metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Betaine (tri­methyl­ammonio­acetate) binary compound with sodium iodide

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by R. J. Butcher, Howard University, USA (Received 23 May 2018; accepted 12 June 2018; online 15 June 2018)

In the title compound, catena-poly[[[bis­[2-(tri­methyl­aza­nium­yl)acetato-κO]sodium]-di-μ-aqua-[di­aqua­sodium]-di-μ-aqua] diiodide], {[Na2(C5H11NO2)2(H2O)6]I2}n, both Na+ ions have distorted octa­hedral environments (coordination number 6). The coordination polyhedra of the sodium ions are connected by common edges forming an infinite chain of ions along [100]. The chains and betaine zwitterions are assembled into infinitive layers via hydrogen bonds. These layers are connected via electrostatic attraction between iodide ions and positive tri­methyl­aza­nium groups in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Betaines represent a wide class of zwitterionic compounds with an onium group that bears no hydrogen atoms and that is not adjacent to the anionic atom. The parent compound of the betaine class, tri­methyl­ammonio­acetate (TMA), has a very rich crystal chemistry: the Cambridge Structural Database (CSD Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 217 different structures of its compounds. There are several known crystal structures of TMA binary compounds with potassium iodide (HIPQIG; Andrade et al., 1999[Andrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83-84.]), rubidium iodide (NEMKIZ; Andrade et al., 2001[Andrade, L. C. R., Costa, M. M. R., Filipa, P., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227-228.]), potassium bromide (WIQPUH01; Andrade et al., 2000[Andrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537-538.]) and sodium bromide (JAZNEE; Rodrigues et al., 2005[Rodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363-364.]). In a continuation of studies (Naza­renko, 2018[Nazarenko, A. Y. (2018). Acta Cryst. E74, 829-834.]) of zwitterionic binary compounds, an unreported structure of tri­methyl­ammonio­acetate with sodium iodide is presented here.

The numbering scheme for the title compound is shown in Fig. 1[link]. Both Na+ ions have distorted octa­hedral environments. The coordination sphere of Na1 (Table 1[link], Fig. 2[link]) contains two pairs of bridging O atoms of water mol­ecules (O1 and O6; O4 and O5) and two terminal water mol­ecules (atoms O2 and O3). The coordination sphere of Na2 contains two anionic oxygen atoms of monodentate carb­oxy­lic groups (O7 and O9) and the same four bridging atoms (Table 1[link], Fig. 2[link]).

Table 1
Selected bond lengths (Å)

Na1—O1 2.3733 (17) Na2—O1ii 2.6120 (18)
Na1—O2 2.3842 (17) Na2—O4 2.3944 (16)
Na1—O3 2.4650 (16) Na2—O5 2.4697 (17)
Na1—O4 2.3926 (16) Na2—O6 2.3412 (16)
Na1—O5 2.4926 (17) Na2—O7 2.3937 (15)
Na1—O6i 2.4943 (17) Na2—O9 2.3175 (16)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 1]
Figure 1
Numbering scheme for the title compound with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Coordination polyhedra of the sodium ions.

The distribution of the Hirshfeld surface electrostatic potential of the zwitterion (Fig. 3[link]) shows that only the area around the carboxyl oxygen atoms is negatively charged. The remaining Hirshfeld surface has positive electrostatic potential, which makes this area attractive for iodide anions.

[Figure 3]
Figure 3
Hirshfeld surface of the zwitterion with electrostatic potential plotted using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]). Colour key: red – negative, blue – positive.

