organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­propyl­ammonium benzene­sulfonate

aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454
*Correspondence e-mail: dlibasse@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 May 2018; accepted 14 June 2018; online 26 June 2018)

In the anion of the title mol­ecular salt, C6H16N+·C6H5O3S, the O atoms of the sulfonate group is rotationally disordered over two sets of sites in a a 0.711 (9):0.289 (9) ratio. The extended structure displays N—H⋯O hydrogen bonds between the cation and anion, which results in infinite chains propagating parallel to [010]. The chains are linked by weak C—H⋯O inter­actions, yielding a two-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ammonium salts of phenyl­sulfonic acid have been reported by several groups (Lee et al., 2015[Lee, S. H., Bae, J. H., Park, Y., Adhikari, B. R., Mao, C., Kim, D., Kim, K. I., Kang, S. K. & Lee, E. H. (2015). Cryst. Growth Des. 15, 3123-3130.]; Skořepová et al., 2017[Skořepová, E., Bím, D., Hušák, M., Klimeš, J., Chatziadi, A., Ridvan, L., Boleslavská, T., Beránek, J., Šebek, P. & Rulíšek, L. (2017). Cryst. Growth Des. 17, 5283-5294.]; Karak et al., 2017[Karak, S., Kandambeth, S., Biswal, B. P., Sasmal, H. S., Kumar, S., Pachfule, P. & Banerjee, R. (2017). J. Am. Chem. Soc. 139, 1856-1862.]). We have now reacted phenyl­sulfonic acid with diiso­propyl­amine, which yielded crystals of the title mol­ecular salt.

The asymmetric unit is comprised of one diiso­propyl­ammonium cation and one phenyl sulfonate anion (Fig. 1[link]): the oxygen atoms of the sulfonate group are rotationally disordered over two orientations in a 0.711 (9):0.289 (9) ratio. The C—C and C—N bonds in the cation are similar to those reported previously for diiso­propyl­ammonium-containing compounds (Sarr et al., 2012[Sarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078.]; Lin et al., 2017[Lin, Z., Hu, K., Jin, S., Ding, A., Wang, Y., Dong, L., Gao, X. & Wang, D. (2017). J. Mol. Struct. 1146, 577-591.]).

[Figure 1]
Figure 1
View of the title mol­ecular salt showing anisotropic displacement parameters for non-H atoms drawn at the 30% probability level. Only the major disorder component of the sulfonate group is shown.

In the extended structure, the cations and anions are linked via N—H⋯O hydrogen bonds (Table 1[link]) giving rise to [010] chains. These chains are in turn linked through weak C—H⋯O inter­actions, leading to a layered structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 (2) 2.06 (2) 2.893 (4) 165.0 (19)
N1—H1A⋯O1Ai 0.86 (2) 1.85 (2) 2.684 (6) 163 (2)
N1—H1B⋯O2 0.91 (2) 1.90 (3) 2.782 (4) 162 (2)
N1—H1B⋯O2A 0.91 (2) 2.05 (3) 2.946 (9) 167 (2)
C8—H8A⋯O2 0.98 2.45 3.246 (5) 138
C9—H9A⋯O1i 0.98 2.54 3.313 (4) 136
C11—H11B⋯O3ii 0.98 2.57 3.493 (4) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Partial packing diagram showing the hydrogen-bonding inter­actions. Only H atoms involved in the inter­molecular inter­actions are shown. Symmetry codes: (a) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; (b) x, −y + [{1\over 2}], z − [{1\over 2}]; (c) −x + 1, y + [{1\over 2}], −z + [{3\over 2}].

Synthesis and crystallization

Phenyl­sulfonic acid (5.0 g; 3.0 mmol) was reacted wirh diiso­propyl­amine (3.0 g; 3.0 mmol) in ethanol (50 ml). Slow solvent evaporation at room temperature yielded colourless blocks of the title compound after a weak.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. During the early stages of the refinement, rotational disorder of the oxygen atoms of the sulfonate group was detected. The disorder was modelled using two sets of sites, which refined to occupancies of 0.711 (9):0.289 (9).

Table 2
Experimental details

Crystal data
Chemical formula C6H16N+·C6H5O3S
Mr 259.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 11.7370 (13), 8.8719 (8), 14.3722 (16)
β (°) 106.616 (3)
V3) 1434.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.60 × 0.45 × 0.35
 
Data collection
Diffractometer Bruker X2S Benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2016)
Tmin, Tmax 0.38, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 11569, 2910, 2104
Rint 0.106
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.152, 1.05
No. of reflections 2910
No. of parameters 195
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Diisopropylammonium bis(propan-2-yl)azanium top
Crystal data top
C6H16N+·C6H5O3SF(000) = 560
Mr = 259.36Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7370 (13) ÅCell parameters from 4767 reflections
b = 8.8719 (8) Åθ = 2.7–25.1°
c = 14.3722 (16) ŵ = 0.22 mm1
β = 106.616 (3)°T = 200 K
V = 1434.1 (3) Å3Block, colorless
Z = 40.60 × 0.45 × 0.35 mm
Data collection top
Bruker X2S Benchtop
diffractometer
2910 independent reflections
Radiation source: sealed microfocus tube2104 reflections with I > 2σ(I)
Detector resolution: 8.3330 pixels mm-1Rint = 0.106
ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1414
Tmin = 0.38, Tmax = 0.93k = 1010
11569 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.288P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.26 e Å3
2910 reflectionsΔρmin = 0.34 e Å3
195 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015)
3 restraintsExtinction coefficient: 0.0085 (18)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were observed in difference Fourier maps. The H atoms were refined using a riding model with C—H distances of 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(C) and the phenyl hydrogen-atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to the nitrogen atom were refined freely, including isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.71911 (5)0.49488 (6)0.84523 (4)0.0597 (2)
O10.7417 (3)0.6492 (3)0.8574 (3)0.0749 (12)0.711 (9)
O20.6149 (3)0.4620 (6)0.7613 (3)0.0911 (15)0.711 (9)
O30.7116 (4)0.4164 (4)0.9309 (3)0.0989 (19)0.711 (9)
O1A0.6956 (12)0.6349 (8)0.7859 (11)0.102 (4)0.289 (9)
O2A0.6285 (6)0.3979 (7)0.8244 (11)0.087 (4)0.289 (9)
O3A0.7621 (8)0.5452 (19)0.9473 (6)0.131 (7)0.289 (9)
N10.37129 (18)0.4253 (2)0.72964 (14)0.0541 (5)
H1A0.3478 (19)0.335 (3)0.7122 (14)0.059 (6)*
H1B0.452 (2)0.422 (3)0.7500 (16)0.071 (7)*
C10.84060 (18)0.4120 (2)0.81419 (16)0.0532 (5)
C20.8331 (2)0.3820 (3)0.71892 (19)0.0742 (7)
H20.76350.40860.6690.089*
C30.9270 (3)0.3130 (4)0.6959 (3)0.1026 (10)
H30.92130.29180.62990.123*
C41.0259 (3)0.2755 (4)0.7654 (3)0.1098 (12)
H41.08940.2270.74850.132*
C51.0359 (2)0.3064 (4)0.8596 (3)0.1040 (11)
H51.1070.28120.90840.125*
C60.9420 (2)0.3753 (3)0.8858 (2)0.0769 (7)
H60.94850.39630.9520.092*
C70.3239 (3)0.5281 (2)0.64440 (17)0.0660 (7)
H70.34220.63460.66640.079*
C80.3885 (3)0.4913 (3)0.5695 (2)0.1053 (11)
H8A0.47450.49620.59990.158*
H8B0.36590.56430.51620.158*
H8C0.36670.38960.5440.158*
C90.1911 (3)0.5110 (4)0.6045 (2)0.0968 (10)
H9A0.17190.40630.58430.145*
H9B0.16180.57780.54840.145*
H9C0.15320.53780.65480.145*
C100.3368 (2)0.4608 (3)0.82055 (16)0.0628 (6)
H100.24860.47480.80280.075*
C110.3956 (3)0.6040 (3)0.86640 (18)0.0797 (8)
H11A0.48190.58940.88860.119*
H11B0.36660.63010.92190.119*
H11C0.37660.68570.81860.119*
C120.3702 (3)0.3269 (3)0.8884 (2)0.0883 (8)
H12A0.45640.31150.9060.132*
H12B0.32970.23660.85590.132*
H12C0.34610.34620.94730.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0560 (4)0.0497 (4)0.0838 (4)0.0034 (2)0.0366 (3)0.0044 (2)
O10.0762 (18)0.0450 (13)0.106 (3)0.0086 (11)0.0297 (18)0.0087 (14)
O20.0475 (15)0.110 (3)0.119 (3)0.0055 (16)0.0300 (18)0.035 (2)
O30.134 (4)0.082 (2)0.118 (3)0.024 (2)0.095 (3)0.022 (2)
O1A0.140 (9)0.042 (4)0.149 (10)0.042 (5)0.082 (8)0.031 (5)
O2A0.048 (4)0.046 (4)0.177 (13)0.001 (3)0.050 (6)0.011 (5)
O3A0.098 (6)0.224 (18)0.075 (5)0.015 (7)0.031 (4)0.046 (7)
N10.0545 (11)0.0392 (10)0.0768 (12)0.0004 (9)0.0318 (9)0.0019 (8)
C10.0482 (11)0.0393 (10)0.0803 (13)0.0035 (8)0.0318 (10)0.0005 (9)
C20.0680 (15)0.0794 (16)0.0849 (16)0.0017 (13)0.0374 (13)0.0044 (13)
C30.107 (2)0.104 (2)0.127 (3)0.001 (2)0.081 (2)0.0199 (19)
C40.090 (2)0.082 (2)0.189 (4)0.0177 (17)0.090 (3)0.007 (2)
C50.0518 (15)0.097 (2)0.165 (3)0.0134 (15)0.0345 (19)0.028 (2)
C60.0588 (14)0.0732 (15)0.0996 (18)0.0020 (12)0.0241 (14)0.0064 (13)
C70.102 (2)0.0376 (10)0.0683 (14)0.0005 (11)0.0403 (14)0.0031 (9)
C80.154 (3)0.098 (2)0.086 (2)0.014 (2)0.069 (2)0.0031 (15)
C90.098 (2)0.099 (2)0.0853 (19)0.0297 (17)0.0137 (18)0.0179 (15)
C100.0497 (12)0.0769 (14)0.0711 (13)0.0092 (11)0.0319 (11)0.0153 (11)
C110.093 (2)0.0788 (16)0.0755 (16)0.0141 (14)0.0369 (14)0.0058 (12)
C120.0853 (18)0.0942 (19)0.0882 (17)0.0015 (16)0.0293 (15)0.0330 (15)
Geometric parameters (Å, º) top
S1—O2A1.334 (6)C5—H50.95
S1—O11.396 (3)C6—H60.95
S1—O31.439 (3)C7—C91.507 (4)
S1—O3A1.478 (7)C7—C81.519 (3)
S1—O21.481 (3)C7—H71.0
S1—O1A1.487 (7)C8—H8A0.98
S1—C11.771 (2)C8—H8B0.98
N1—C71.501 (3)C8—H8C0.98
N1—C101.508 (3)C9—H9A0.98
N1—H1A0.86 (2)C9—H9B0.98
N1—H1B0.91 (2)C9—H9C0.98
C1—C61.372 (3)C10—C111.504 (3)
C1—C21.373 (3)C10—C121.516 (3)
C2—C31.381 (4)C10—H101.0
C2—H20.95C11—H11A0.98
C3—C41.339 (5)C11—H11B0.98
C3—H30.95C11—H11C0.98
C4—C51.354 (5)C12—H12A0.98
C4—H40.95C12—H12B0.98
C5—C61.403 (4)C12—H12C0.98
O1—S1—O3115.1 (2)N1—C7—C9110.5 (2)
O2A—S1—O3A116.2 (6)N1—C7—C8107.7 (2)
O1—S1—O2112.2 (2)C9—C7—C8112.3 (2)
O3—S1—O2111.3 (2)N1—C7—H7108.7
O2A—S1—O1A113.9 (6)C9—C7—H7108.7
O3A—S1—O1A105.8 (6)C8—C7—H7108.7
O2A—S1—C1108.8 (3)C7—C8—H8A109.5
O1—S1—C1107.50 (14)C7—C8—H8B109.5
O3—S1—C1105.38 (14)H8A—C8—H8B109.5
O3A—S1—C1107.7 (4)C7—C8—H8C109.5
O2—S1—C1104.49 (14)H8A—C8—H8C109.5
O1A—S1—C1103.5 (3)H8B—C8—H8C109.5
C7—N1—C10116.82 (17)C7—C9—H9A109.5
C7—N1—H1A108.3 (14)C7—C9—H9B109.5
C10—N1—H1A107.7 (14)H9A—C9—H9B109.5
C7—N1—H1B112.8 (15)C7—C9—H9C109.5
C10—N1—H1B104.0 (15)H9A—C9—H9C109.5
H1A—N1—H1B107 (2)H9B—C9—H9C109.5
C6—C1—C2119.8 (2)C11—C10—N1110.68 (18)
C6—C1—S1119.83 (19)C11—C10—C12112.2 (2)
C2—C1—S1120.32 (18)N1—C10—C12108.0 (2)
C1—C2—C3119.8 (3)C11—C10—H10108.6
C1—C2—H2120.1N1—C10—H10108.6
C3—C2—H2120.1C12—C10—H10108.6
C4—C3—C2120.8 (3)C10—C11—H11A109.5
C4—C3—H3119.6C10—C11—H11B109.5
C2—C3—H3119.6H11A—C11—H11B109.5
C3—C4—C5120.3 (3)C10—C11—H11C109.5
C3—C4—H4119.9H11A—C11—H11C109.5
C5—C4—H4119.9H11B—C11—H11C109.5
C4—C5—C6120.5 (3)C10—C12—H12A109.5
C4—C5—H5119.8C10—C12—H12B109.5
C6—C5—H5119.8H12A—C12—H12B109.5
C1—C6—C5118.8 (3)C10—C12—H12C109.5
C1—C6—H6120.6H12A—C12—H12C109.5
C5—C6—H6120.6H12B—C12—H12C109.5
O2A—S1—C1—C6112.9 (7)C6—C1—C2—C31.0 (4)
O1—S1—C1—C682.8 (3)S1—C1—C2—C3178.0 (2)
O3—S1—C1—C640.4 (3)C1—C2—C3—C40.3 (5)
O3A—S1—C1—C613.9 (7)C2—C3—C4—C50.7 (5)
O2—S1—C1—C6157.8 (3)C3—C4—C5—C61.2 (5)
O1A—S1—C1—C6125.6 (7)C2—C1—C6—C50.5 (4)
O2A—S1—C1—C266.0 (7)S1—C1—C6—C5178.4 (2)
O1—S1—C1—C298.3 (3)C4—C5—C6—C10.6 (4)
O3—S1—C1—C2138.5 (3)C10—N1—C7—C968.0 (3)
O3A—S1—C1—C2167.2 (7)C10—N1—C7—C8168.9 (2)
O2—S1—C1—C221.1 (3)C7—N1—C10—C1169.1 (3)
O1A—S1—C1—C255.4 (7)C7—N1—C10—C12167.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86 (2)2.06 (2)2.893 (4)165.0 (19)
N1—H1A···O1Ai0.86 (2)1.85 (2)2.684 (6)163 (2)
N1—H1B···O20.91 (2)1.90 (3)2.782 (4)162 (2)
N1—H1B···O2A0.91 (2)2.05 (3)2.946 (9)167 (2)
C8—H8A···O20.982.453.246 (5)138
C9—H9A···O1i0.982.543.313 (4)136
C11—H11B···O3ii0.982.573.493 (4)157
C7—H7···O2Aiii1.02.363.336 (8)166
C12—H12B···O1Ai0.982.172.944 (11)135
C12—H12C···O3Aii0.982.443.371 (8)159
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2.
 

Funding information

The authors acknowledge Cheikh Anta Diop University, Dakar, Senegal, for support and the US Department of Education via a Congressionally directed grant (grant No. P116Z100020) for the X-ray diffractometer.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarak, S., Kandambeth, S., Biswal, B. P., Sasmal, H. S., Kumar, S., Pachfule, P. & Banerjee, R. (2017). J. Am. Chem. Soc. 139, 1856–1862.  Web of Science CrossRef Google Scholar
First citationLee, S. H., Bae, J. H., Park, Y., Adhikari, B. R., Mao, C., Kim, D., Kim, K. I., Kang, S. K. & Lee, E. H. (2015). Cryst. Growth Des. 15, 3123–3130.  Web of Science CrossRef Google Scholar
First citationLin, Z., Hu, K., Jin, S., Ding, A., Wang, Y., Dong, L., Gao, X. & Wang, D. (2017). J. Mol. Struct. 1146, 577–591.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkořepová, E., Bím, D., Hušák, M., Klimeš, J., Chatziadi, A., Ridvan, L., Boleslavská, T., Beránek, J., Šebek, P. & Rulíšek, L. (2017). Cryst. Growth Des. 17, 5283–5294.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds