metal-organic compounds
fac-Triaqua(2,2′-bipyridine-κ2N,N′)(nitrato-κO)cobalt(II) chloride
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: mouhamadoubdiop@gmail.com
The 3)(C10H8N2)(H2O)3]Cl, consists of a chloride anion and a complex cation, which is built on a monodentate nitrate anion, three water molecules and one bidentate 2,2′-bipyridine molecule, coordinated to a CoII cation, in a distorted octahedral geometry. The water molecules are arranged in a facial geometry, and serve as donors for hydrogen bonding. Acceptor sites in the crystal are chloride ions and one O atom of the coordinating nitrate ion. A three-dimensional framework is formed, based on O—H⋯O and O—H⋯Cl contacts.
of the title complex, [Co(NOKeywords: crystal structure; cobalt; nitrate; 2,2′-bipyridine; supramolecular interactions.
CCDC reference: 1848987
Structure description
As a component of several enzymes, vitamins, proteins and et al., 2017; Lu et al., 2015; Segura et al., 2014), including cobalt complexes (Buriez et al., 2006; Gu et al., 2017). It can be expected that the combination of the high bactericidal activity of bipy and a cobalt cation may lead to a compound of interest. In this dynamic, we have initiated the study of the interaction between [Na3Co(NO2)6], dimethylammonium chloride and bipy. The complex reported herein results from a redox process over the cobalt complex used as starting material, when the reaction is carried out in acetone and in a non-controlled atmosphere: the nitrite anion NO2− behaves as a reducing agent to reduce CoIII to CoII, and is in turn oxidized to form nitrate ions NO3−. A stable cation complex [Co(bipy)(OH2)3(NO3)]+ is then formed, which crystallizes as a chloride salt in presence of [NH2Me2]+Cl−.
pyridine derivatives have a main role in many biological systems. Some complexes containing 2,2′-bipyridine (bipy) have been reported to present antibacterial activity (El-HamidThe ) consists of a chloride anion and a complex cation containing a chelating 2,2′-bipyridine molecule, a monocoordinating nitrate anion and three water molecules to complete the octahedral coordination sphere around the cobalt cation. Coordination bond lengths are in the small range 2.0300 (16)–2.1769 (15) Å, indicating that the should be small enough to stabilize a high spin 3d7 metal configuration, reflected in the limited Jahn–Teller tetragonal distortion. Using the octahedral symmetry measure defined by Alvarez et al. (2002), S(Oh) = 5.39Δ2 − 0.33|Δ|, where Δ is the difference between long and short distances, we compute S(Oh) = 0.07 for the cation, close to the measure expected for an ideal octahedral field, S(Oh) = 0. The coordinating water molecules have a facial geometry, with the longest Co—OH2 bond displayed by the axial water molecule O1 (Abboud et al., 1996; Johnson et al., 2015). The nitrate ion is placed trans to this water molecule, forming an angle O1—Co1—O14 of 170.47 (7)°. The equatorial plane includes the chelating bipy ligand and two water molecules, at normal distances (Xiao, 2006; Gong et al., 2012). The planarity of this [CoO2N2] core is confirmed by the sum of the four cis angles, 360.0 (3)°. The distortion from the octahedral symmetry results essentially from the bipy bite angle, N1—Co1—N12 = 77.37 (6)°. The metal is displaced by 0.04 Å from the equatorial mean plane. A similar arrangement was observed with other cations [M(bipy)(OH2)3(NO3)]+ using different transition metals, M = Mn (Zhang et al., 2002), M = Ni (Walmsley et al., 1989; Rujiwatra et al., 2012), M = Cu (Mathews & Manohar, 1991) and M = Zn (Harrowfield et al., 2017).
of the title compound (Fig. 1Coordinating water molecules are oriented in such a way that all O—H groups serve as donors to form weak hydrogen bonds with chloride ions and atom O16 of the nitrate ion (Table 1). Each complex cation is then directly linked to four neighbours through intermolecular O—H⋯O bonds, and the supramolecular structure is extended to a three-dimensional framework through R42(8) ring motifs based on O—H⋯Cl bonds (Fig. 2). The relative orientation of the cations in the crystal resulting from this supramolecular structure does not prevent π–π interactions between bipy ligands: two cations related by inversion have their bipy parts placed parallel, with a separation between the mean planes of 3.375 Å.
Synthesis and crystallization
All chemicals were purchased from Aldrich Company and used as received. Sodium hexanitrocobaltate(III) [Na3Co(NO2)6] (125 mg, 0.309 mmol), dimethylammonium chloride (25 mg, 0.309 mmol) and 2,2′-bipyridine (48 mg, 0.309 mmol) were mixed together at room temperature in slightly hydrated acetone. The resulting solution was stirred for about two h at 303 K. After a week of slow evaporation at room temperature, orange crystals suitable for X-ray crystallographic analysis were obtained.
Refinement
Crystal data, data collection and structure . Intensities were collected at high resolution [(sinθ)/λ = 0.92 Å−1; d = 0.54 Å].
details are summarized in Table 2
|
Structural data
CCDC reference: 1848987
https://doi.org/10.1107/S2414314618008660/bv4017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618008660/bv4017Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2015); cell
X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(NO3)(C10H8N2)(H2O)3]Cl | F(000) = 748 |
Mr = 366.62 | Dx = 1.717 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56083 Å |
a = 11.5309 (5) Å | Cell parameters from 86540 reflections |
b = 8.9688 (3) Å | θ = 2.1–34.9° |
c = 14.7820 (6) Å | µ = 0.74 mm−1 |
β = 111.915 (3)° | T = 295 K |
V = 1418.26 (10) Å3 | Prism, orange |
Z = 4 | 0.60 × 0.60 × 0.60 mm |
Stoe Stadivari diffractometer | 9203 independent reflections |
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source | 5851 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.068 |
Detector resolution: 5.81 pixels mm-1 | θmax = 31.0°, θmin = 2.1° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (X-AREA and X-RED32; Stoe & Cie, 2015) | k = −16→16 |
Tmin = 0.321, Tmax = 1.000 | l = −27→22 |
139350 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
wR(F2) = 0.140 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0392P)2 + 1.4068P] where P = (Fo2 + 2Fc2)/3 |
9203 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 1.28 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
0 constraints |
Refinement. H atoms of the bipy ligand were placed in calculated positions and refined as riding to their carrier C atoms, with Uiso = 1.2 Ueq(carrier C). In contrast, water H atoms were refined with free coordinates and free Uiso displacement parameters. O—H bond lengths converged to acceptable values in the range 0.73 (3)–0.85 (4) Å. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.18156 (2) | 0.28540 (3) | 0.38779 (2) | 0.02773 (6) | |
Cl1 | −0.05849 (5) | 0.28742 (6) | 0.06897 (4) | 0.04189 (11) | |
N1 | 0.27083 (15) | 0.43391 (18) | 0.32300 (11) | 0.0324 (3) | |
C2 | 0.2127 (2) | 0.5247 (2) | 0.24833 (16) | 0.0422 (4) | |
H2A | 0.126113 | 0.532237 | 0.226040 | 0.051* | |
C3 | 0.2760 (3) | 0.6083 (3) | 0.20253 (18) | 0.0491 (5) | |
H3A | 0.233048 | 0.669023 | 0.149601 | 0.059* | |
C4 | 0.4047 (3) | 0.5986 (3) | 0.23788 (19) | 0.0508 (5) | |
H4A | 0.449930 | 0.654775 | 0.209499 | 0.061* | |
C5 | 0.4665 (2) | 0.5053 (2) | 0.31573 (17) | 0.0409 (4) | |
H5A | 0.553186 | 0.497382 | 0.339837 | 0.049* | |
C6 | 0.39652 (17) | 0.4238 (2) | 0.35692 (13) | 0.0309 (3) | |
C7 | 0.45350 (15) | 0.3213 (2) | 0.44012 (13) | 0.0299 (3) | |
C8 | 0.58164 (17) | 0.2946 (2) | 0.48387 (16) | 0.0384 (4) | |
H8A | 0.636987 | 0.342089 | 0.460973 | 0.046* | |
C9 | 0.62560 (19) | 0.1968 (3) | 0.56154 (17) | 0.0448 (5) | |
H9A | 0.710634 | 0.176436 | 0.590586 | 0.054* | |
C10 | 0.5423 (2) | 0.1298 (3) | 0.59550 (17) | 0.0451 (5) | |
H10A | 0.570169 | 0.065224 | 0.648497 | 0.054* | |
C11 | 0.41622 (18) | 0.1607 (2) | 0.54913 (15) | 0.0381 (4) | |
H11A | 0.359795 | 0.115400 | 0.571893 | 0.046* | |
N12 | 0.37249 (13) | 0.25299 (18) | 0.47297 (11) | 0.0305 (3) | |
N13 | 0.21743 (15) | 0.08151 (19) | 0.22784 (12) | 0.0339 (3) | |
O14 | 0.18036 (16) | 0.09312 (18) | 0.29758 (11) | 0.0418 (3) | |
O15 | 0.2944 (2) | 0.1667 (2) | 0.21857 (19) | 0.0689 (6) | |
O16 | 0.1752 (2) | −0.0228 (2) | 0.16916 (13) | 0.0560 (5) | |
O1 | 0.1557 (2) | 0.4565 (2) | 0.47721 (14) | 0.0501 (4) | |
H11 | 0.120 (4) | 0.539 (5) | 0.455 (3) | 0.077 (11)* | |
H12 | 0.167 (3) | 0.453 (4) | 0.529 (2) | 0.054 (9)* | |
O2 | 0.12743 (16) | 0.13141 (19) | 0.46916 (13) | 0.0415 (3) | |
H21 | 0.107 (3) | 0.048 (4) | 0.450 (2) | 0.056 (9)* | |
H22 | 0.085 (3) | 0.153 (4) | 0.494 (3) | 0.070 (11)* | |
O3 | 0.00497 (15) | 0.3211 (2) | 0.29102 (13) | 0.0484 (4) | |
H31 | −0.011 (3) | 0.309 (4) | 0.238 (3) | 0.053 (9)* | |
H32 | −0.047 (3) | 0.363 (4) | 0.301 (3) | 0.067 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02527 (9) | 0.03019 (11) | 0.02956 (10) | 0.00029 (8) | 0.01235 (7) | 0.00041 (8) |
Cl1 | 0.0487 (3) | 0.0382 (2) | 0.0462 (2) | −0.00178 (19) | 0.0263 (2) | −0.00160 (19) |
N1 | 0.0344 (7) | 0.0314 (6) | 0.0322 (6) | −0.0008 (5) | 0.0135 (5) | 0.0019 (5) |
C2 | 0.0462 (10) | 0.0392 (9) | 0.0380 (9) | −0.0015 (8) | 0.0120 (8) | 0.0065 (8) |
C3 | 0.0668 (15) | 0.0416 (11) | 0.0417 (10) | −0.0021 (10) | 0.0233 (10) | 0.0088 (8) |
C4 | 0.0696 (15) | 0.0440 (11) | 0.0518 (12) | −0.0087 (11) | 0.0376 (12) | 0.0051 (9) |
C5 | 0.0426 (9) | 0.0408 (9) | 0.0484 (10) | −0.0071 (8) | 0.0276 (9) | −0.0009 (8) |
C6 | 0.0350 (7) | 0.0298 (7) | 0.0327 (7) | −0.0044 (6) | 0.0181 (6) | −0.0032 (6) |
C7 | 0.0265 (6) | 0.0320 (7) | 0.0333 (7) | −0.0028 (5) | 0.0136 (6) | −0.0051 (6) |
C8 | 0.0246 (6) | 0.0460 (10) | 0.0456 (10) | −0.0023 (7) | 0.0141 (6) | −0.0072 (8) |
C9 | 0.0270 (7) | 0.0536 (12) | 0.0483 (11) | 0.0070 (8) | 0.0076 (7) | −0.0035 (9) |
C10 | 0.0354 (9) | 0.0503 (12) | 0.0426 (10) | 0.0078 (8) | 0.0065 (8) | 0.0089 (9) |
C11 | 0.0331 (8) | 0.0432 (10) | 0.0369 (8) | 0.0022 (7) | 0.0120 (7) | 0.0070 (7) |
N12 | 0.0257 (5) | 0.0348 (6) | 0.0310 (6) | −0.0006 (5) | 0.0107 (5) | 0.0015 (5) |
N13 | 0.0329 (7) | 0.0353 (7) | 0.0362 (7) | 0.0012 (5) | 0.0159 (6) | −0.0047 (6) |
O14 | 0.0543 (9) | 0.0399 (7) | 0.0392 (7) | −0.0043 (6) | 0.0267 (7) | −0.0068 (6) |
O15 | 0.0752 (13) | 0.0606 (11) | 0.0999 (17) | −0.0284 (10) | 0.0662 (13) | −0.0288 (11) |
O16 | 0.0763 (12) | 0.0543 (10) | 0.0487 (9) | −0.0240 (9) | 0.0363 (9) | −0.0226 (8) |
O1 | 0.0793 (13) | 0.0393 (8) | 0.0397 (8) | 0.0133 (8) | 0.0316 (8) | 0.0000 (6) |
O2 | 0.0482 (8) | 0.0363 (7) | 0.0526 (9) | −0.0060 (6) | 0.0336 (7) | −0.0005 (6) |
O3 | 0.0321 (7) | 0.0713 (12) | 0.0386 (8) | 0.0144 (7) | 0.0096 (6) | −0.0044 (8) |
Co1—O3 | 2.0300 (16) | C7—C8 | 1.395 (2) |
Co1—O2 | 2.0746 (15) | C8—C9 | 1.382 (3) |
Co1—N12 | 2.1090 (15) | C8—H8A | 0.9300 |
Co1—O1 | 2.1177 (16) | C9—C10 | 1.377 (3) |
Co1—N1 | 2.1183 (15) | C9—H9A | 0.9300 |
Co1—O14 | 2.1769 (15) | C10—C11 | 1.384 (3) |
N1—C2 | 1.333 (3) | C10—H10A | 0.9300 |
N1—C6 | 1.348 (2) | C11—N12 | 1.335 (2) |
C2—C3 | 1.386 (3) | C11—H11A | 0.9300 |
C2—H2A | 0.9300 | N13—O15 | 1.217 (2) |
C3—C4 | 1.380 (4) | N13—O16 | 1.245 (2) |
C3—H3A | 0.9300 | N13—O14 | 1.259 (2) |
C4—C5 | 1.386 (4) | O1—H11 | 0.85 (4) |
C4—H4A | 0.9300 | O1—H12 | 0.73 (3) |
C5—C6 | 1.387 (3) | O2—H21 | 0.81 (4) |
C5—H5A | 0.9300 | O2—H22 | 0.74 (4) |
C6—C7 | 1.479 (3) | O3—H31 | 0.74 (4) |
C7—N12 | 1.350 (2) | O3—H32 | 0.77 (4) |
O3—Co1—O2 | 94.24 (8) | C5—C6—C7 | 122.82 (18) |
O3—Co1—N12 | 172.53 (7) | N12—C7—C8 | 120.71 (18) |
O2—Co1—N12 | 92.01 (7) | N12—C7—C6 | 115.41 (15) |
O3—Co1—O1 | 89.28 (8) | C8—C7—C6 | 123.88 (16) |
O2—Co1—O1 | 88.72 (7) | C9—C8—C7 | 119.40 (19) |
N12—Co1—O1 | 94.94 (8) | C9—C8—H8A | 120.3 |
O3—Co1—N1 | 96.37 (7) | C7—C8—H8A | 120.3 |
O2—Co1—N1 | 169.37 (7) | C10—C9—C8 | 119.36 (18) |
N12—Co1—N1 | 77.37 (6) | C10—C9—H9A | 120.3 |
O1—Co1—N1 | 91.83 (7) | C8—C9—H9A | 120.3 |
O3—Co1—O14 | 85.30 (7) | C9—C10—C11 | 118.6 (2) |
O2—Co1—O14 | 83.87 (6) | C9—C10—H10A | 120.7 |
N12—Co1—O14 | 91.32 (6) | C11—C10—H10A | 120.7 |
O1—Co1—O14 | 170.47 (7) | N12—C11—C10 | 122.52 (19) |
N1—Co1—O14 | 96.56 (6) | N12—C11—H11A | 118.7 |
C2—N1—C6 | 119.15 (17) | C10—C11—H11A | 118.7 |
C2—N1—Co1 | 125.40 (14) | C11—N12—C7 | 119.36 (16) |
C6—N1—Co1 | 115.22 (12) | C11—N12—Co1 | 124.77 (13) |
N1—C2—C3 | 122.8 (2) | C7—N12—Co1 | 115.53 (12) |
N1—C2—H2A | 118.6 | O15—N13—O16 | 120.34 (18) |
C3—C2—H2A | 118.6 | O15—N13—O14 | 121.67 (18) |
C4—C3—C2 | 118.0 (2) | O16—N13—O14 | 117.96 (17) |
C4—C3—H3A | 121.0 | N13—O14—Co1 | 129.84 (13) |
C2—C3—H3A | 121.0 | Co1—O1—H11 | 124 (3) |
C3—C4—C5 | 120.0 (2) | Co1—O1—H12 | 128 (3) |
C3—C4—H4A | 120.0 | H11—O1—H12 | 108 (4) |
C5—C4—H4A | 120.0 | Co1—O2—H21 | 122 (2) |
C4—C5—C6 | 118.7 (2) | Co1—O2—H22 | 121 (3) |
C4—C5—H5A | 120.7 | H21—O2—H22 | 105 (4) |
C6—C5—H5A | 120.7 | Co1—O3—H31 | 121 (3) |
N1—C6—C5 | 121.50 (18) | Co1—O3—H32 | 126 (3) |
N1—C6—C7 | 115.68 (14) | H31—O3—H32 | 112 (4) |
C6—N1—C2—C3 | 1.0 (3) | C5—C6—C7—C8 | −1.2 (3) |
Co1—N1—C2—C3 | −173.21 (18) | N12—C7—C8—C9 | 0.1 (3) |
N1—C2—C3—C4 | −1.5 (4) | C6—C7—C8—C9 | 179.84 (19) |
C2—C3—C4—C5 | 1.2 (4) | C7—C8—C9—C10 | −1.3 (3) |
C3—C4—C5—C6 | −0.5 (4) | C8—C9—C10—C11 | 1.3 (4) |
C2—N1—C6—C5 | −0.2 (3) | C9—C10—C11—N12 | −0.1 (4) |
Co1—N1—C6—C5 | 174.59 (15) | C10—C11—N12—C7 | −1.0 (3) |
C2—N1—C6—C7 | 179.69 (17) | C10—C11—N12—Co1 | 172.08 (18) |
Co1—N1—C6—C7 | −5.5 (2) | C8—C7—N12—C11 | 1.0 (3) |
C4—C5—C6—N1 | −0.1 (3) | C6—C7—N12—C11 | −178.73 (17) |
C4—C5—C6—C7 | −179.96 (19) | C8—C7—N12—Co1 | −172.70 (14) |
N1—C6—C7—N12 | −1.3 (2) | C6—C7—N12—Co1 | 7.5 (2) |
C5—C6—C7—N12 | 178.58 (18) | O15—N13—O14—Co1 | 22.7 (3) |
N1—C6—C7—C8 | 178.93 (17) | O16—N13—O14—Co1 | −159.05 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···O2 | 0.93 | 2.54 | 3.101 (3) | 119 |
O1—H11···Cl1i | 0.85 (4) | 2.33 (4) | 3.1560 (19) | 166 (4) |
O1—H12···O16ii | 0.73 (3) | 2.13 (3) | 2.825 (2) | 160 (4) |
O2—H21···Cl1iii | 0.81 (4) | 2.39 (4) | 3.1833 (18) | 167 (3) |
O2—H22···Cl1ii | 0.74 (4) | 2.37 (4) | 3.1088 (16) | 177 (4) |
O3—H31···Cl1 | 0.74 (4) | 2.36 (4) | 3.100 (2) | 176 (3) |
O3—H32···O16i | 0.77 (4) | 1.98 (4) | 2.745 (2) | 178 (4) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2. |
Funding information
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and CONACyT, Mexico for financial support (Project 268178).
References
Abboud, K. A., Palenik, R. C. & Palenik, G. J. (1996). Acta Cryst. C52, 2994–2996. CrossRef Web of Science IUCr Journals Google Scholar
Alvarez, S., Avnir, D., Llunell, M. & Pinsky, M. (2002). New J. Chem. 26, 996–1009. Web of Science CrossRef CAS Google Scholar
Buriez, O., Moretto, L. M. & Ugo, P. (2006). Electrochim. Acta, 52, 958–964. Web of Science CrossRef Google Scholar
El-Hamid, S. M. A., El-Demerdash, R. S., Arafat, H. F. H. & Sadeek, S. A. (2017). J. Mol. Struct. 1149, 613–625. Google Scholar
Gong, Y., Li, J., Qin, J. & Lin, J. (2012). CrystEngComm, 14, 5862–5869. Web of Science CSD CrossRef CAS Google Scholar
Gu, A., Xiang, W., Wang, T., Gu, S. & Zhao, X. (2017). Solar Energy, 147, 126–132. Web of Science CrossRef Google Scholar
Harrowfield, J. M., Kim, Y. & Skelton, B. W. (2017). CSD communication, CCDC 990117. Google Scholar
Johnson, A., Mbonu, J., Hussain, Z., Loh, W.-S. & Fun, H.-K. (2015). Acta Cryst. E71, m139–m140. Web of Science CrossRef IUCr Journals Google Scholar
Lu, X.-X., Luo, Y.-H., Lu, C., Chen, X. & Zhang, H. (2015). J. Solid State Chem. 232, 123–130. Web of Science CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 2213–2214. CrossRef Web of Science IUCr Journals Google Scholar
Rujiwatra, A., Yimklan, S. & Prior, T. J. (2012). Polyhedron, 31, 345–351. Web of Science CrossRef Google Scholar
Segura, D. F., Netto, A. V. G., Frem, R. C. G., Mauro, A. E., da Silva, P. B., Fernandes, J. A., Paz, F. A. A., Dias, A. L. T., Silva, N. C., de Almeida, E. T., Marques, M. J., de Almeida, L., Alves, K. F., Pavan, F. R., de Souza, P. C., de Barros, H. B. & Leite, C. Q. F. (2014). Polyhedron, 79, 197–206. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2015). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany. Google Scholar
Walmsley, F., Pinkerton, A. A. & Walmsley, A. A. (1989). Polyhedron, 8, 689–693. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, H.-P. (2006). Acta Cryst. E62, m95–m97. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, X.-F., Huang, D.-G., Wang, W.-G., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m268–m269. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.