The coordination polyhedra of the sodium ions are connected by common edges (two pairs of bridging water mol­ecules, O1 & O6 and O4 & O5), forming an infinite chain of ions along [100] (Fig. 4[link]). In addition to Na—O inter­actions, this chain is supported by three hydrogen bonds (Table 2[link], Fig. 4[link]): O1—H1B⋯O3, O4—H4B⋯O10, and O6—H6B⋯O10. The last two of these, connecting the anionic oxygen atom of the carb­oxy­lic group, are electrostatically enhanced. The chains are inter­connected via five hydrogen bonds (O2—H2A⋯O9, O2—H2B⋯O8, O3—H3A⋯O10, O3—H3B⋯O8, O5—H5A⋯O8, see Table 2[link] and Fig. 5[link]). Three more water hydrogen atoms are involved in hydrogen bonds with iodide ions (Table 2[link]). The resulting network of hydrogen bonds forms layers in the (001) plane with iodide ions and tri­methyl­ammonium groups forming each side (Fig. 5[link]). These layers are bound together via electrostatic inter­actions between the corresponding positive and negative ions; no short intra­layer contacts are visible. A number of short intra­molecular C—H⋯O contacts (Table 2[link]) may play some auxiliary role in the conformation of the zwitterion. There are no suitable acceptor atoms for hydrogen atom H5B of a bridging water mol­ecule; its orientation is an inter­play between electrostatic attraction by neighboring iodide I1 and repulsion by both sodium ions and tri­methyl­ammonium group.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯I2i 0.74 (3) 3.03 (3) 3.7008 (17) 152 (3)
O1—H1B⋯O3i 0.78 (3) 2.01 (3) 2.781 (2) 172 (3)
O2—H2A⋯O9iii 0.78 (3) 2.19 (3) 2.915 (2) 154 (3)
O2—H2B⋯O8iii 0.76 (3) 2.00 (3) 2.7641 (19) 175 (3)
O3—H3A⋯O10iii 0.80 (3) 1.99 (3) 2.772 (2) 169 (3)
O3—H3B⋯O8iv 0.76 (3) 2.13 (3) 2.860 (2) 160 (3)
O4—H4A⋯I2 0.79 (3) 2.85 (3) 3.6300 (14) 172 (2)
O4—H4B⋯O10i 0.81 (3) 2.04 (3) 2.823 (2) 165 (2)
O5—H5A⋯O8iv 0.79 (3) 1.97 (3) 2.7484 (19) 167 (3)
O6—H6A⋯I1ii 0.76 (3) 2.85 (3) 3.5864 (17) 165 (3)
O6—H6B⋯O7ii 0.79 (3) 2.05 (3) 2.829 (2) 168 (3)
C8—H8A⋯O10 0.98 2.33 2.976 (2) 122
C3—H3D⋯O8 0.98 2.39 2.999 (2) 120
C10—H10A⋯O10 0.98 2.34 2.994 (2) 123
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z.
[Figure 4]
Figure 4
The infinite chain of hydrated sodium ions along [100], viewed along [010].
[Figure 5]
Figure 5
Packing of the title compound, viewed along [100]. Sodium ions are green.

Known TMA binary compounds (Andrade et al., 1999[Andrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83-84.], 2000[Andrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537-538.], 2001[Andrade, L. C. R., Costa, M. M. R., Filipa, P., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227-228.]; Rodrigues et al., 2005[Rodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363-364.]) show features similar to the current structure: an infinite chain of hydrated alkali metal cations and layers of tri­methyl­ammonium groups. However, in the current case the bridging in the cation chain is organized via water mol­ecules [similar to the sodium iodide co-crystal in Naza­renko (2018[Nazarenko, A. Y. (2018). Acta Cryst. E74, 829-834.])] and not by carb­oxy­lic groups. Sodium ions usually form stronger hydrates than rubidium and potassium ions; this observation can serve as a very simplistic explanation.

