metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Sodium rubidium disaccharinate tetra­hydrate

aChemistry Department, SUNY Buffalo State, 1300 Elmwood Ave, Buffalo, NY 14222, USA
*Correspondence e-mail: nazareay@buffalostate.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 14 May 2018; accepted 12 June 2018; online 28 June 2018)

1,2-Benzo­thia­zol-3(2H)-one 1,1 dioxide (more commonly known under its commercial name saccharin) forms a double salt with sodium and rubidium, Na+·Rb+·2C7H4NO3S·4H2O. The coordination numbers of the sodium and rubidium ions are 6 and 8, respectively; the coordination polyhedra can be described as distorted triangular and rectangular prisms. Both Rb+ and Na+ cations and flat saccharinate moieties are positioned at mirror planes parallel to the (010) crystallographic plane. Metal ions and saccharinate anions are assembled into infinite layers parallel to the (001) plane via electrostatic inter­actions and hydrogen-bonded networks. These layers are connected by stacking inter­actions and C—H⋯O hydrogen bonds into a three-dimensional structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Saccharin [1,2-benzo­thia­zol-3(2H)-one 1,1-dioxide] is one of the most widely used sweeteners; its water-soluble sodium salt is commonly used as an artificial sweetener in food and beverages, and it is also the major component in the diet of diabetics. Saccharin has a very rich crystal chemistry: the Cambridge Structural Database (CSD version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains several hundred different structures of its compounds. For practical purposes, most inter­esting are non-toxic saccharin salts with alkali metals. Crystal structures of all simple salts [Na+: refcode MGSACD11 (Naumov et al., 2005[Naumov, P., Jovanovski, G., Grupce, O., Kaitner, B., Rae, D. A. & Ng, S. W. (2005). Angew. Chem. Int. Ed. 44, 1251-1254.]), LANBOS (Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]); K+: LANBUY (Banerjee et al., 2005[Banerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515-2520.]); Rb+ and Cs+: FAZHAS, FAZHEW, FAZHIA and FAZHOG (Karothu et al., 2017[Karothu, D. P., Jahović, I., Jovanovski, G., Kaitner, B. & Naumov, P. (2017). CrystEngComm, 19, 4338-4344.])] and several binary compounds [Na+ and K+: COCRIV (Malik et al., 1984[Malik, K. M. A., Haider, S. Z., Hossain, M. A. & Hursthouse, M. B. (1984). Acta Cryst. C40, 1696-1698.]); Li+ and Na+: MIPSUA (Bhatt & Desiraju, 2007[Bhatt, P. M. & Desiraju, G. R. (2007). J. Mol. Struct. 871, 73-79.])] have been determined. As a continuation of a structural study of common sweeteners (Naza­renko, 2018[Nazarenko, A. Y. (2018). Acta Cryst. E74, 698-702.]), the crystal structure of sodium rubidium di-saccharinate tetrahydrate, I, is presented here.

The numbering scheme for I is shown in Fig. 1[link]. Both the sodium and rubidium ions are located on a mirror plane. The Na+ ions have a distorted trigonal–prismatic environment (coordination number 6); the coordination sphere of Na1 contains bridging O atoms of water mol­ecules (Table 1[link], Fig. 2[link]). The coordination sphere of Rb1 (coordination number 8) is a distorted rectangular prism (Table 1[link], Fig. 2[link]). It contains two pairs of crystallographically identical O atoms of sulfonyl groups (O3 and O6), two crystallographically identical atoms (O3) of bidentate sulfonyl groups and two crystallographically identical water mol­ecules (O2).

Table 1
Selected bond lengths (Å)

Rb1—O3i 2.9921 (14) Rb1—O2i 3.0473 (15)
Rb1—O3 2.9921 (14) Na1—O1iv 2.5123 (16)
Rb1—O3ii 3.1346 (14) Na1—O1 2.4696 (16)
Rb1—O3iii 3.1346 (14) Na1—O1i 2.4696 (16)
Rb1—O6 3.0056 (15) Na1—O1v 2.5123 (16)
Rb1—O6i 3.0056 (15) Na1—O2 2.4074 (17)
Rb1—O2 3.0473 (15) Na1—O2i 2.4074 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z]; (ii) -x+2, -y+1, -z+1; (iii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iv) -x+1, -y+1, -z+1; (v) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The numbering scheme for the title compound with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Coordination polyhedra of the metal ions in I. For bond lengths and symmetry codes, see Table 1[link].

Both saccharinate anions are planar with all atoms (except the O atoms of the sulfonyl groups) located on crystallographic mirror planes. The distribution of the Hirshfeld surface electrostatic potential of the anion shows that the negative charge is almost evenly distributed around the carboxyl and sulfonyl oxygen atoms and amide nitro­gen atom: the remaining Hirshfeld surface is almost neutral electrostatically.

The coordination polyhedra of the sodium ions are bridged by two edges of a triangle (two crystallographically identical water mol­ecules O1) with an inversion centre located at each edge. This linking forms an infinite chain of hydrated sodium cations along [010].

The coordination polyhedra of the rubidium ions are bridged via a common edge containing the sulfonyl oxygen atom O3; again, an inversion centre is located at each of these edges. Two sulfonyl groups of another saccharinate anion (O6) form a bridge to the next rubidium ion (Fig. 3[link]) from each side of the mirror plane. All these inter­actions result in a zigzag-type chain along [010]. Two parallel chains of Rb+ and Na+ ions are bound by two identical water mol­ecules (atom O2) related by mirror planes. These bridges form a layer of hydrated cations parallel to the (001) plane (Fig. 3[link]). The hydrogen atoms of both bridging water mol­ecules form electrostatically enhanced hydrogen bonds with the nitro­gen atoms and carbonyl oxygen atoms as acceptors (Table 2[link], Figs. 3[link] and 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5vi 0.79 (3) 2.02 (3) 2.801 (2) 170 (2)
O1—H1B⋯O4v 0.84 (3) 1.99 (3) 2.819 (2) 168 (2)
O2—H2A⋯N2vi 0.81 (3) 2.12 (3) 2.924 (2) 174 (2)
O2—H2B⋯N1 0.83 (3) 2.09 (3) 2.915 (2) 175 (3)
C5—H5⋯O4vii 0.95 2.45 3.388 (3) 169
C13—H13⋯O5viii 0.95 2.47 3.318 (3) 148
Symmetry codes: (v) [-x+1, y-{\script{1\over 2}}, -z+1]; (vi) x, y+1, z; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The infinite chains of hydrated sodium (green) and rubidium (purple) ions along the [010] direction. View along [001] vector, with 5° offset.
[Figure 4]
Figure 4
Packing of the title compound viewed along [010]. Sodium ions are green. Hydrogen bonds are shown as dashed lines with the following colour scheme: O—H⋯N: red, O—H⋯O: green and C—H⋯O: blue.

The saccharinate anions are positioned in planes parallel to (010) and are perpendicular to the layer of hydrated cations. Two C—H⋯O enhanced hydrogen bonds (Table 2[link], Fig. 4[link]) connect anions from neighbouring layers. Additional inter­layer binding comes from the stacking inter­actions. The distance between the planes of aromatic saccharin moieties is 3.2916 (2) Å (exactly half of cell dimension b). This value is short enough to expect an overall attractive inter­action of benzene rings (there is no negative electrostatic potential in this area of the saccharine anion).

Synthesis and crystallization

The title compound was crystallized following the published procedure for rubidium saccharinate (Karothu et al., 2017[Karothu, D. P., Jahović, I., Jovanovski, G., Kaitner, B. & Naumov, P. (2017). CrystEngComm, 19, 4338-4344.]) with a sodium salt being used instead of the acidic form and rubidium chloride instead of rubidium carbonate. Slow crystallization yielded thin needles, some of which were suitable for the single-crystal X-ray experiment. Reaction with caesium chloride under the same conditions yielded the already known caesium saccharinate (refcode FAZHOG; Karothu et al., 2017[Karothu, D. P., Jahović, I., Jovanovski, G., Kaitner, B. & Naumov, P. (2017). CrystEngComm, 19, 4338-4344.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula Na+·Rb+·2C7H4NO3S·4H2O
Mr 544.87
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 173
a, b, c (Å) 14.2754 (9), 6.5831 (4), 21.5365 (13)
V3) 2023.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.73
Crystal size (mm) 0.79 × 0.09 × 0.05
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.362, 0.884
No. of measured, independent and observed [I > 2σ(I)] reflections 31423, 2724, 2288
Rint 0.041
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.05
No. of reflections 2724
No. of parameters 185
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: APEX2 (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Sodium rubidium bis(3-oxo-3H-1,2-benzothiazol-2-ide 1,1-dioxide) tetrahydrate top
Crystal data top
Na+·Rb+·2C7H4NO3S·4H2ODx = 1.788 Mg m3
Mr = 544.87Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 9989 reflections
a = 14.2754 (9) Åθ = 3.0–28.1°
b = 6.5831 (4) ŵ = 2.73 mm1
c = 21.5365 (13) ÅT = 173 K
V = 2023.9 (2) Å3Needle, colourless
Z = 40.79 × 0.09 × 0.05 mm
F(000) = 1096
Data collection top
Bruker PHOTON-100 CMOS
diffractometer
2288 reflections with I > 2σ(I)
Radiation source: sealedtubeRint = 0.041
ω scansθmax = 28.3°, θmin = 2.9°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.362, Tmax = 0.884k = 88
31423 measured reflectionsl = 2821
2724 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2 + 1.4364P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.39 e Å3
0 constraints
Special details top

Refinement. Hydrogen atoms of water molecules are refined in isotropic approximation. Aromatic hydrogen atoms are refined with riding coordinates and with Uiso (H) = 1.2Uiso (carrier C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.88342 (2)0.2500000.53575 (2)0.02062 (8)
S10.87768 (4)0.7500000.41360 (3)0.01658 (14)
O30.91761 (9)0.5667 (2)0.43872 (6)0.0250 (3)
O40.63582 (12)0.7500000.35725 (9)0.0205 (4)
N10.76426 (15)0.7500000.42033 (10)0.0190 (5)
C10.72184 (18)0.7500000.36403 (12)0.0156 (5)
C20.78955 (18)0.7500000.31096 (12)0.0154 (5)
C30.76969 (19)0.7500000.24776 (12)0.0193 (5)
H30.7069370.7500000.2330740.023*
C40.8449 (2)0.7500000.20690 (13)0.0235 (6)
H40.8333940.7500000.1634520.028*
C50.9367 (2)0.7500000.22833 (13)0.0266 (6)
H50.9867430.7500000.1992770.032*
C60.95660 (19)0.7500000.29150 (13)0.0224 (6)
H61.0192470.7500000.3063750.027*
C70.88137 (18)0.7500000.33154 (12)0.0169 (5)
S20.82267 (5)0.2500000.65317 (3)0.02080 (15)
O50.56611 (13)0.2500000.66279 (9)0.0219 (4)
O60.87003 (10)0.0638 (3)0.63672 (7)0.0330 (4)
N20.71624 (16)0.2500000.62557 (10)0.0203 (5)
C80.65226 (19)0.2500000.67156 (12)0.0166 (5)
C90.69418 (18)0.2500000.73533 (11)0.0157 (5)
C100.6489 (2)0.2500000.79189 (12)0.0189 (5)
H100.5824870.2500000.7943810.023*
C110.7040 (2)0.2500000.84519 (12)0.0237 (6)
H110.6746240.2500000.8847670.028*
C120.8011 (2)0.2500000.84165 (13)0.0252 (6)
H120.8367690.2500000.8789060.030*
C130.8475 (2)0.2500000.78489 (13)0.0224 (6)
H130.9139370.2500000.7822580.027*
C140.79153 (18)0.2500000.73245 (12)0.0177 (5)
Na10.56939 (7)0.2500000.50765 (5)0.0186 (2)
O10.48492 (10)0.4992 (2)0.57256 (6)0.0215 (3)
O20.69978 (10)0.4792 (2)0.51854 (7)0.0241 (3)
H1A0.5133 (17)0.561 (4)0.5976 (11)0.033 (7)*
H1B0.4428 (17)0.437 (4)0.5921 (11)0.032 (7)*
H2A0.7002 (18)0.553 (4)0.5485 (12)0.037 (7)*
H2B0.7148 (19)0.558 (5)0.4902 (12)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.01761 (14)0.02122 (14)0.02303 (14)0.0000.00236 (10)0.000
S10.0138 (3)0.0200 (3)0.0159 (3)0.0000.0008 (2)0.000
O30.0222 (7)0.0272 (7)0.0256 (7)0.0031 (6)0.0034 (6)0.0056 (6)
O40.0138 (9)0.0230 (10)0.0246 (10)0.0000.0016 (7)0.000
N10.0162 (11)0.0258 (12)0.0151 (10)0.0000.0039 (8)0.000
C10.0176 (13)0.0104 (11)0.0189 (12)0.0000.0024 (10)0.000
C20.0164 (12)0.0099 (11)0.0199 (13)0.0000.0014 (10)0.000
C30.0233 (14)0.0139 (12)0.0206 (13)0.0000.0008 (11)0.000
C40.0372 (16)0.0161 (13)0.0170 (13)0.0000.0032 (12)0.000
C50.0310 (16)0.0214 (14)0.0274 (15)0.0000.0152 (12)0.000
C60.0167 (13)0.0206 (13)0.0299 (15)0.0000.0048 (11)0.000
C70.0170 (13)0.0148 (12)0.0189 (12)0.0000.0018 (10)0.000
S20.0174 (3)0.0257 (3)0.0193 (3)0.0000.0009 (2)0.000
O50.0179 (10)0.0241 (10)0.0238 (10)0.0000.0061 (8)0.000
O60.0280 (8)0.0393 (9)0.0318 (8)0.0114 (7)0.0021 (6)0.0078 (7)
N20.0196 (12)0.0258 (12)0.0156 (11)0.0000.0028 (9)0.000
C80.0191 (13)0.0140 (12)0.0167 (12)0.0000.0037 (10)0.000
C90.0208 (13)0.0098 (11)0.0166 (12)0.0000.0026 (10)0.000
C100.0216 (13)0.0124 (12)0.0228 (13)0.0000.0027 (11)0.000
C110.0414 (17)0.0143 (13)0.0154 (12)0.0000.0005 (12)0.000
C120.0364 (17)0.0173 (13)0.0218 (14)0.0000.0126 (12)0.000
C130.0202 (13)0.0195 (13)0.0274 (14)0.0000.0073 (11)0.000
C140.0180 (13)0.0137 (12)0.0213 (13)0.0000.0029 (10)0.000
Na10.0193 (5)0.0170 (5)0.0194 (5)0.0000.0012 (4)0.000
O10.0223 (7)0.0213 (7)0.0207 (7)0.0049 (6)0.0012 (6)0.0017 (6)
O20.0278 (8)0.0195 (7)0.0249 (7)0.0051 (6)0.0006 (6)0.0005 (6)
Geometric parameters (Å, º) top
Rb1—S1i3.5807 (7)S2—O6v1.4438 (15)
Rb1—O3ii2.9921 (14)S2—N21.632 (2)
Rb1—O32.9921 (14)S2—C141.764 (3)
Rb1—O3i3.1346 (14)O5—C81.244 (3)
Rb1—O3iii3.1346 (14)N2—C81.347 (3)
Rb1—O63.0056 (15)C8—C91.498 (3)
Rb1—O6ii3.0056 (15)C9—C101.379 (4)
Rb1—O23.0473 (15)C9—C141.391 (4)
Rb1—O2ii3.0473 (15)C10—H100.9500
S1—O3iv1.4399 (14)C10—C111.392 (4)
S1—O31.4399 (14)C11—H110.9500
S1—N11.626 (2)C11—C121.389 (4)
S1—C71.768 (3)C12—H120.9500
O4—C11.237 (3)C12—C131.390 (4)
N1—C11.355 (3)C13—H130.9500
C1—C21.497 (3)C13—C141.384 (4)
C2—C31.390 (4)Na1—O1vi2.5123 (16)
C2—C71.384 (4)Na1—O12.4696 (16)
C3—H30.9500Na1—O1ii2.4696 (16)
C3—C41.388 (4)Na1—O1vii2.5123 (16)
C4—H40.9500Na1—O22.4074 (17)
C4—C51.389 (4)Na1—O2ii2.4074 (16)
C5—H50.9500O1—H1A0.79 (3)
C5—C61.390 (4)O1—H1B0.84 (3)
C6—H60.9500O2—H2A0.81 (3)
C6—C71.377 (4)O2—H2B0.83 (3)
S2—O61.4438 (15)
O3ii—Rb1—S1i93.29 (3)C6—C5—H5119.4
O3i—Rb1—S1i23.58 (3)C5—C6—H6121.5
O3—Rb1—S1i93.29 (3)C7—C6—C5117.0 (3)
O3iii—Rb1—S1i23.58 (3)C7—C6—H6121.5
O3—Rb1—O3iii104.06 (3)C2—C7—S1106.98 (18)
O3—Rb1—O3i72.93 (4)C6—C7—S1130.5 (2)
O3ii—Rb1—O3iii72.93 (4)C6—C7—C2122.5 (2)
O3i—Rb1—O3iii45.28 (5)O6—S2—O6v116.16 (13)
O3ii—Rb1—O3i104.06 (3)O6—S2—N2110.28 (7)
O3ii—Rb1—O388.35 (5)O6v—S2—N2110.28 (7)
O3ii—Rb1—O692.10 (4)O6—S2—C14110.83 (8)
O3—Rb1—O6174.09 (4)O6v—S2—C14110.83 (8)
O3ii—Rb1—O6ii174.09 (4)N2—S2—C1496.77 (12)
O3—Rb1—O6ii92.10 (4)S2—O6—Rb1142.26 (9)
O3—Rb1—O2ii113.60 (4)C8—N2—S2111.31 (17)
O3ii—Rb1—O2ii73.16 (4)O5—C8—N2124.0 (2)
O3—Rb1—O273.16 (4)O5—C8—C9122.3 (2)
O3ii—Rb1—O2113.60 (4)N2—C8—C9113.8 (2)
O6ii—Rb1—S1i80.80 (3)C10—C9—C8128.5 (2)
O6—Rb1—S1i80.80 (3)C10—C9—C14120.5 (2)
O6ii—Rb1—O3iii101.26 (4)C14—C9—C8111.0 (2)
O6—Rb1—O3i101.26 (4)C9—C10—H10121.2
O6—Rb1—O3iii70.50 (4)C9—C10—C11117.6 (3)
O6ii—Rb1—O3i70.50 (4)C11—C10—H10121.2
O6ii—Rb1—O686.85 (6)C10—C11—H11119.4
O6ii—Rb1—O2ii111.94 (4)C12—C11—C10121.3 (3)
O6—Rb1—O2111.94 (4)C12—C11—H11119.4
O6ii—Rb1—O272.12 (4)C11—C12—H12119.2
O6—Rb1—O2ii72.12 (4)C11—C12—C13121.6 (3)
O2ii—Rb1—S1i148.92 (3)C13—C12—H12119.2
O2—Rb1—S1i148.92 (3)C12—C13—H13121.9
O2ii—Rb1—O3iii127.61 (4)C14—C13—C12116.3 (3)
O2—Rb1—O3iii172.50 (4)C14—C13—H13121.9
O2—Rb1—O3i127.61 (4)C9—C14—S2107.16 (19)
O2ii—Rb1—O3i172.50 (4)C13—C14—S2130.1 (2)
O2ii—Rb1—O259.35 (5)C13—C14—C9122.7 (3)
O3iv—S1—Rb1i60.56 (6)O1vii—Na1—O1vi82.18 (7)
O3—S1—Rb1i60.56 (6)O1ii—Na1—O1vi132.46 (5)
O3—S1—O3iv113.84 (12)O1—Na1—O1vi78.58 (5)
O3iv—S1—N1111.15 (7)O1—Na1—O1ii83.25 (8)
O3—S1—N1111.15 (7)O1ii—Na1—O1vii78.58 (5)
O3—S1—C7111.33 (7)O1—Na1—O1vii132.46 (5)
O3iv—S1—C7111.33 (7)O2ii—Na1—O1137.62 (7)
N1—S1—Rb1i157.14 (8)O2—Na1—O1vi83.90 (5)
N1—S1—C796.83 (11)O2—Na1—O1ii137.62 (7)
C7—S1—Rb1i106.03 (9)O2ii—Na1—O1ii84.61 (5)
Rb1—O3—Rb1i107.07 (4)O2—Na1—O184.61 (5)
S1—O3—Rb1i95.86 (7)O2—Na1—O1vii135.84 (7)
S1—O3—Rb1141.42 (8)O2ii—Na1—O1vii83.90 (5)
C1—N1—S1111.42 (17)O2ii—Na1—O1vi135.84 (7)
O4—C1—N1123.3 (2)O2—Na1—O2ii77.61 (8)
O4—C1—C2123.4 (2)Na1—O1—Na1vi101.42 (5)
N1—C1—C2113.2 (2)Na1vi—O1—H1A106.7 (18)
C3—C2—C1128.0 (2)Na1—O1—H1A118.8 (18)
C7—C2—C1111.5 (2)Na1—O1—H1B107.9 (17)
C7—C2—C3120.5 (2)Na1vi—O1—H1B116.4 (16)
C2—C3—H3121.2H1A—O1—H1B106 (2)
C4—C3—C2117.6 (3)Rb1—O2—H2A101.2 (18)
C4—C3—H3121.2Rb1—O2—H2B100.2 (19)
C3—C4—H4119.4Na1—O2—Rb1111.51 (5)
C3—C4—C5121.3 (3)Na1—O2—H2A117.3 (18)
C5—C4—H4119.4Na1—O2—H2B121.4 (19)
C4—C5—H5119.4H2A—O2—H2B102 (3)
C4—C5—C6121.2 (3)
Rb1i—S1—O3—Rb1127.00 (13)C7—S1—O3—Rb1i96.89 (9)
Rb1i—S1—N1—C1180.000 (1)C7—S1—N1—C10.000 (1)
Rb1i—S1—C7—C2180.000 (1)C7—C2—C3—C40.000 (1)
Rb1i—S1—C7—C60.000 (1)S2—N2—C8—O5180.000 (1)
S1—N1—C1—O4180.000 (1)S2—N2—C8—C90.000 (1)
S1—N1—C1—C20.000 (1)O5—C8—C9—C100.000 (1)
O3iv—S1—O3—Rb197.06 (14)O5—C8—C9—C14180.000 (1)
O3iv—S1—O3—Rb1i29.94 (12)O6v—S2—O6—Rb192.86 (16)
O3—S1—N1—C1116.05 (7)O6v—S2—N2—C8115.19 (8)
O3iv—S1—N1—C1116.05 (7)O6—S2—N2—C8115.19 (8)
O3iv—S1—C7—C2115.91 (7)O6v—S2—C14—C9114.75 (8)
O3—S1—C7—C2115.91 (7)O6—S2—C14—C9114.75 (8)
O3iv—S1—C7—C664.09 (7)O6v—S2—C14—C1365.25 (8)
O3—S1—C7—C664.09 (7)O6—S2—C14—C1365.25 (8)
O4—C1—C2—C30.000 (1)N2—S2—O6—Rb133.53 (17)
O4—C1—C2—C7180.000 (1)N2—S2—C14—C90.000 (1)
N1—S1—O3—Rb129.37 (15)N2—S2—C14—C13180.000 (1)
N1—S1—O3—Rb1i156.38 (8)N2—C8—C9—C10180.000 (1)
N1—S1—C7—C20.000 (1)N2—C8—C9—C140.000 (1)
N1—S1—C7—C6180.000 (1)C8—C9—C10—C11180.000 (1)
N1—C1—C2—C3180.000 (1)C8—C9—C14—S20.000 (1)
N1—C1—C2—C70.000 (1)C8—C9—C14—C13180.000 (1)
C1—C2—C3—C4180.000 (1)C9—C10—C11—C120.000 (1)
C1—C2—C7—S10.000 (1)C10—C9—C14—S2180.000 (1)
C1—C2—C7—C6180.000 (1)C10—C9—C14—C130.000 (1)
C2—C3—C4—C50.000 (1)C10—C11—C12—C130.000 (1)
C3—C2—C7—S1180.000 (1)C11—C12—C13—C140.000 (1)
C3—C2—C7—C60.000 (1)C12—C13—C14—S2180.000 (1)
C3—C4—C5—C60.000 (1)C12—C13—C14—C90.000 (1)
C4—C5—C6—C70.000 (1)C14—S2—O6—Rb1139.50 (14)
C5—C6—C7—S1180.000 (1)C14—S2—N2—C80.000 (1)
C5—C6—C7—C20.000 (1)C14—C9—C10—C110.000 (1)
C7—S1—O3—Rb1136.11 (13)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z; (iii) x+2, y1/2, z+1; (iv) x, y+3/2, z; (v) x, y1/2, z; (vi) x+1, y+1, z+1; (vii) x+1, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5viii0.79 (3)2.02 (3)2.801 (2)170 (2)
O1—H1B···O4vii0.84 (3)1.99 (3)2.819 (2)168 (2)
O2—H2A···N2viii0.81 (3)2.12 (3)2.924 (2)174 (2)
O2—H2B···N10.83 (3)2.09 (3)2.915 (2)175 (3)
C5—H5···O4ix0.952.453.388 (3)169
C13—H13···O5x0.952.473.318 (3)148
Symmetry codes: (vii) x+1, y1/2, z+1; (viii) x, y+1, z; (ix) x+1/2, y+3/2, z+1/2; (x) x+1/2, y1/2, z+3/2.
 

Funding information

Financial support from the State University of New York for the acquisition and maintenance of the X-ray diffractometer is gratefully acknowledged.

References

First citationBanerjee, R., Bhatt, P. M., Kirchner, M. T. & Desiraju, G. R. (2005). Angew. Chem. Int. Ed. 44, 2515–2520.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhatt, P. M. & Desiraju, G. R. (2007). J. Mol. Struct. 871, 73–79.  CrossRef Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarothu, D. P., Jahović, I., Jovanovski, G., Kaitner, B. & Naumov, P. (2017). CrystEngComm, 19, 4338–4344.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalik, K. M. A., Haider, S. Z., Hossain, M. A. & Hursthouse, M. B. (1984). Acta Cryst. C40, 1696–1698.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaumov, P., Jovanovski, G., Grupce, O., Kaitner, B., Rae, D. A. & Ng, S. W. (2005). Angew. Chem. Int. Ed. 44, 1251–1254.  CrossRef Google Scholar
First citationNazarenko, A. Y. (2018). Acta Cryst. E74, 698–702.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds