organic compounds
5′-Nitro-1,4-dihydrospiro[3,1-benzoxazine-2,3′-indolin]-2′-one
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: aspandian59@gmail.com
In the title compound, C15H11N3O4, the six-membered oxazine ring adopts a half-chair conformation and is oriented at an angle of 78.63 (9)° with respect to the pyrrolidine ring of the indoline ring system, which adopts an The spiro centre C atom is tetrahedral and lies 0.147 (1) Å out of the plane of other four pyrrolidone ring atoms. The nitrobenzene and benzene rings exhibit near planar conformations with C—C—C—N and C—C—C—C torsion angles of 178.1 (2) and 178.8 (2)°, respectively. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds connect the molecules, generating a sheet-like structure parallel to the bc plane. Within the sheets, pairs of intermolecular N—H⋯O hydrogen bonds form inversion dimers enclosing R22(8) ring motifs. In addition, the N—H⋯O and C—H⋯O hydrogen bonds generate R32(11) and R22(10) graph-set ring motifs extending the two-dimensional structure. A supramolecular R66(28) loop for each set of six molecules is formed by N—H⋯O hydrogen bonds within the extended sheet structure and stabilizes the packing. π–π stacking interactions between the nitrobenzene and benzene rings [intercentroid distance = 3.711 (1) Å] and N—O⋯π interactions further consolidate the crystal packing.
Keywords: crystal structure; spirocompounds; spiro-oxazines; indoline; N—H⋯O and C—H⋯O hydrogen bonding.
CCDC reference: 1585273
Structure description
The biological properties of et al., 2014). A number of show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kamiński, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and are used as pain-relief agents (Frank et al., 2008). Some are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). 1,3-Dipolar cycloaddition reactions are widely used for construction of (Caramella & Grunanger, 1984). Spirooxazine is the most important member of one of the best known organic photochromic systems with fast photocolouring rates and high light-fatigue resistance (Durr & Bousas-Laurent, 1990). Over the past several decades, numerous types of spirooxazine derivatives have been characterized. Photochromic compounds continue to attract significant attention in view of their general applicability as optical information storage materials or switching devices (Dürr, 1989; Ichimura, 2000). They are also used as organic photochromic materials within a plastic matrix, for example as photochromic ophthalmic lenses and vehicle roof lights (Rickwood & Hepworth, 1990). It is certain that C—O bond cleavage in spirooxazines induced by UV irradiation or heating is the main reason for their and the C=N bond in the oxazine ring improves its durability (Clegg et al., 1991; Osano et al., 1991; Reboul et al., 1995; Pèpe et al., 1995; Malatesta et al., 1995; Sun et al., 1997; Liang et al., 1998; Chamontin et al., 1998; Guo et al., 2005), but there are still some details of the structure–property relationships needing further explanation. For example, it was assumed that the more planar the oxazine ring, the less photochromatic the molecule (Reboul et al., 1995). In this paper we report the structure of the novel photochromic title compound.
containing cyclic structures are evident from their presence in many natural products (MolviThe molecular structure (Fig. 1) reveals the presence of a spirojunction at atom C8. The spirocentre C8 is tetrahedral with the dihedral angle between the planes O4/C8/N3 and C1/C8/C7 being 78.63 (9)°. The C8 display regular sp3 The O4—C8—N3 bond angles at the C8 spiro carbon have a mean value of 109.1 (14)°. The oxazine ring (O4/N3/C8/C9/C10/C15) adopts a half-chair confirmation [Q = 0.452 (2) Å, θ = 128.8 (2)°, φ =214.4 (3)°], while the five-membered pyrrolidin ring (N2/C1/C2/C7/C8) adopts an [q2 = 0.088 (2) Å, φ2 = 71.8 (12)°]. Atom C8 lies 0.147 (1) Å out of the plane of other four pyrrolidone ring atoms, with an C7—C2—N2—C1 torsion angle of 0.2 (2)°. The C2—N2 bond length is 1.397 (2) Å which is in between the value of 1.48 Å for a C—N single bond and 1.28 Å for a C=N double bond (Allen et al., 1987), indicating a partial delocalization of the π electron density over the indole ring. The Cspiro—O bond length is the key point in this type of structures and cleaves upon photoexitation to give an open form of the spiro oxazine ring. The Cspiro—O and Cspiro—N bond lengths are 1.431 (2) and 1.429 (2) Å, respectively. The dihedral angle between the nitrobenzene ring of the 5-nitroindolin-2-one ring system and the benzene ring (C10–C15) of the 2,4-dihydro-1H-benzo [d][1,3] oxazine ring system is 68.48 (10)°. The observed C4—C3—C2—N2, C5—C6—C7—C8 and C12—C11—C10—C9 torsion angles of 178.1 (2), 175.1 (2) and 178.8 (2)°, respectively, indicate a nearly planar configuration.
In the crystal, molecules are connected into sheets in the bc plane (011) (Table 1 and Fig. 2) by N—H⋯O and C—H⋯O hydrogen bonds. Pairs of intermolecular N—H⋯O hydrogen bonds form inversion dimers, generating R22(8) ring motifs and stabilizing the sheet structure, Fig. 3. The occurrence of two different sets of R32(11) and R22(10) graph-set ring motifs, Fig. 4, via N—H⋯O and C—H⋯O hydrogen bonds extends the two-dimensional structure. The N—H⋯O hydrogen bonds stabilize the by forming a supramolecular R66(28) loop for each set of six molecules, Fig. 5, within the extended sheet structure. π–π stacking interactions between the nitrobenzene and benzene rings [intercentroid distance = 3.7105 (12) Å] and N—O⋯π interactions [N⋯p = 3.6438 (19) Å, N—O⋯π = 83.34 (12)°] further consolidate the (Fig. 6).
Synthesis and crystallization
A mixture of 5-nitroisatin 1 (1.0 mmol) and 2-aminobenzyl alcohol 2 (1.0 mmol) was refluxed in ethanol in the presence of 10 mol % of InCl3. The reaction mixture was refluxed for 2.5 h. After the reaction was complete, as indicated by TLC, the mixture was cooled to room temperature. The solid formed in the reaction mixture was filtered, dried and recrystallized from ethanol to obtain the title compound in good yield (88%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1585273
https://doi.org/10.1107/S2414314618006648/zp4015sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618006648/zp4015Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618006648/zp4015Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C15H11N3O4 | F(000) = 616 |
Mr = 297.27 | Dx = 1.515 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8698 (6) Å | Cell parameters from 1945 reflections |
b = 8.1365 (3) Å | θ = 3.0–25.0° |
c = 13.0309 (6) Å | µ = 0.11 mm−1 |
β = 107.275 (5)° | T = 293 K |
V = 1302.98 (10) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
Bruker SMART APEXII CCD diffractometer | 1945 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
ω and φ scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −15→13 |
Tmin = 0.980, Tmax = 0.989 | k = −9→9 |
6269 measured reflections | l = −15→13 |
2294 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.060P)2 + 0.5946P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.118 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.43 e Å−3 |
2294 reflections | Δρmin = −0.51 e Å−3 |
200 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.025 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The N– and C-bound H atoms were positioned geometrically (N—H = 0.86 Å, C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.50260 (15) | 0.1988 (2) | 0.59411 (14) | 0.0266 (4) | |
C2 | 0.31973 (15) | 0.2340 (2) | 0.56038 (14) | 0.0285 (4) | |
C3 | 0.20908 (16) | 0.2224 (2) | 0.51299 (16) | 0.0381 (5) | |
H3 | 0.1802 | 0.1587 | 0.4519 | 0.046* | |
C4 | 0.14245 (16) | 0.3091 (3) | 0.55982 (17) | 0.0393 (5) | |
H4 | 0.0673 | 0.3055 | 0.5295 | 0.047* | |
C5 | 0.18727 (15) | 0.4006 (2) | 0.65135 (15) | 0.0325 (5) | |
C6 | 0.29914 (15) | 0.4182 (2) | 0.69722 (14) | 0.0280 (4) | |
H6 | 0.3280 | 0.4826 | 0.7580 | 0.034* | |
C7 | 0.36486 (14) | 0.3360 (2) | 0.64857 (14) | 0.0256 (4) | |
C8 | 0.48666 (14) | 0.3376 (2) | 0.67193 (14) | 0.0250 (4) | |
C9 | 0.63047 (15) | 0.5016 (2) | 0.64088 (15) | 0.0313 (4) | |
H9A | 0.6488 | 0.6156 | 0.6332 | 0.038* | |
H9B | 0.6427 | 0.4405 | 0.5816 | 0.038* | |
C10 | 0.70370 (15) | 0.4361 (2) | 0.74414 (14) | 0.0284 (4) | |
C11 | 0.81548 (16) | 0.4608 (2) | 0.77324 (17) | 0.0395 (5) | |
H11 | 0.8455 | 0.5176 | 0.7270 | 0.047* | |
C12 | 0.88258 (17) | 0.4028 (3) | 0.86935 (19) | 0.0474 (6) | |
H12 | 0.9574 | 0.4191 | 0.8875 | 0.057* | |
C13 | 0.83782 (16) | 0.3201 (3) | 0.93859 (18) | 0.0426 (5) | |
H13 | 0.8825 | 0.2836 | 1.0046 | 0.051* | |
C14 | 0.72727 (16) | 0.2913 (2) | 0.91047 (15) | 0.0333 (5) | |
H14 | 0.6978 | 0.2351 | 0.9574 | 0.040* | |
C15 | 0.65979 (14) | 0.3459 (2) | 0.81216 (14) | 0.0251 (4) | |
O1 | 0.15323 (14) | 0.5344 (2) | 0.79367 (14) | 0.0608 (5) | |
O2 | 0.01794 (13) | 0.4940 (3) | 0.65155 (16) | 0.0720 (6) | |
O3 | 0.58905 (11) | 0.14139 (15) | 0.59145 (10) | 0.0350 (4) | |
O4 | 0.51663 (10) | 0.49075 (14) | 0.63476 (10) | 0.0279 (3) | |
N1 | 0.11430 (14) | 0.4820 (2) | 0.70211 (16) | 0.0436 (5) | |
N2 | 0.40246 (13) | 0.15524 (18) | 0.52997 (12) | 0.0310 (4) | |
H2 | 0.3914 | 0.0875 | 0.4772 | 0.037* | |
N3 | 0.54687 (11) | 0.31629 (18) | 0.78242 (11) | 0.0268 (4) | |
H3A | 0.5154 | 0.2865 | 0.8291 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0313 (10) | 0.0237 (8) | 0.0250 (9) | 0.0028 (8) | 0.0087 (7) | 0.0030 (7) |
C2 | 0.0319 (10) | 0.0242 (8) | 0.0278 (9) | −0.0013 (7) | 0.0064 (8) | 0.0012 (7) |
C3 | 0.0339 (11) | 0.0392 (11) | 0.0350 (11) | −0.0069 (9) | 0.0009 (9) | −0.0060 (8) |
C4 | 0.0247 (10) | 0.0445 (11) | 0.0436 (12) | −0.0060 (9) | 0.0022 (9) | 0.0022 (9) |
C5 | 0.0271 (10) | 0.0336 (10) | 0.0378 (11) | 0.0017 (8) | 0.0112 (8) | 0.0060 (8) |
C6 | 0.0276 (10) | 0.0266 (9) | 0.0291 (9) | −0.0003 (7) | 0.0074 (8) | 0.0008 (7) |
C7 | 0.0256 (9) | 0.0229 (8) | 0.0264 (9) | −0.0007 (7) | 0.0049 (7) | 0.0017 (7) |
C8 | 0.0265 (9) | 0.0231 (8) | 0.0254 (9) | −0.0003 (7) | 0.0075 (7) | −0.0004 (7) |
C9 | 0.0324 (11) | 0.0308 (9) | 0.0348 (10) | −0.0033 (8) | 0.0166 (8) | 0.0005 (8) |
C10 | 0.0279 (10) | 0.0263 (8) | 0.0330 (10) | −0.0009 (7) | 0.0124 (8) | −0.0044 (8) |
C11 | 0.0317 (11) | 0.0408 (11) | 0.0504 (13) | −0.0035 (9) | 0.0187 (10) | −0.0037 (9) |
C12 | 0.0241 (10) | 0.0533 (13) | 0.0612 (15) | 0.0002 (10) | 0.0070 (10) | −0.0066 (11) |
C13 | 0.0294 (11) | 0.0470 (12) | 0.0434 (12) | 0.0077 (9) | −0.0013 (9) | −0.0008 (10) |
C14 | 0.0336 (11) | 0.0341 (9) | 0.0303 (10) | 0.0027 (8) | 0.0067 (8) | 0.0007 (8) |
C15 | 0.0245 (9) | 0.0234 (8) | 0.0278 (9) | 0.0011 (7) | 0.0084 (7) | −0.0046 (7) |
O1 | 0.0531 (11) | 0.0818 (12) | 0.0535 (11) | 0.0109 (9) | 0.0250 (9) | −0.0081 (9) |
O2 | 0.0277 (9) | 0.1054 (16) | 0.0836 (14) | 0.0114 (9) | 0.0178 (9) | −0.0038 (11) |
O3 | 0.0352 (8) | 0.0338 (7) | 0.0373 (8) | 0.0061 (6) | 0.0131 (6) | −0.0047 (6) |
O4 | 0.0278 (7) | 0.0237 (6) | 0.0323 (7) | 0.0009 (5) | 0.0092 (6) | 0.0025 (5) |
N1 | 0.0324 (10) | 0.0511 (11) | 0.0511 (12) | 0.0027 (8) | 0.0184 (9) | 0.0069 (9) |
N2 | 0.0346 (9) | 0.0290 (8) | 0.0275 (8) | 0.0003 (7) | 0.0062 (7) | −0.0079 (6) |
N3 | 0.0247 (8) | 0.0342 (8) | 0.0221 (8) | −0.0029 (6) | 0.0082 (6) | 0.0010 (6) |
C1—O3 | 1.217 (2) | C9—C10 | 1.493 (3) |
C1—N2 | 1.359 (2) | C9—H9A | 0.9700 |
C1—C8 | 1.571 (2) | C9—H9B | 0.9700 |
C2—C3 | 1.377 (3) | C10—C11 | 1.389 (3) |
C2—C7 | 1.396 (2) | C10—C15 | 1.393 (3) |
C2—N2 | 1.397 (2) | C11—C12 | 1.376 (3) |
C3—C4 | 1.384 (3) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—C13 | 1.381 (3) |
C4—C5 | 1.379 (3) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | C13—C14 | 1.380 (3) |
C5—C6 | 1.393 (3) | C13—H13 | 0.9300 |
C5—N1 | 1.459 (3) | C14—C15 | 1.390 (3) |
C6—C7 | 1.372 (3) | C14—H14 | 0.9300 |
C6—H6 | 0.9300 | C15—N3 | 1.409 (2) |
C7—C8 | 1.506 (2) | O1—N1 | 1.225 (2) |
C8—N3 | 1.429 (2) | O2—N1 | 1.223 (2) |
C8—O4 | 1.431 (2) | N2—H2 | 0.8600 |
C9—O4 | 1.446 (2) | N3—H3A | 0.8600 |
O3—C1—N2 | 126.20 (17) | C10—C9—H9B | 109.1 |
O3—C1—C8 | 126.17 (16) | H9A—C9—H9B | 107.8 |
N2—C1—C8 | 107.63 (15) | C11—C10—C15 | 119.05 (18) |
C3—C2—C7 | 122.13 (17) | C11—C10—C9 | 121.30 (17) |
C3—C2—N2 | 127.96 (17) | C15—C10—C9 | 119.64 (16) |
C7—C2—N2 | 109.89 (16) | C12—C11—C10 | 121.2 (2) |
C2—C3—C4 | 117.45 (18) | C12—C11—H11 | 119.4 |
C2—C3—H3 | 121.3 | C10—C11—H11 | 119.4 |
C4—C3—H3 | 121.3 | C11—C12—C13 | 119.4 (2) |
C5—C4—C3 | 120.11 (18) | C11—C12—H12 | 120.3 |
C5—C4—H4 | 119.9 | C13—C12—H12 | 120.3 |
C3—C4—H4 | 119.9 | C14—C13—C12 | 120.44 (19) |
C4—C5—C6 | 122.71 (18) | C14—C13—H13 | 119.8 |
C4—C5—N1 | 118.51 (18) | C12—C13—H13 | 119.8 |
C6—C5—N1 | 118.78 (17) | C13—C14—C15 | 120.20 (19) |
C7—C6—C5 | 116.87 (17) | C13—C14—H14 | 119.9 |
C7—C6—H6 | 121.6 | C15—C14—H14 | 119.9 |
C5—C6—H6 | 121.6 | C14—C15—C10 | 119.63 (17) |
C6—C7—C2 | 120.47 (17) | C14—C15—N3 | 120.64 (16) |
C6—C7—C8 | 130.52 (16) | C10—C15—N3 | 119.69 (16) |
C2—C7—C8 | 108.98 (15) | C8—O4—C9 | 113.88 (12) |
N3—C8—O4 | 109.07 (13) | O2—N1—O1 | 123.57 (19) |
N3—C8—C7 | 115.04 (15) | O2—N1—C5 | 118.56 (19) |
O4—C8—C7 | 107.96 (13) | O1—N1—C5 | 117.87 (18) |
N3—C8—C1 | 115.32 (14) | C1—N2—C2 | 111.67 (15) |
O4—C8—C1 | 107.89 (13) | C1—N2—H2 | 124.2 |
C7—C8—C1 | 101.00 (13) | C2—N2—H2 | 124.2 |
O4—C9—C10 | 112.71 (14) | C15—N3—C8 | 117.57 (14) |
O4—C9—H9A | 109.1 | C15—N3—H3A | 121.2 |
C10—C9—H9A | 109.1 | C8—N3—H3A | 121.2 |
O4—C9—H9B | 109.1 | ||
C7—C2—C3—C4 | −3.6 (3) | C9—C10—C11—C12 | 178.84 (18) |
N2—C2—C3—C4 | 178.12 (18) | C10—C11—C12—C13 | −0.7 (3) |
C2—C3—C4—C5 | −1.0 (3) | C11—C12—C13—C14 | 2.0 (3) |
C3—C4—C5—C6 | 3.6 (3) | C12—C13—C14—C15 | −0.3 (3) |
C3—C4—C5—N1 | −176.28 (18) | C13—C14—C15—C10 | −2.7 (3) |
C4—C5—C6—C7 | −1.6 (3) | C13—C14—C15—N3 | 179.63 (17) |
N1—C5—C6—C7 | 178.29 (16) | C11—C10—C15—C14 | 3.9 (3) |
C5—C6—C7—C2 | −2.9 (2) | C9—C10—C15—C14 | −177.13 (16) |
C5—C6—C7—C8 | 175.13 (16) | C11—C10—C15—N3 | −178.40 (16) |
C3—C2—C7—C6 | 5.7 (3) | C9—C10—C15—N3 | 0.6 (2) |
N2—C2—C7—C6 | −175.75 (15) | N3—C8—O4—C9 | 61.07 (17) |
C3—C2—C7—C8 | −172.75 (16) | C7—C8—O4—C9 | −173.27 (13) |
N2—C2—C7—C8 | 5.80 (19) | C1—C8—O4—C9 | −64.88 (17) |
C6—C7—C8—N3 | 48.4 (2) | C10—C9—O4—C8 | −43.61 (19) |
C2—C7—C8—N3 | −133.37 (15) | C4—C5—N1—O2 | −14.3 (3) |
C6—C7—C8—O4 | −73.7 (2) | C6—C5—N1—O2 | 165.82 (18) |
C2—C7—C8—O4 | 104.59 (15) | C4—C5—N1—O1 | 165.52 (19) |
C6—C7—C8—C1 | 173.26 (17) | C6—C5—N1—O1 | −14.4 (3) |
C2—C7—C8—C1 | −8.50 (17) | O3—C1—N2—C2 | 174.52 (17) |
O3—C1—C8—N3 | −47.0 (2) | C8—C1—N2—C2 | −5.79 (19) |
N2—C1—C8—N3 | 133.26 (16) | C3—C2—N2—C1 | 178.63 (18) |
O3—C1—C8—O4 | 75.1 (2) | C7—C2—N2—C1 | 0.2 (2) |
N2—C1—C8—O4 | −104.56 (15) | C14—C15—N3—C8 | −164.55 (16) |
O3—C1—C8—C7 | −171.73 (17) | C10—C15—N3—C8 | 17.8 (2) |
N2—C1—C8—C7 | 8.57 (17) | O4—C8—N3—C15 | −47.42 (19) |
O4—C9—C10—C11 | −168.87 (16) | C7—C8—N3—C15 | −168.86 (14) |
O4—C9—C10—C15 | 12.2 (2) | C1—C8—N3—C15 | 74.13 (19) |
C15—C10—C11—C12 | −2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O4i | 0.86 | 2.51 | 3.0614 (18) | 123 |
N2—H2···O3ii | 0.86 | 2.11 | 2.9057 (19) | 153 |
C3—H3···O1iii | 0.93 | 2.53 | 3.439 (3) | 165 |
C6—H6···O3iv | 0.93 | 2.33 | 3.256 (2) | 176 |
C9—H9B···O3 | 0.97 | 2.54 | 3.014 (2) | 110 |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19. Google Scholar
Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley. Google Scholar
Chamontin, K., Lokshin, V., Guglielmetti, R., Samat, A. & Pèpe, G. (1998). Acta Cryst. C54, 670–672. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. Web of Science CrossRef PubMed CAS Google Scholar
Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395. Web of Science CrossRef PubMed CAS Google Scholar
Clegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. & Lasch, J. G. (1991). Acta Cryst. C47, 817–824. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413–431. CrossRef Web of Science Google Scholar
Durr, Heinz., & Bousas-Laurent, Henri. (1990). Editors. Photochromism, Molecules and Systems. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271. Google Scholar
Guo, H., Gao, Y.-B., Li, Y.-X., Han, J. & Meng, J.-B. (2005). Acta Cryst. E61, o988–o989. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ichimura, K. (2000). Chem. Rev. 100, 1847–1873. Web of Science CrossRef PubMed CAS Google Scholar
Kreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655. Google Scholar
Liang, Y.-C., Chen, X.-A., Zhao, L., Zhang, Q.-Y., Chen, J.-X., Ming, Y.-F. & Fan, M.-G. (1998). Acta Cryst. C54, 279–281. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217. Google Scholar
Malatesta, V., Millini, R. & Montanari, L. (1995). J. Am. Chem. Soc. 117, 6258–6264. CSD CrossRef CAS Web of Science Google Scholar
Molvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536–563. Google Scholar
Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108. PubMed CAS Google Scholar
Osano, Y. T., Mitsuhashi, K., Maeda, S. & Matsuzaki, T. (1991). Acta Cryst. C47, 2137–2141. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107. CrossRef Google Scholar
Pèpe, G., Laréginie, P., Samat, A., Guglielmetti, R. & Zaballos, E. (1995). Acta Cryst. C51, 1617–1619. CSD CrossRef Web of Science IUCr Journals Google Scholar
Reboul, J.-P., Samat, A., Laréginie, P., Lokshin, V., Guglielmetti, R. & Pèpe, G. (1995). Acta Cryst. C51, 1614–1617. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rickwood, M. & Hepworth, J. D. (1990). European Patent 245020. Google Scholar
Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061. Web of Science PubMed Google Scholar
Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, X., Liang, Y., Fan, M., Knobbe, E. T. & Holt, E. M. (1997). Acta Cryst. C53, 820–823. CSD CrossRef CAS IUCr Journals Google Scholar
Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.