Synthesis and crystallization

Equimolar amounts of commercial betaine monohydrate were mixed with sodium iodide in aqueous ethanol, similar to the procedure described in Andrade et al. (1999[Andrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83-84.], 2000[Andrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537-538.], 2001[Andrade, L. C. R., Costa, M. M. R., Filipa, P., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227-228.]); subsequent slow evaporation yielded crystals suitable for the single–crystal X-ray experiment.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Na2(C5H11NO2)2(H2O)6]I2
Mr 642.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 5.8131 (3), 7.6682 (4), 26.7168 (15)
α, β, γ (°) 90.221 (2), 91.168 (2), 91.440 (3)
V3) 1190.29 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.72
Crystal size (mm) 0.60 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.076, 0.252
No. of measured, independent and observed [I > 2σ(I)] reflections 49693, 8726, 7237
Rint 0.035
(sin θ/λ)max−1) 0.759
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.050, 1.15
No. of reflections 8726
No. of parameters 277
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.42
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net]) and VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), CrystalExplorer17 (Turner et al., 2017) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[bis[2-(trimethylazaniumyl)acetato-κO]sodium]-di-µ-aqua-[diaquasodium]-di-µ-aqua] diiodide] top
Crystal data top
[Na2(C5H11NO2)2(H2O)6]I2Z = 2
Mr = 642.17F(000) = 632
Triclinic, P1Dx = 1.792 Mg m3
a = 5.8131 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6682 (4) ÅCell parameters from 9947 reflections
c = 26.7168 (15) Åθ = 3.1–32.6°
α = 90.221 (2)°µ = 2.72 mm1
β = 91.168 (2)°T = 173 K
γ = 91.440 (3)°Plate, colourless
V = 1190.29 (11) Å30.6 × 0.3 × 0.10 mm
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
7237 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.035
φ and ω scansθmax = 32.7°, θmin = 3.1°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.076, Tmax = 0.252k = 1111
49693 measured reflectionsl = 4040
8726 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0152P)2 + 0.5637P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
8726 reflectionsΔρmax = 0.79 e Å3
277 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms of water molecules are refined in isotropic approximation with Uiso (H) = 1.5Uiso (O). Methylene hydrogen atoms are refined with riding coordinates and with Uiso (H) = 1.2 Uiso (C); methyl hydrogen atoms are refined as rotating idealized methyl groups and with Uiso (H) = 1.5Uiso (C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.87928 (2)0.75005 (2)0.42881 (2)0.02174 (3)
I20.38268 (2)0.75565 (2)0.07695 (2)0.02165 (3)
Na10.77571 (13)0.84390 (10)0.24815 (3)0.02154 (15)
Na20.27301 (12)0.57053 (9)0.25452 (3)0.01983 (15)
O11.1105 (3)0.8215 (2)0.19938 (6)0.0281 (3)
H1A1.120 (5)0.793 (4)0.1729 (11)0.042*
H1B1.209 (5)0.891 (4)0.2024 (10)0.042*
O20.9199 (3)1.1102 (2)0.28457 (6)0.0260 (3)
H2A0.919 (5)1.185 (4)0.2648 (10)0.039*
H2B1.044 (5)1.114 (3)0.2941 (10)0.039*
O30.4860 (2)1.04739 (18)0.21635 (6)0.0224 (3)
H3A0.546 (4)1.121 (3)0.1998 (10)0.034*
H3B0.440 (4)1.092 (3)0.2396 (10)0.034*
O40.5880 (2)0.61769 (19)0.19940 (5)0.0225 (3)
H4A0.555 (4)0.655 (3)0.1729 (10)0.034*
H4B0.640 (4)0.522 (3)0.1953 (9)0.034*
O50.4634 (3)0.79289 (19)0.30936 (6)0.0255 (3)
H5A0.426 (5)0.889 (4)0.3152 (10)0.038*
H5B0.521 (5)0.755 (4)0.3320 (10)0.038*
O60.0568 (3)0.6113 (2)0.30161 (6)0.0237 (3)
H6A0.046 (5)0.649 (3)0.3278 (10)0.036*
H6B0.160 (5)0.542 (3)0.3013 (10)0.036*
O70.5321 (2)0.40694 (17)0.30561 (5)0.0241 (3)
O80.3744 (2)0.14234 (16)0.31642 (5)0.0208 (3)
O90.0750 (3)0.3559 (2)0.20861 (5)0.0327 (3)
O100.2503 (2)0.29400 (18)0.16613 (5)0.0260 (3)
N10.4939 (3)0.24831 (19)0.42389 (5)0.0161 (3)
N20.0051 (3)0.25810 (18)0.07475 (6)0.0162 (3)
C10.5049 (3)0.2687 (2)0.32903 (6)0.0157 (3)
C20.6431 (3)0.2491 (2)0.37817 (6)0.0164 (3)
H2C0.7279870.1388400.3770390.020*
H2D0.7578750.3463560.3811820.020*
C30.3445 (3)0.0862 (2)0.42715 (7)0.0226 (4)
H3C0.4413010.0165710.4270630.034*
H3D0.2373390.0806430.3983660.034*
H3E0.2574470.0888920.4581620.034*
C40.6520 (3)0.2557 (3)0.46896 (7)0.0236 (4)
H4C0.7502970.1537540.4690220.035*
H4D0.5606760.2558360.4993920.035*
H4E0.7481960.3623540.4679050.035*
C50.3436 (3)0.4046 (2)0.42398 (8)0.0235 (4)
H5C0.2540920.4053030.4546640.035*
H5D0.2387390.3993770.3948050.035*
H5E0.4399740.5110940.4225470.035*
C60.0360 (3)0.3125 (2)0.17028 (7)0.0205 (4)
C70.1150 (3)0.2796 (2)0.12491 (7)0.0187 (3)
H7A0.2276450.3780780.1225400.022*
H7B0.2032650.1731110.1315260.022*
C80.1491 (3)0.4124 (2)0.06276 (7)0.0219 (4)
H8A0.2737100.4193520.0867930.033*
H8B0.2147310.3997080.0288270.033*
H8C0.0530260.5191880.0648250.033*
C90.1769 (4)0.2449 (3)0.03578 (7)0.0249 (4)
H9A0.1033870.2293140.0026860.037*
H9B0.2734430.1449160.0431900.037*
H9C0.2726000.3520330.0360960.037*
C100.1531 (3)0.0948 (2)0.07263 (8)0.0242 (4)
H10A0.2718900.1009110.0980440.036*
H10B0.0576060.0065440.0790920.036*
H10C0.2264130.0833860.0393850.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02324 (6)0.01967 (6)0.02222 (6)0.00166 (4)0.00118 (5)0.00155 (4)
I20.02442 (6)0.01912 (6)0.02132 (6)0.00068 (4)0.00071 (5)0.00098 (4)
Na10.0185 (4)0.0206 (4)0.0256 (4)0.0002 (3)0.0017 (3)0.0009 (3)
Na20.0182 (3)0.0209 (4)0.0205 (4)0.0006 (3)0.0018 (3)0.0004 (3)
O10.0240 (7)0.0324 (8)0.0276 (8)0.0055 (6)0.0063 (6)0.0052 (6)
O20.0176 (7)0.0291 (8)0.0311 (8)0.0014 (6)0.0019 (6)0.0021 (6)
O30.0230 (7)0.0215 (7)0.0225 (7)0.0015 (5)0.0021 (6)0.0002 (5)
O40.0249 (7)0.0227 (7)0.0201 (7)0.0042 (5)0.0013 (6)0.0001 (5)
O50.0321 (8)0.0183 (7)0.0262 (8)0.0041 (6)0.0009 (6)0.0001 (6)
O60.0227 (7)0.0271 (7)0.0212 (7)0.0035 (5)0.0035 (6)0.0035 (6)
O70.0266 (7)0.0209 (6)0.0244 (7)0.0018 (5)0.0044 (6)0.0074 (5)
O80.0201 (6)0.0193 (6)0.0227 (7)0.0027 (5)0.0045 (5)0.0011 (5)
O90.0439 (9)0.0337 (8)0.0200 (7)0.0037 (7)0.0030 (6)0.0054 (6)
O100.0245 (7)0.0270 (7)0.0267 (7)0.0002 (6)0.0083 (6)0.0000 (6)
N10.0171 (7)0.0152 (7)0.0159 (7)0.0008 (5)0.0003 (6)0.0001 (5)
N20.0180 (7)0.0139 (6)0.0168 (7)0.0009 (5)0.0010 (6)0.0000 (5)
C10.0153 (8)0.0160 (7)0.0159 (8)0.0026 (6)0.0005 (6)0.0001 (6)
C20.0144 (8)0.0188 (8)0.0160 (8)0.0011 (6)0.0010 (6)0.0018 (6)
C30.0251 (10)0.0193 (8)0.0234 (9)0.0072 (7)0.0066 (8)0.0014 (7)
C40.0284 (10)0.0273 (10)0.0148 (8)0.0008 (8)0.0036 (7)0.0001 (7)
C50.0239 (9)0.0197 (9)0.0273 (10)0.0055 (7)0.0059 (8)0.0019 (7)
C60.0298 (10)0.0129 (8)0.0188 (9)0.0009 (7)0.0022 (7)0.0007 (6)
C70.0185 (8)0.0204 (8)0.0171 (8)0.0006 (6)0.0017 (7)0.0017 (7)
C80.0254 (9)0.0174 (8)0.0229 (9)0.0041 (7)0.0029 (7)0.0025 (7)
C90.0288 (10)0.0249 (9)0.0215 (9)0.0040 (8)0.0076 (8)0.0003 (7)
C100.0270 (10)0.0163 (8)0.0291 (10)0.0049 (7)0.0003 (8)0.0035 (7)
Geometric parameters (Å, º) top
Na1—Na23.5607 (10)N1—C31.502 (2)
Na1—Na2i3.6149 (10)N1—C41.500 (2)
Na1—O12.3733 (17)N1—C51.500 (2)
Na1—O22.3842 (17)N2—C71.505 (2)
Na1—O32.4650 (16)N2—C81.499 (2)
Na1—O42.3926 (16)N2—C91.504 (2)
Na1—O52.4926 (17)N2—C101.502 (2)
Na1—O6i2.4943 (17)C1—C21.535 (2)
Na2—O1ii2.6120 (18)C2—H2C0.9900
Na2—O42.3944 (16)C2—H2D0.9900
Na2—O52.4697 (17)C3—H3C0.9800
Na2—O62.3412 (16)C3—H3D0.9800
Na2—O72.3937 (15)C3—H3E0.9800
Na2—O92.3175 (16)C4—H4C0.9800
O1—H1A0.74 (3)C4—H4D0.9800
O1—H1B0.78 (3)C4—H4E0.9800
O2—H2A0.78 (3)C5—H5C0.9800
O2—H2B0.76 (3)C5—H5D0.9800
O3—H3A0.80 (3)C5—H5E0.9800
O3—H3B0.76 (3)C6—C71.535 (3)
O4—H4A0.79 (3)C7—H7A0.9900
O4—H4B0.81 (3)C7—H7B0.9900
O5—H5A0.79 (3)C8—H8A0.9800
O5—H5B0.75 (3)C8—H8B0.9800
O6—H6A0.76 (3)C8—H8C0.9800
O6—H6B0.79 (3)C9—H9A0.9800
O7—C11.242 (2)C9—H9B0.9800
O8—C11.256 (2)C9—H9C0.9800
O9—C61.239 (2)C10—H10A0.9800
O10—C61.253 (2)C10—H10B0.9800
N1—C21.513 (2)C10—H10C0.9800
O1—Na1—O290.91 (6)C4—N1—C3108.32 (14)
O1—Na1—O3115.58 (6)C4—N1—C5109.26 (14)
O1—Na1—O490.36 (6)C5—N1—C2110.53 (14)
O1—Na1—O5164.44 (6)C5—N1—C3108.92 (14)
O1—Na1—O6i86.19 (6)C8—N2—C7111.16 (14)
O2—Na1—O379.70 (5)C8—N2—C9108.40 (14)
O2—Na1—O4167.56 (6)C8—N2—C10109.53 (14)
O2—Na1—O596.09 (6)C9—N2—C7107.71 (14)
O2—Na1—O6i104.58 (6)C10—N2—C7111.46 (14)
O3—Na1—O579.44 (5)C10—N2—C9108.49 (14)
O3—Na1—O6i157.96 (6)O7—C1—O8126.22 (17)
O4—Na1—O388.60 (5)O7—C1—C2117.31 (15)
O4—Na1—O585.80 (5)O8—C1—C2116.47 (15)
O4—Na1—O6i87.85 (6)N1—C2—C1113.03 (14)
O5—Na1—O6i78.61 (5)N1—C2—H2C109.0
O4—Na2—O1ii79.92 (5)N1—C2—H2D109.0
O4—Na2—O586.28 (6)C1—C2—H2C109.0
O5—Na2—O1ii88.89 (6)C1—C2—H2D109.0
O6—Na2—O1ii84.20 (5)H2C—C2—H2D107.8
O6—Na2—O4162.69 (6)N1—C3—H3C109.5
O6—Na2—O586.57 (6)N1—C3—H3D109.5
O6—Na2—O7106.74 (6)N1—C3—H3E109.5
O7—Na2—O1ii160.57 (6)H3C—C3—H3D109.5
O7—Na2—O486.76 (5)H3C—C3—H3E109.5
O7—Na2—O576.09 (5)H3D—C3—H3E109.5
O9—Na2—O1ii92.99 (6)N1—C4—H4C109.5
O9—Na2—O498.37 (6)N1—C4—H4D109.5
O9—Na2—O5175.22 (6)N1—C4—H4E109.5
O9—Na2—O689.26 (6)H4C—C4—H4D109.5
O9—Na2—O7102.97 (6)H4C—C4—H4E109.5
Na1—O1—Na2i92.83 (6)H4D—C4—H4E109.5
Na1—O1—H1A129 (2)N1—C5—H5C109.5
Na1—O1—H1B119 (2)N1—C5—H5D109.5
Na2i—O1—H1A107 (2)N1—C5—H5E109.5
Na2i—O1—H1B101 (2)H5C—C5—H5D109.5
H1A—O1—H1B103 (3)H5C—C5—H5E109.5
Na1—O2—H2A111 (2)H5D—C5—H5E109.5
Na1—O2—H2B118 (2)O9—C6—O10126.50 (18)
H2A—O2—H2B102 (3)O9—C6—C7113.64 (17)
Na1—O3—H3A110.1 (18)O10—C6—C7119.86 (16)
Na1—O3—H3B105.0 (19)N2—C7—C6117.25 (15)
H3A—O3—H3B108 (3)N2—C7—H7A108.0
Na1—O4—Na296.12 (6)N2—C7—H7B108.0
Na1—O4—H4A109.2 (19)C6—C7—H7A108.0
Na1—O4—H4B123.9 (18)C6—C7—H7B108.0
Na2—O4—H4A115.4 (19)H7A—C7—H7B107.2
Na2—O4—H4B104.7 (18)N2—C8—H8A109.5
H4A—O4—H4B107 (3)N2—C8—H8B109.5
Na1—O5—H5A101.7 (19)N2—C8—H8C109.5
Na1—O5—H5B106 (2)H8A—C8—H8B109.5
Na2—O5—Na191.70 (6)H8A—C8—H8C109.5
Na2—O5—H5A129.2 (19)H8B—C8—H8C109.5
Na2—O5—H5B113 (2)N2—C9—H9A109.5
H5A—O5—H5B110 (3)N2—C9—H9B109.5
Na1ii—O6—H6A106 (2)N2—C9—H9C109.5
Na1ii—O6—H6B100.2 (19)H9A—C9—H9B109.5
Na2—O6—Na1ii96.71 (6)H9A—C9—H9C109.5
Na2—O6—H6A120 (2)H9B—C9—H9C109.5
Na2—O6—H6B121.7 (19)N2—C10—H10A109.5
H6A—O6—H6B108 (3)N2—C10—H10B109.5
C1—O7—Na2131.66 (12)N2—C10—H10C109.5
C6—O9—Na2148.99 (14)H10A—C10—H10B109.5
C3—N1—C2112.49 (14)H10A—C10—H10C109.5
C4—N1—C2107.25 (14)H10B—C10—H10C109.5
Na2—O7—C1—O832.9 (3)O10—C6—C7—N210.9 (2)
Na2—O7—C1—C2147.00 (13)C3—N1—C2—C169.35 (18)
Na2—O9—C6—O10101.2 (3)C4—N1—C2—C1171.66 (14)
Na2—O9—C6—C779.1 (3)C5—N1—C2—C152.64 (19)
O7—C1—C2—N1111.67 (18)C8—N2—C7—C656.0 (2)
O8—C1—C2—N168.3 (2)C9—N2—C7—C6174.62 (15)
O9—C6—C7—N2169.32 (15)C10—N2—C7—C666.49 (19)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···I2i0.74 (3)3.03 (3)3.7008 (17)152 (3)
O1—H1B···O3i0.78 (3)2.01 (3)2.781 (2)172 (3)
O2—H2A···O9iii0.78 (3)2.19 (3)2.915 (2)154 (3)
O2—H2B···O8iii0.76 (3)2.00 (3)2.7641 (19)175 (3)
O3—H3A···O10iii0.80 (3)1.99 (3)2.772 (2)169 (3)
O3—H3B···O8iv0.76 (3)2.13 (3)2.860 (2)160 (3)
O4—H4A···I20.79 (3)2.85 (3)3.6300 (14)172 (2)
O4—H4B···O10i0.81 (3)2.04 (3)2.823 (2)165 (2)
O5—H5A···O8iv0.79 (3)1.97 (3)2.7484 (19)167 (3)
O6—H6A···I1ii0.76 (3)2.85 (3)3.5864 (17)165 (3)
O6—H6B···O7ii0.79 (3)2.05 (3)2.829 (2)168 (3)
C8—H8A···O100.982.332.976 (2)122
C3—H3D···O80.982.392.999 (2)120
C10—H10A···O100.982.342.994 (2)123
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Funding information

Financial support from the State University of New York for the acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationAndrade, L. C. R., Costa, M. M. R., Filipa, P., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227–228.  Google Scholar
First citationAndrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83–84.  Google Scholar
First citationAndrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537–538.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNazarenko, A. Y. (2018). Acta Cryst. E74, 829–834.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363–364.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds