metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Bromido­bis­­(1,2-di­amino­ethane-κ2N,N′)(ethylamine-κN)cobalt(III) dibromide

aDepartment of Physics, Thanthai Hans Rover College, Perambalur 621 220, India, bDepartment of Chemistry, BWDA Arts and Science College, Tindivanam 604 304, India, cDepartment of Physics, Thiruvalluvar University College of Arts and Science, Thiruvennainallur 607 203, India, dP.G. Research Department of Physics, A.A. Govt. Arts College, Villupuram, India, and eDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: drmanirec@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 5 March 2018; accepted 10 June 2018; online 15 June 2018)

In the title complex, [CoBr(C2H7N)(C2H8N2)2]Br2, the CoIII centre has a distorted octa­hedral coordination environment, and is surrounded by four N atoms in the equatorial plane, with an additional N atom and the Br atom occupying the axial positions. The complex is isostructural with the Cl compound for which the X-ray structure has also been reported [Anbalagan, Mahalakshmi & Ganeshraja (2011[Anbalagan, K., Mahalakshmi, C. M. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45-52.]). J. Mol. Struct. 1005, 45–52]. In the crystal, the complex cation and the two counter-anions are linked via N—H⋯Br hydrogen bonds, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mixed-ligand cobalt(III) complexes have potential applications in the fields of anti­tumor, anti­bacterial, anti­microbial, radiosensitization and cytotoxicity activities (Sayed et al., 1992[Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475-480.]; Teicher et al., 1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]; Delehanty et al., 2008[Delehanty, J. B., Bongard, J. E., Thach, D. C., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]). Cobalt is an essential and integral component of vitamin B12 and is therefore found physiologically in most tissues. Complexes of cobalt are useful for nutritional supplementation to provide cobalt in a form which effectively increases the bioavailability, for instance, through the production of vitamin B12 by microorganisms present in the gut. In addition, cobalt(III) complexes are known for electron-transfer and ligand-substitution reactions, which are of inter­est in some chemical and biological systems.

Our current research deals with the design and synthesis of cobalt(III) complexes with the aim of understanding the correlation between their structure and reactivity. Substituting an amino ligand such as MeNH2 by a different amine can afford structurally related complexes with different electron-transfer rates (Anbalagan, 2011[Anbalagan, K. (2011). J. Phys. Chem. C, 115, 3821-3832.]; Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]). Against this background and to ascertain the mol­ecular conformation, the structure determination of the title compound has been carried out.

The X-ray analysis confirms the mol­ecular structure and atom connectivity as illustrated in Fig. 1[link]. The Co—N coordination bond lengths are in agreement with those reported in the literature for CoIII complexes (e.g. Kannan et al., 2013[Kannan, P. S., Ganeshraja, A. S., Anbalagan, K., Govindan, E. & SubbiahPandi, A. (2013). Acta Cryst. E69, m374-m375.]; Lee et al., 2007[Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949-m1950.]; Ramesh et al., 2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]; Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.], 2011[Anbalagan, K., Mahalakshmi, C. M. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45-52.]; Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174-m1175.]). Both ethyl­enedi­amine (en) units behave as chelating ligands, forming five-membered matallacycles with a half-chair conformation. The packing features N—H⋯Br inter­actions, forming a three-dimensional network in the crystal (Table 1[link] and Fig. 2[link]). Additionally, weak C—H⋯Br contacts are observed (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Br3i 0.89 2.77 3.574 (5) 151
N1—H1D⋯Br3ii 0.89 2.48 3.310 (5) 155
N2—H2C⋯Br3 0.89 2.59 3.451 (5) 162
N2—H2D⋯Br2iii 0.89 3.07 3.838 (5) 145
N3—H3C⋯Br3 0.89 2.60 3.427 (5) 155
N3—H3D⋯Br2 0.89 2.93 3.617 (5) 135
N4—H4C⋯Br2iv 0.89 2.52 3.395 (6) 168
N4—H4D⋯Br2iii 0.89 2.58 3.418 (5) 156
N5—H5C⋯Br2iv 0.89 2.89 3.631 (5) 142
N5—H5D⋯Br2 0.89 2.78 3.651 (5) 166
C4—H4A⋯Br1v 0.97 2.95 3.897 (7) 166
C4—H4B⋯Br2 0.97 2.91 3.566 (7) 126
C5—H5A⋯Br1 0.97 3.04 3.582 (8) 117
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+2, -y+1, -z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. All H atoms omitted
[Figure 2]
Figure 2
A packing view of the title compound approximately down the b axis. Inter­molecular N—H⋯Br contacts are depicted with dashed bonds.
[Figure 3]
Figure 3
A packing view of the title compound down the a axis. Inter­molecular contacts involving the Br ions are represented with dashed bonds.

Synthesis and crystallization

A suspension of trans-[Co(en)2Br2]Br was prepared by adding drops of water to the solid (2 g). To the solid mass, about 2 ml of ethyl­amine was dropped for 20 min and mixed well. The grinding was continued until the colour turned from dull green to red. The reaction mixture was set aside until no further change was observed and the product was allowed to stand overnight. Finally, the solid was washed with ethanol. The resulting solid was dissolved in 5–10 ml of water pre-heated at 343 K and allowed to crystallize using hot acidified water, yielding 0.85 g of the complex. The pink crystals were filtered, washed with ethanol and dried under vacuum. X-ray quality crystals were obtained by repeated recrystallizations from hot acidified distilled water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CoBr(C2H7N)(C2H8N2)2]Br2
Mr 463.95
Crystal system, space group Monoclinic, P21/n
Temperature (K) 300
a, b, c (Å) 12.2323 (4), 8.4841 (2), 14.8964 (4)
β (°) 107.266 (3)
V3) 1476.28 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.26
Crystal size (mm) 0.23 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.165, 0.361
No. of measured, independent and observed [I > 2σ(I)] reflections 6551, 3425, 2273
Rint 0.027
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.07
No. of reflections 3425
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.20, −2.10
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

cis-Bromidobis(1,2-diaminoethane-κ2N,N')(ethylamine-κN)cobalt(III) dibromide top
Crystal data top
[CoBr(C2H7N)(C2H8N2)2]Br2F(000) = 904
Mr = 463.95Dx = 2.087 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.2323 (4) ÅCell parameters from 1908 reflections
b = 8.4841 (2) Åθ = 25.0–2.9°
c = 14.8964 (4) ŵ = 9.26 mm1
β = 107.266 (3)°T = 300 K
V = 1476.28 (8) Å3Block, pink
Z = 40.23 × 0.17 × 0.11 mm
Data collection top
Bruker SMART APEXII
diffractometer
3425 independent reflections
Radiation source: fine-focus sealed tube2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1612
Tmin = 0.165, Tmax = 0.361k = 1011
6551 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
3425 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 2.10 e Å3
0 constraints
Special details top

Refinement. All H atoms were placed in calculated positions, and refined as riding to their carrier C/N atom, with isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.76749 (7)0.78619 (9)0.04025 (6)0.0137 (2)
Br10.68504 (7)0.94805 (10)0.09241 (6)0.0444 (3)
Br20.94231 (7)0.27863 (8)0.09070 (7)0.0378 (2)
Br30.86031 (6)0.85295 (8)0.35349 (5)0.0289 (2)
C10.5816 (6)0.7765 (8)0.1167 (6)0.0302 (17)
H1A0.6181770.7267220.1767190.036*
H1B0.4992750.7672400.1035960.036*
C20.6156 (6)0.9471 (8)0.1194 (6)0.0323 (18)
H2A0.5678411.0017470.0645380.039*
H2B0.6062170.9974240.1751530.039*
C30.9958 (6)0.8476 (8)0.1437 (5)0.0278 (16)
H3A0.9816920.9169510.1908020.033*
H3B1.0740180.8629370.1426410.033*
C40.9771 (6)0.6795 (8)0.1657 (5)0.0278 (17)
H4A1.0183880.6556800.2305950.033*
H4B1.0035590.6091720.1252340.033*
C50.6932 (6)0.5267 (10)0.1040 (6)0.039 (2)
H5A0.6359930.6012900.1384140.047*
H5B0.6594490.4647640.0643030.047*
C60.7241 (7)0.4183 (10)0.1731 (6)0.046 (2)
H6A0.7558010.4790100.2137850.069*
H6B0.6566660.3645260.2100050.069*
H6C0.7794960.3424980.1395630.069*
N10.6189 (5)0.6999 (6)0.0412 (4)0.0203 (12)
H1C0.5671710.7168970.0142430.024*
H1D0.6248650.5963140.0508860.024*
N20.7377 (4)0.9537 (6)0.1208 (4)0.0179 (11)
H2C0.7829570.9412100.1793870.021*
H2D0.7527821.0472350.1001420.021*
N30.8510 (4)0.6605 (6)0.1491 (4)0.0186 (12)
H3C0.8324190.6918690.1996910.022*
H3D0.8318950.5594640.1388800.022*
N40.9159 (4)0.8816 (6)0.0516 (4)0.0218 (12)
H4C0.9434420.8437910.0068950.026*
H4D0.9078460.9853980.0437930.026*
N50.7925 (4)0.6151 (6)0.0435 (4)0.0205 (12)
H5C0.8293060.6573990.0809210.025*
H5D0.8397170.5451460.0072310.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0142 (4)0.0110 (4)0.0138 (4)0.0004 (3)0.0007 (3)0.0001 (4)
Br10.0470 (5)0.0451 (5)0.0356 (5)0.0050 (4)0.0039 (4)0.0083 (4)
Br20.0446 (5)0.0205 (4)0.0558 (6)0.0005 (3)0.0264 (4)0.0051 (4)
Br30.0349 (4)0.0243 (4)0.0244 (4)0.0043 (3)0.0040 (3)0.0060 (3)
C10.029 (4)0.033 (4)0.036 (4)0.004 (3)0.021 (3)0.006 (4)
C20.027 (4)0.031 (4)0.036 (4)0.006 (3)0.005 (3)0.012 (4)
C30.018 (3)0.024 (3)0.038 (4)0.001 (3)0.003 (3)0.006 (4)
C40.017 (3)0.028 (4)0.031 (4)0.003 (3)0.004 (3)0.003 (3)
C50.025 (4)0.040 (4)0.046 (5)0.002 (3)0.002 (4)0.024 (4)
C60.041 (5)0.044 (5)0.047 (5)0.000 (4)0.004 (4)0.031 (4)
N10.020 (3)0.017 (3)0.022 (3)0.004 (2)0.003 (2)0.002 (2)
N20.022 (3)0.014 (2)0.016 (3)0.003 (2)0.003 (2)0.001 (2)
N30.023 (3)0.012 (2)0.019 (3)0.000 (2)0.004 (2)0.000 (2)
N40.018 (3)0.019 (3)0.027 (3)0.004 (2)0.004 (2)0.001 (3)
N50.023 (3)0.018 (3)0.022 (3)0.004 (2)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
Co1—N41.949 (5)C4—H4B0.9700
Co1—N31.956 (5)C5—N51.483 (8)
Co1—N21.963 (5)C5—C61.510 (11)
Co1—N11.963 (5)C5—H5A0.9700
Co1—N51.996 (5)C5—H5B0.9700
Co1—Br12.3717 (11)C6—H6A0.9600
C1—N11.484 (9)C6—H6B0.9600
C1—C21.503 (10)C6—H6C0.9600
C1—H1A0.9700N1—H1C0.8900
C1—H1B0.9700N1—H1D0.8900
C2—N21.489 (8)N2—H2C0.8900
C2—H2A0.9700N2—H2D0.8900
C2—H2B0.9700N3—H3C0.8900
C3—N41.458 (9)N3—H3D0.8900
C3—C41.496 (10)N4—H4C0.8900
C3—H3A0.9700N4—H4D0.8900
C3—H3B0.9700N5—H5C0.8900
C4—N31.496 (8)N5—H5D0.8900
C4—H4A0.9700
N4—Co1—N384.9 (2)C6—C5—H5A108.9
N4—Co1—N289.1 (2)N5—C5—H5B108.9
N3—Co1—N291.9 (2)C6—C5—H5B108.9
N4—Co1—N1174.2 (2)H5A—C5—H5B107.7
N3—Co1—N192.7 (2)C5—C6—H6A109.5
N2—Co1—N185.7 (2)C5—C6—H6B109.5
N4—Co1—N592.5 (2)H6A—C6—H6B109.5
N3—Co1—N589.0 (2)C5—C6—H6C109.5
N2—Co1—N5178.2 (2)H6A—C6—H6C109.5
N1—Co1—N592.7 (2)H6B—C6—H6C109.5
N4—Co1—Br189.22 (16)C1—N1—Co1109.6 (4)
N3—Co1—Br1174.03 (16)C1—N1—H1C109.8
N2—Co1—Br188.86 (15)Co1—N1—H1C109.8
N1—Co1—Br193.21 (17)C1—N1—H1D109.8
N5—Co1—Br190.38 (17)Co1—N1—H1D109.8
N1—C1—C2107.3 (6)H1C—N1—H1D108.2
N1—C1—H1A110.3C2—N2—Co1109.4 (4)
C2—C1—H1A110.3C2—N2—H2C109.8
N1—C1—H1B110.3Co1—N2—H2C109.8
C2—C1—H1B110.3C2—N2—H2D109.8
H1A—C1—H1B108.5Co1—N2—H2D109.8
N2—C2—C1107.8 (6)H2C—N2—H2D108.2
N2—C2—H2A110.2C4—N3—Co1109.7 (4)
C1—C2—H2A110.2C4—N3—H3C109.7
N2—C2—H2B110.2Co1—N3—H3C109.7
C1—C2—H2B110.2C4—N3—H3D109.7
H2A—C2—H2B108.5Co1—N3—H3D109.7
N4—C3—C4106.9 (5)H3C—N3—H3D108.2
N4—C3—H3A110.3C3—N4—Co1110.3 (4)
C4—C3—H3A110.3C3—N4—H4C109.6
N4—C3—H3B110.3Co1—N4—H4C109.6
C4—C3—H3B110.3C3—N4—H4D109.6
H3A—C3—H3B108.6Co1—N4—H4D109.6
C3—C4—N3106.5 (5)H4C—N4—H4D108.1
C3—C4—H4A110.4C5—N5—Co1119.9 (4)
N3—C4—H4A110.4C5—N5—H5C107.4
C3—C4—H4B110.4Co1—N5—H5C107.4
N3—C4—H4B110.4C5—N5—H5D107.4
H4A—C4—H4B108.6Co1—N5—H5D107.4
N5—C5—C6113.4 (6)H5C—N5—H5D106.9
N5—C5—H5A108.9
N1—C1—C2—N249.0 (8)C3—C4—N3—Co137.0 (6)
N4—C3—C4—N350.2 (7)C4—C3—N4—Co141.0 (6)
C2—C1—N1—Co138.1 (7)C6—C5—N5—Co1171.6 (6)
C1—C2—N2—Co137.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Br3i0.892.773.574 (5)151
N1—H1D···Br3ii0.892.483.310 (5)155
N2—H2C···Br30.892.593.451 (5)162
N2—H2D···Br2iii0.893.073.838 (5)145
N2—H2D···Br3iv0.893.113.651 (5)121
N3—H3C···Br30.892.603.427 (5)155
N3—H3D···Br20.892.933.617 (5)135
N3—H3D···Br3ii0.892.963.665 (5)137
N4—H4C···Br2v0.892.523.395 (6)168
N4—H4D···Br2iii0.892.583.418 (5)156
N5—H5C···Br2v0.892.893.631 (5)142
N5—H5D···Br20.892.783.651 (5)166
C4—H4A···Br1vi0.972.953.897 (7)166
C4—H4B···Br20.972.913.566 (7)126
C5—H5A···Br10.973.043.582 (8)117
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+3/2, y+1/2, z+1/2; (v) x+2, y+1, z; (vi) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, Pondicherry University, for the data collection.

Funding information

S. Manimaran gratefully acknowledges the DST–SERB for young scientist start-up research grant (YSS/2014/000561) and DST–FIST for providing NMR facilities to the department.

References

First citationAnbalagan, K. (2011). J. Phys. Chem. C, 115, 3821–3832.  Web of Science CrossRef CAS Google Scholar
First citationAnbalagan, K., Mahalakshmi, C. M. & Ganeshraja, A. S. (2011). J. Mol. Struct. 1005, 45–52.  Web of Science CrossRef Google Scholar
First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, D. C., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef Google Scholar
First citationKannan, P. S., Ganeshraja, A. S., Anbalagan, K., Govindan, E. & SubbiahPandi, A. (2013). Acta Cryst. E69, m374–m375.  CrossRef IUCr Journals Google Scholar
First citationLee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds