746 (4)0.0277 (6)
C20.63661 (18)0.44456 (18)0.5265 (4)0.0266 (6)
C30.67118 (18)0.52239 (18)0.6055 (4)0.0274 (6)
C40.5736 (2)0.5126 (2)0.8265 (5)0.0337 (7)
H40.5549 (19)0.5358 (19)0.941 (5)0.031 (8)*
C50.56320 (18)0.41149 (18)0.6036 (4)0.0274 (6)
C60.4576 (2)0.2875 (2)0.5169 (6)0.0353 (7)
H6A0.477 (2)0.228 (2)0.522 (6)0.048 (10)*
H6B0.407 (2)0.298 (2)0.405 (6)0.036 (9)*
H6C0.435 (2)0.305 (2)0.635 (7)0.053 (11)*
C70.71865 (19)0.38123 (18)0.2509 (4)0.0272 (6)
C80.6999 (2)0.34624 (19)0.0652 (5)0.0294 (7)
H80.641 (2)0.3240 (17)0.017 (5)0.023 (7)*
C90.7662 (2)0.33996 (19)0.0502 (5)0.0311 (7)
H90.753 (2)0.315 (2)0.175 (6)0.048 (10)*
C100.8521 (2)0.36943 (18)0.0192 (5)0.0306 (7)
C110.8724 (2)0.4041 (2)0.2034 (5)0.0338 (7)
H110.935 (2)0.425 (2)0.253 (6)0.045 (10)*
C120.8064 (2)0.4091 (2)0.3195 (5)0.0322 (7)
H120.821 (2)0.434 (2)0.447 (5)0.036 (9)*
C130.9243 (2)0.3649 (2)0.1037 (5)0.0370 (8)
C140.73663 (19)0.57372 (18)0.5194 (5)0.0282 (7)
C150.8139 (2)0.6051 (2)0.6335 (5)0.0333 (7)
H150.828 (2)0.592 (2)0.772 (6)0.042 (10)*
C160.8760 (2)0.6503 (2)0.5480 (6)0.0405 (8)
H160.931 (2)0.668 (2)0.627 (6)0.044 (10)*
C170.8595 (2)0.6674 (2)0.3512 (6)0.0427 (9)
H170.903 (3)0.698 (2)0.296 (6)0.053 (11)*
C180.7813 (2)0.6387 (2)0.2375 (6)0.0418 (8)
H180.768 (2)0.652 (2)0.110 (6)0.052 (11)*
C190.7201 (2)0.5910 (2)0.3209 (5)0.0341 (7)
H190.668 (2)0.570 (2)0.245 (6)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0874 (17)0.0592 (15)0.092 (2)0.0045 (12)0.0588 (16)0.0163 (13)
F20.0474 (13)0.177 (3)0.0493 (14)0.0533 (16)0.0231 (12)0.0258 (17)
F30.0830 (17)0.0977 (19)0.0802 (19)0.0278 (14)0.0537 (15)0.0485 (16)
N10.0312 (13)0.0380 (14)0.0253 (13)0.0007 (10)0.0077 (11)0.0008 (11)
N20.0297 (13)0.0390 (15)0.0268 (14)0.0030 (10)0.0075 (11)0.0033 (11)
N30.0280 (12)0.0331 (14)0.0300 (14)0.0000 (10)0.0082 (11)0.0020 (11)
N40.0287 (12)0.0319 (14)0.0322 (14)0.0037 (10)0.0092 (12)0.0026 (11)
C10.0245 (14)0.0318 (16)0.0268 (15)0.0046 (11)0.0039 (12)0.0009 (13)
C20.0235 (13)0.0323 (16)0.0239 (15)0.0031 (11)0.0039 (12)0.0022 (12)
C30.0256 (14)0.0339 (16)0.0222 (15)0.0036 (11)0.0024 (12)0.0016 (12)
C40.0343 (16)0.0433 (19)0.0252 (16)0.0038 (13)0.0100 (13)0.0014 (13)
C50.0263 (14)0.0322 (16)0.0233 (15)0.0041 (11)0.0033 (12)0.0033 (12)
C60.0327 (16)0.0340 (18)0.041 (2)0.0034 (13)0.0116 (16)0.0027 (14)
C70.0288 (14)0.0261 (15)0.0274 (16)0.0045 (11)0.0065 (13)0.0034 (12)
C80.0300 (15)0.0268 (15)0.0308 (17)0.0003 (12)0.0030 (13)0.0002 (13)
C90.0369 (16)0.0306 (16)0.0259 (16)0.0040 (12)0.0059 (14)0.0024 (13)
C100.0314 (15)0.0287 (15)0.0336 (17)0.0063 (12)0.0108 (13)0.0017 (13)
C110.0268 (15)0.0361 (17)0.0388 (18)0.0023 (12)0.0063 (14)0.0069 (14)
C120.0279 (15)0.0385 (18)0.0297 (18)0.0054 (12)0.0034 (13)0.0074 (13)
C130.0396 (17)0.0376 (18)0.0360 (19)0.0053 (13)0.0125 (15)0.0004 (14)
C140.0272 (14)0.0285 (16)0.0303 (17)0.0028 (11)0.0089 (13)0.0023 (13)
C150.0316 (16)0.0360 (17)0.0324 (18)0.0016 (12)0.0060 (14)0.0053 (14)
C160.0328 (17)0.0355 (18)0.054 (2)0.0033 (13)0.0105 (17)0.0080 (17)
C170.0418 (19)0.0365 (19)0.055 (2)0.0040 (15)0.0250 (18)0.0006 (17)
C180.049 (2)0.043 (2)0.038 (2)0.0016 (15)0.0202 (17)0.0044 (15)
C190.0342 (17)0.0399 (18)0.0287 (18)0.0001 (14)0.0070 (14)0.0000 (14)
Geometric parameters (Å, º) top
F1—C131.324 (4)C7—C121.399 (4)
F2—C131.321 (4)C8—C91.385 (4)
F3—C131.321 (4)C8—H80.96 (3)
N1—C31.342 (4)C9—C101.383 (4)
N1—C41.348 (4)C9—H90.95 (4)
N2—C41.324 (4)C10—C111.382 (5)
N2—C51.347 (4)C10—C131.493 (4)
N3—C51.350 (4)C11—C121.384 (4)
N3—N41.367 (3)C11—H111.00 (4)
N3—C61.451 (4)C12—H120.97 (4)
N4—C11.337 (4)C14—C151.387 (4)
C1—C21.436 (4)C14—C191.392 (5)
C1—C71.468 (4)C15—C161.386 (5)
C2—C31.406 (4)C15—H150.98 (4)
C2—C51.406 (4)C16—C171.379 (6)
C3—C141.476 (4)C16—H160.96 (4)
C4—H40.96 (3)C17—C181.382 (5)
C6—H6A0.99 (4)C17—H170.94 (4)
C6—H6B1.01 (4)C18—C191.387 (5)
C6—H6C0.98 (5)C18—H180.90 (4)
C7—C81.392 (4)C19—H190.94 (4)
C3—N1—C4117.8 (3)C8—C9—H9121 (2)
C4—N2—C5111.7 (3)C11—C10—C9120.5 (3)
C5—N3—N4110.9 (2)C11—C10—C13118.8 (3)
C5—N3—C6128.7 (3)C9—C10—C13120.7 (3)
N4—N3—C6120.4 (3)C10—C11—C12119.7 (3)
C1—N4—N3107.4 (2)C10—C11—H11120 (2)
N4—C1—C2109.6 (2)C12—C11—H11120 (2)
N4—C1—C7119.1 (3)C11—C12—C7120.8 (3)
C2—C1—C7131.3 (3)C11—C12—H12119.0 (19)
C3—C2—C5115.8 (3)C7—C12—H12120.2 (19)
C3—C2—C1139.5 (3)F3—C13—F2106.5 (3)
C5—C2—C1104.5 (2)F3—C13—F1103.9 (3)
N1—C3—C2119.2 (3)F2—C13—F1105.3 (3)
N1—C3—C14117.6 (3)F3—C13—C10114.0 (3)
C2—C3—C14123.1 (3)F2—C13—C10113.2 (3)
N2—C4—N1129.1 (3)F1—C13—C10113.2 (3)
N2—C4—H4115.1 (18)C15—C14—C19119.7 (3)
N1—C4—H4115.8 (19)C15—C14—C3121.0 (3)
N2—C5—N3126.6 (3)C19—C14—C3119.3 (3)
N2—C5—C2125.7 (3)C16—C15—C14119.9 (3)
N3—C5—C2107.7 (2)C16—C15—H15119 (2)
N3—C6—H6A109 (2)C14—C15—H15121 (2)
N3—C6—H6B110.0 (19)C17—C16—C15120.3 (3)
H6A—C6—H6B112 (3)C17—C16—H16121 (2)
N3—C6—H6C108 (2)C15—C16—H16119 (2)
H6A—C6—H6C112 (3)C16—C17—C18120.2 (3)
H6B—C6—H6C106 (3)C16—C17—H17119 (2)
C8—C7—C12118.4 (3)C18—C17—H17121 (2)
C8—C7—C1120.9 (3)C17—C18—C19119.9 (3)
C12—C7—C1120.7 (3)C17—C18—H18121 (2)
C9—C8—C7120.9 (3)C19—C18—H18119 (3)
C9—C8—H8118.9 (19)C18—C19—C14120.1 (3)
C7—C8—H8120.1 (19)C18—C19—H19121 (2)
C10—C9—C8119.6 (3)C14—C19—H19119 (2)
C10—C9—H9120 (2)
C5—N3—N4—C10.6 (3)C2—C1—C7—C1230.2 (5)
C6—N3—N4—C1177.9 (3)C12—C7—C8—C90.7 (4)
N3—N4—C1—C20.6 (3)C1—C7—C8—C9178.7 (3)
N3—N4—C1—C7175.7 (2)C7—C8—C9—C100.5 (4)
N4—C1—C2—C3173.5 (3)C8—C9—C10—C110.8 (5)
C7—C1—C2—C310.8 (6)C8—C9—C10—C13178.9 (3)
N4—C1—C2—C51.6 (3)C9—C10—C11—C120.2 (5)
C7—C1—C2—C5174.1 (3)C13—C10—C11—C12179.8 (3)
C4—N1—C3—C24.5 (4)C10—C11—C12—C71.5 (5)
C4—N1—C3—C14172.5 (3)C8—C7—C12—C111.7 (4)
C5—C2—C3—N18.1 (4)C1—C7—C12—C11179.7 (3)
C1—C2—C3—N1177.2 (3)C11—C10—C13—F3161.7 (3)
C5—C2—C3—C14168.7 (3)C9—C10—C13—F318.7 (4)
C1—C2—C3—C145.9 (6)C11—C10—C13—F239.8 (4)
C5—N2—C4—N15.2 (5)C9—C10—C13—F2140.6 (3)
C3—N1—C4—N22.7 (5)C11—C10—C13—F179.9 (4)
C4—N2—C5—N3179.1 (3)C9—C10—C13—F199.7 (4)
C4—N2—C5—C20.6 (4)N1—C3—C14—C1551.8 (4)
N4—N3—C5—N2178.2 (3)C2—C3—C14—C15131.3 (3)
C6—N3—C5—N23.4 (5)N1—C3—C14—C19128.0 (3)
N4—N3—C5—C21.6 (3)C2—C3—C14—C1948.9 (4)
C6—N3—C5—C2176.8 (3)C19—C14—C15—C162.7 (5)
C3—C2—C5—N25.7 (4)C3—C14—C15—C16177.5 (3)
C1—C2—C5—N2177.9 (3)C14—C15—C16—C172.7 (5)
C3—C2—C5—N3174.6 (2)C15—C16—C17—C180.7 (5)
C1—C2—C5—N31.9 (3)C16—C17—C18—C191.3 (5)
N4—C1—C7—C832.8 (4)C17—C18—C19—C141.3 (5)
C2—C1—C7—C8151.9 (3)C15—C14—C19—C180.7 (5)
N4—C1—C7—C12145.2 (3)C3—C14—C19—C18179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N2i0.96 (3)2.66 (3)3.588 (4)162 (2)
C6—H6B···N1ii1.01 (4)2.64 (3)3.346 (4)127 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
 

Funding information

The support of NSF–MRI grant No.1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBektemirov, T. A., Chekunova, E. V., Korbukh, I. A., Bulychev, Y. N., Yakunina, N. G. & Preobrazhenskaya, M. N. (1981). Acta Virol. 25, 326–329.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS . Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933.  Web of Science CSD CrossRef CAS Google Scholar
First citationRostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629–632.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). J. Med. Chem. 58, 347–361.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds