metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

fac-Tri­aqua­(2,2′-bi­pyridine-κ2N,N′)(nitrato-κO)cobalt(II) chloride

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: mouhamadoubdiop@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 12 May 2018; accepted 12 June 2018; online 15 June 2018)

The asymmetric unit of the title complex, [Co(NO3)(C10H8N2)(H2O)3]Cl, consists of a chloride anion and a complex cation, which is built on a monodentate nitrate anion, three water mol­ecules and one bidentate 2,2′-bi­pyridine mol­ecule, coordinated to a CoII cation, in a distorted octa­hedral geometry. The water mol­ecules are arranged in a facial geometry, and serve as donors for hydrogen bonding. Acceptor sites in the crystal are chloride ions and one O atom of the coordinating nitrate ion. A three-dimensional framework is formed, based on O—H⋯O and O—H⋯Cl contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a component of several enzymes, vitamins, proteins and nucleic acids, pyridine derivatives have a main role in many biological systems. Some complexes containing 2,2′-bi­pyridine (bipy) have been reported to present anti­bacterial activity (El-Hamid et al., 2017[El-Hamid, S. M. A., El-Demerdash, R. S., Arafat, H. F. H. & Sadeek, S. A. (2017). J. Mol. Struct. 1149, 613-625.]; Lu et al., 2015[Lu, X.-X., Luo, Y.-H., Lu, C., Chen, X. & Zhang, H. (2015). J. Solid State Chem. 232, 123-130.]; Segura et al., 2014[Segura, D. F., Netto, A. V. G., Frem, R. C. G., Mauro, A. E., da Silva, P. B., Fernandes, J. A., Paz, F. A. A., Dias, A. L. T., Silva, N. C., de Almeida, E. T., Marques, M. J., de Almeida, L., Alves, K. F., Pavan, F. R., de Souza, P. C., de Barros, H. B. & Leite, C. Q. F. (2014). Polyhedron, 79, 197-206.]), including cobalt complexes (Buriez et al., 2006[Buriez, O., Moretto, L. M. & Ugo, P. (2006). Electrochim. Acta, 52, 958-964.]; Gu et al., 2017[Gu, A., Xiang, W., Wang, T., Gu, S. & Zhao, X. (2017). Solar Energy, 147, 126-132.]). It can be expected that the combination of the high bactericidal activity of bipy and a cobalt cation may lead to a compound of inter­est. In this dynamic, we have initiated the study of the inter­action between [Na3Co(NO2)6], di­methyl­ammonium chloride and bipy. The complex reported herein results from a redox process over the cobalt complex used as starting material, when the reaction is carried out in acetone and in a non-controlled atmosphere: the nitrite anion NO2 behaves as a reducing agent to reduce CoIII to CoII, and is in turn oxidized to form nitrate ions NO3. A stable cation complex [Co(bipy)(OH2)3(NO3)]+ is then formed, which crystallizes as a chloride salt in presence of [NH2Me2]+Cl.

The asymmetric unit of the title compound (Fig. 1[link]) consists of a chloride anion and a complex cation containing a chelating 2,2′-bi­pyridine mol­ecule, a monocoordinating nitrate anion and three water mol­ecules to complete the octa­hedral coordination sphere around the cobalt cation. Coordination bond lengths are in the small range 2.0300 (16)–2.1769 (15) Å, indicating that the ligand field should be small enough to stabilize a high spin 3d7 metal configuration, reflected in the limited Jahn–Teller tetra­gonal distortion. Using the octa­hedral symmetry measure defined by Alvarez et al. (2002[Alvarez, S., Avnir, D., Llunell, M. & Pinsky, M. (2002). New J. Chem. 26, 996-1009.]), S(Oh) = 5.39Δ2 − 0.33|Δ|, where Δ is the difference between long and short distances, we compute S(Oh) = 0.07 for the cation, close to the measure expected for an ideal octa­hedral field, S(Oh) = 0. The coordinating water mol­ecules have a facial geometry, with the longest Co—OH2 bond displayed by the axial water mol­ecule O1 (Abboud et al., 1996[Abboud, K. A., Palenik, R. C. & Palenik, G. J. (1996). Acta Cryst. C52, 2994-2996.]; Johnson et al., 2015[Johnson, A., Mbonu, J., Hussain, Z., Loh, W.-S. & Fun, H.-K. (2015). Acta Cryst. E71, m139-m140.]). The nitrate ion is placed trans to this water mol­ecule, forming an angle O1—Co1—O14 of 170.47 (7)°. The equatorial plane includes the chelating bipy ligand and two water mol­ecules, at normal distances (Xiao, 2006[Xiao, H.-P. (2006). Acta Cryst. E62, m95-m97.]; Gong et al., 2012[Gong, Y., Li, J., Qin, J. & Lin, J. (2012). CrystEngComm, 14, 5862-5869.]). The planarity of this [CoO2N2] core is confirmed by the sum of the four cis angles, 360.0 (3)°. The distortion from the octa­hedral symmetry results essentially from the bipy bite angle, N1—Co1—N12 = 77.37 (6)°. The metal is displaced by 0.04 Å from the equatorial mean plane. A similar arrangement was observed with other cations [M(bipy)(OH2)3(NO3)]+ using different transition metals, M = Mn (Zhang et al., 2002[Zhang, X.-F., Huang, D.-G., Wang, W.-G., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m268-m269.]), M = Ni (Walmsley et al., 1989[Walmsley, F., Pinkerton, A. A. & Walmsley, A. A. (1989). Polyhedron, 8, 689-693.]; Rujiwatra et al., 2012[Rujiwatra, A., Yimklan, S. & Prior, T. J. (2012). Polyhedron, 31, 345-351.]), M = Cu (Mathews & Manohar, 1991[Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 2213-2214.]) and M = Zn (Harrowfield et al., 2017[Harrowfield, J. M., Kim, Y. & Skelton, B. W. (2017). CSD communication, CCDC 990117.]).

[Figure 1]
Figure 1
The structure of the complex cation and the anion in the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level.

Coordinating water mol­ecules are oriented in such a way that all O—H groups serve as donors to form weak hydrogen bonds with chloride ions and atom O16 of the nitrate ion (Table 1[link]). Each complex cation is then directly linked to four neighbours through inter­molecular O—H⋯O bonds, and the supra­molecular structure is extended to a three-dimensional framework through R42(8) ring motifs based on O—H⋯Cl bonds (Fig. 2[link]). The relative orientation of the cations in the crystal resulting from this supra­molecular structure does not prevent ππ inter­actions between bipy ligands: two cations related by inversion have their bipy parts placed parallel, with a separation between the mean planes of 3.375 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Cl1i 0.85 (4) 2.33 (4) 3.1560 (19) 166 (4)
O1—H12⋯O16ii 0.73 (3) 2.13 (3) 2.825 (2) 160 (4)
O2—H21⋯Cl1iii 0.81 (4) 2.39 (4) 3.1833 (18) 167 (3)
O2—H22⋯Cl1ii 0.74 (4) 2.37 (4) 3.1088 (16) 177 (4)
O3—H31⋯Cl1 0.74 (4) 2.36 (4) 3.100 (2) 176 (3)
O3—H32⋯O16i 0.77 (4) 1.98 (4) 2.745 (2) 178 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound showing four cations and ten chloride forming hydrogen bonds (dashed lines). H atoms belonging to the bipy ligands have been omitted for clarity. The asymmetric unit contains the upper-left cation and Cl1. Symmetry codes: (i) −x, [{1\over 2}] + y, [{1\over 2}] − z; (ii) x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) −x, −[{1\over 2}] + y, [{1\over 2}] − z.

Synthesis and crystallization

All chemicals were purchased from Aldrich Company and used as received. Sodium hexa­nitro­cobaltate(III) [Na3Co(NO2)6] (125 mg, 0.309 mmol), di­methyl­ammonium chloride (25 mg, 0.309 mmol) and 2,2′-bi­pyridine (48 mg, 0.309 mmol) were mixed together at room temperature in slightly hydrated acetone. The resulting solution was stirred for about two h at 303 K. After a week of slow evaporation at room temperature, orange crystals suitable for X-ray crystallographic analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Intensities were collected at high resolution [(sinθ)/λ = 0.92 Å−1; d = 0.54 Å].

Table 2
Experimental details

Crystal data
Chemical formula [Co(NO3)(C10H8N2)(H2O)3]Cl
Mr 366.62
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 11.5309 (5), 8.9688 (3), 14.7820 (6)
β (°) 111.915 (3)
V3) 1418.26 (10)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.74
Crystal size (mm) 0.60 × 0.60 × 0.60
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA and X-RED32; Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.321, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 139350, 9203, 5851
Rint 0.068
(sin θ/λ)max−1) 0.918
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.140, 1.10
No. of reflections 9203
No. of parameters 214
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.28, −0.58
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

fac-Triaqua(2,2'-bipyridine-κ2N,N')(nitrato-κO)cobalt(II) chloride top
Crystal data top
[Co(NO3)(C10H8N2)(H2O)3]ClF(000) = 748
Mr = 366.62Dx = 1.717 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 11.5309 (5) ÅCell parameters from 86540 reflections
b = 8.9688 (3) Åθ = 2.1–34.9°
c = 14.7820 (6) ŵ = 0.74 mm1
β = 111.915 (3)°T = 295 K
V = 1418.26 (10) Å3Prism, orange
Z = 40.60 × 0.60 × 0.60 mm
Data collection top
Stoe Stadivari
diffractometer
9203 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source5851 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.068
Detector resolution: 5.81 pixels mm-1θmax = 31.0°, θmin = 2.1°
ω scansh = 2121
Absorption correction: multi-scan
(X-AREA and X-RED32; Stoe & Cie, 2015)
k = 1616
Tmin = 0.321, Tmax = 1.000l = 2722
139350 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.4068P]
where P = (Fo2 + 2Fc2)/3
9203 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.58 e Å3
0 constraints
Special details top

Refinement. H atoms of the bipy ligand were placed in calculated positions and refined as riding to their carrier C atoms, with Uiso = 1.2 Ueq(carrier C). In contrast, water H atoms were refined with free coordinates and free Uiso displacement parameters. O—H bond lengths converged to acceptable values in the range 0.73 (3)–0.85 (4) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.18156 (2)0.28540 (3)0.38779 (2)0.02773 (6)
Cl10.05849 (5)0.28742 (6)0.06897 (4)0.04189 (11)
N10.27083 (15)0.43391 (18)0.32300 (11)0.0324 (3)
C20.2127 (2)0.5247 (2)0.24833 (16)0.0422 (4)
H2A0.1261130.5322370.2260400.051*
C30.2760 (3)0.6083 (3)0.20253 (18)0.0491 (5)
H3A0.2330480.6690230.1496010.059*
C40.4047 (3)0.5986 (3)0.23788 (19)0.0508 (5)
H4A0.4499300.6547750.2094990.061*
C50.4665 (2)0.5053 (2)0.31573 (17)0.0409 (4)
H5A0.5531860.4973820.3398370.049*
C60.39652 (17)0.4238 (2)0.35692 (13)0.0309 (3)
C70.45350 (15)0.3213 (2)0.44012 (13)0.0299 (3)
C80.58164 (17)0.2946 (2)0.48387 (16)0.0384 (4)
H8A0.6369870.3420890.4609730.046*
C90.62560 (19)0.1968 (3)0.56154 (17)0.0448 (5)
H9A0.7106340.1764360.5905860.054*
C100.5423 (2)0.1298 (3)0.59550 (17)0.0451 (5)
H10A0.5701690.0652240.6484970.054*
C110.41622 (18)0.1607 (2)0.54913 (15)0.0381 (4)
H11A0.3597950.1154000.5718930.046*
N120.37249 (13)0.25299 (18)0.47297 (11)0.0305 (3)
N130.21743 (15)0.08151 (19)0.22784 (12)0.0339 (3)
O140.18036 (16)0.09312 (18)0.29758 (11)0.0418 (3)
O150.2944 (2)0.1667 (2)0.21857 (19)0.0689 (6)
O160.1752 (2)0.0228 (2)0.16916 (13)0.0560 (5)
O10.1557 (2)0.4565 (2)0.47721 (14)0.0501 (4)
H110.120 (4)0.539 (5)0.455 (3)0.077 (11)*
H120.167 (3)0.453 (4)0.529 (2)0.054 (9)*
O20.12743 (16)0.13141 (19)0.46916 (13)0.0415 (3)
H210.107 (3)0.048 (4)0.450 (2)0.056 (9)*
H220.085 (3)0.153 (4)0.494 (3)0.070 (11)*
O30.00497 (15)0.3211 (2)0.29102 (13)0.0484 (4)
H310.011 (3)0.309 (4)0.238 (3)0.053 (9)*
H320.047 (3)0.363 (4)0.301 (3)0.067 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02527 (9)0.03019 (11)0.02956 (10)0.00029 (8)0.01235 (7)0.00041 (8)
Cl10.0487 (3)0.0382 (2)0.0462 (2)0.00178 (19)0.0263 (2)0.00160 (19)
N10.0344 (7)0.0314 (6)0.0322 (6)0.0008 (5)0.0135 (5)0.0019 (5)
C20.0462 (10)0.0392 (9)0.0380 (9)0.0015 (8)0.0120 (8)0.0065 (8)
C30.0668 (15)0.0416 (11)0.0417 (10)0.0021 (10)0.0233 (10)0.0088 (8)
C40.0696 (15)0.0440 (11)0.0518 (12)0.0087 (11)0.0376 (12)0.0051 (9)
C50.0426 (9)0.0408 (9)0.0484 (10)0.0071 (8)0.0276 (9)0.0009 (8)
C60.0350 (7)0.0298 (7)0.0327 (7)0.0044 (6)0.0181 (6)0.0032 (6)
C70.0265 (6)0.0320 (7)0.0333 (7)0.0028 (5)0.0136 (6)0.0051 (6)
C80.0246 (6)0.0460 (10)0.0456 (10)0.0023 (7)0.0141 (6)0.0072 (8)
C90.0270 (7)0.0536 (12)0.0483 (11)0.0070 (8)0.0076 (7)0.0035 (9)
C100.0354 (9)0.0503 (12)0.0426 (10)0.0078 (8)0.0065 (8)0.0089 (9)
C110.0331 (8)0.0432 (10)0.0369 (8)0.0022 (7)0.0120 (7)0.0070 (7)
N120.0257 (5)0.0348 (6)0.0310 (6)0.0006 (5)0.0107 (5)0.0015 (5)
N130.0329 (7)0.0353 (7)0.0362 (7)0.0012 (5)0.0159 (6)0.0047 (6)
O140.0543 (9)0.0399 (7)0.0392 (7)0.0043 (6)0.0267 (7)0.0068 (6)
O150.0752 (13)0.0606 (11)0.0999 (17)0.0284 (10)0.0662 (13)0.0288 (11)
O160.0763 (12)0.0543 (10)0.0487 (9)0.0240 (9)0.0363 (9)0.0226 (8)
O10.0793 (13)0.0393 (8)0.0397 (8)0.0133 (8)0.0316 (8)0.0000 (6)
O20.0482 (8)0.0363 (7)0.0526 (9)0.0060 (6)0.0336 (7)0.0005 (6)
O30.0321 (7)0.0713 (12)0.0386 (8)0.0144 (7)0.0096 (6)0.0044 (8)
Geometric parameters (Å, º) top
Co1—O32.0300 (16)C7—C81.395 (2)
Co1—O22.0746 (15)C8—C91.382 (3)
Co1—N122.1090 (15)C8—H8A0.9300
Co1—O12.1177 (16)C9—C101.377 (3)
Co1—N12.1183 (15)C9—H9A0.9300
Co1—O142.1769 (15)C10—C111.384 (3)
N1—C21.333 (3)C10—H10A0.9300
N1—C61.348 (2)C11—N121.335 (2)
C2—C31.386 (3)C11—H11A0.9300
C2—H2A0.9300N13—O151.217 (2)
C3—C41.380 (4)N13—O161.245 (2)
C3—H3A0.9300N13—O141.259 (2)
C4—C51.386 (4)O1—H110.85 (4)
C4—H4A0.9300O1—H120.73 (3)
C5—C61.387 (3)O2—H210.81 (4)
C5—H5A0.9300O2—H220.74 (4)
C6—C71.479 (3)O3—H310.74 (4)
C7—N121.350 (2)O3—H320.77 (4)
O3—Co1—O294.24 (8)C5—C6—C7122.82 (18)
O3—Co1—N12172.53 (7)N12—C7—C8120.71 (18)
O2—Co1—N1292.01 (7)N12—C7—C6115.41 (15)
O3—Co1—O189.28 (8)C8—C7—C6123.88 (16)
O2—Co1—O188.72 (7)C9—C8—C7119.40 (19)
N12—Co1—O194.94 (8)C9—C8—H8A120.3
O3—Co1—N196.37 (7)C7—C8—H8A120.3
O2—Co1—N1169.37 (7)C10—C9—C8119.36 (18)
N12—Co1—N177.37 (6)C10—C9—H9A120.3
O1—Co1—N191.83 (7)C8—C9—H9A120.3
O3—Co1—O1485.30 (7)C9—C10—C11118.6 (2)
O2—Co1—O1483.87 (6)C9—C10—H10A120.7
N12—Co1—O1491.32 (6)C11—C10—H10A120.7
O1—Co1—O14170.47 (7)N12—C11—C10122.52 (19)
N1—Co1—O1496.56 (6)N12—C11—H11A118.7
C2—N1—C6119.15 (17)C10—C11—H11A118.7
C2—N1—Co1125.40 (14)C11—N12—C7119.36 (16)
C6—N1—Co1115.22 (12)C11—N12—Co1124.77 (13)
N1—C2—C3122.8 (2)C7—N12—Co1115.53 (12)
N1—C2—H2A118.6O15—N13—O16120.34 (18)
C3—C2—H2A118.6O15—N13—O14121.67 (18)
C4—C3—C2118.0 (2)O16—N13—O14117.96 (17)
C4—C3—H3A121.0N13—O14—Co1129.84 (13)
C2—C3—H3A121.0Co1—O1—H11124 (3)
C3—C4—C5120.0 (2)Co1—O1—H12128 (3)
C3—C4—H4A120.0H11—O1—H12108 (4)
C5—C4—H4A120.0Co1—O2—H21122 (2)
C4—C5—C6118.7 (2)Co1—O2—H22121 (3)
C4—C5—H5A120.7H21—O2—H22105 (4)
C6—C5—H5A120.7Co1—O3—H31121 (3)
N1—C6—C5121.50 (18)Co1—O3—H32126 (3)
N1—C6—C7115.68 (14)H31—O3—H32112 (4)
C6—N1—C2—C31.0 (3)C5—C6—C7—C81.2 (3)
Co1—N1—C2—C3173.21 (18)N12—C7—C8—C90.1 (3)
N1—C2—C3—C41.5 (4)C6—C7—C8—C9179.84 (19)
C2—C3—C4—C51.2 (4)C7—C8—C9—C101.3 (3)
C3—C4—C5—C60.5 (4)C8—C9—C10—C111.3 (4)
C2—N1—C6—C50.2 (3)C9—C10—C11—N120.1 (4)
Co1—N1—C6—C5174.59 (15)C10—C11—N12—C71.0 (3)
C2—N1—C6—C7179.69 (17)C10—C11—N12—Co1172.08 (18)
Co1—N1—C6—C75.5 (2)C8—C7—N12—C111.0 (3)
C4—C5—C6—N10.1 (3)C6—C7—N12—C11178.73 (17)
C4—C5—C6—C7179.96 (19)C8—C7—N12—Co1172.70 (14)
N1—C6—C7—N121.3 (2)C6—C7—N12—Co17.5 (2)
C5—C6—C7—N12178.58 (18)O15—N13—O14—Co122.7 (3)
N1—C6—C7—C8178.93 (17)O16—N13—O14—Co1159.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.543.101 (3)119
O1—H11···Cl1i0.85 (4)2.33 (4)3.1560 (19)166 (4)
O1—H12···O16ii0.73 (3)2.13 (3)2.825 (2)160 (4)
O2—H21···Cl1iii0.81 (4)2.39 (4)3.1833 (18)167 (3)
O2—H22···Cl1ii0.74 (4)2.37 (4)3.1088 (16)177 (4)
O3—H31···Cl10.74 (4)2.36 (4)3.100 (2)176 (3)
O3—H32···O16i0.77 (4)1.98 (4)2.745 (2)178 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and CONACyT, Mexico for financial support (Project 268178).

References

First citationAbboud, K. A., Palenik, R. C. & Palenik, G. J. (1996). Acta Cryst. C52, 2994–2996.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAlvarez, S., Avnir, D., Llunell, M. & Pinsky, M. (2002). New J. Chem. 26, 996–1009.  Web of Science CrossRef CAS Google Scholar
First citationBuriez, O., Moretto, L. M. & Ugo, P. (2006). Electrochim. Acta, 52, 958–964.  Web of Science CrossRef Google Scholar
First citationEl-Hamid, S. M. A., El-Demerdash, R. S., Arafat, H. F. H. & Sadeek, S. A. (2017). J. Mol. Struct. 1149, 613–625.  Google Scholar
First citationGong, Y., Li, J., Qin, J. & Lin, J. (2012). CrystEngComm, 14, 5862–5869.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, A., Xiang, W., Wang, T., Gu, S. & Zhao, X. (2017). Solar Energy, 147, 126–132.  Web of Science CrossRef Google Scholar
First citationHarrowfield, J. M., Kim, Y. & Skelton, B. W. (2017). CSD communication, CCDC 990117.  Google Scholar
First citationJohnson, A., Mbonu, J., Hussain, Z., Loh, W.-S. & Fun, H.-K. (2015). Acta Cryst. E71, m139–m140.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLu, X.-X., Luo, Y.-H., Lu, C., Chen, X. & Zhang, H. (2015). J. Solid State Chem. 232, 123–130.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 2213–2214.  CrossRef Web of Science IUCr Journals Google Scholar
First citationRujiwatra, A., Yimklan, S. & Prior, T. J. (2012). Polyhedron, 31, 345–351.  Web of Science CrossRef Google Scholar
First citationSegura, D. F., Netto, A. V. G., Frem, R. C. G., Mauro, A. E., da Silva, P. B., Fernandes, J. A., Paz, F. A. A., Dias, A. L. T., Silva, N. C., de Almeida, E. T., Marques, M. J., de Almeida, L., Alves, K. F., Pavan, F. R., de Souza, P. C., de Barros, H. B. & Leite, C. Q. F. (2014). Polyhedron, 79, 197–206.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2015). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWalmsley, F., Pinkerton, A. A. & Walmsley, A. A. (1989). Polyhedron, 8, 689–693.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H.-P. (2006). Acta Cryst. E62, m95–m97.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X.-F., Huang, D.-G., Wang, W.-G., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m268–m269.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds