organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5′-Nitro-1,4-di­hydro­spiro­[3,1-benzoxazine-2,3′-indolin]-2′-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 22 April 2017; accepted 30 April 2018; online 4 May 2018)

In the title compound, C15H11N3O4, the six-membered oxazine ring adopts a half-chair conformation and is oriented at an angle of 78.63 (9)° with respect to the pyrrolidine ring of the indoline ring system, which adopts an envelope conformation. The spiro centre C atom is tetra­hedral and lies 0.147 (1) Å out of the plane of other four pyrrolidone ring atoms. The nitro­benzene and benzene rings exhibit near planar conformations with C—C—C—N and C—C—C—C torsion angles of 178.1 (2) and 178.8 (2)°, respectively. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds connect the mol­ecules, generating a sheet-like structure parallel to the bc plane. Within the sheets, pairs of inter­molecular N—H⋯O hydrogen bonds form inversion dimers enclosing R22(8) ring motifs. In addition, the N—H⋯O and C—H⋯O hydrogen bonds generate R32(11) and R22(10) graph-set ring motifs extending the two-dimensional structure. A supra­molecular R66(28) loop for each set of six mol­ecules is formed by N—H⋯O hydrogen bonds within the extended sheet structure and stabilizes the packing. ππ stacking inter­actions between the nitro­benzene and benzene rings [inter­centroid distance = 3.711 (1) Å] and N—O⋯π inter­actions further consolidate the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014[Molvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536-563.]). A number of spiro compounds show diverse biological activities such as anti­cancer (Chin et al., 2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390-395.]), anti­bacterial (van der Sar et al., 2006[Sar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059-2061.]), anti­convulsant (Obniska & Kamiński, 2006[Obniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101-108.]), anti­microbial (Pawar et al., 2009[Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97-107.]), anti­tuberculosis (Chande et al., 2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]), anti-oxidant (Sarma et al., 2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]) and are used as pain-relief agents (Frank et al., 2008[Frank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.]). Some spiro compounds are used as pesticides (Wei et al., 2009[Wei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476-487.]) and laser dyes (Kreuder et al., 1999[Kreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655.]). They are also used as electroluminescent devices (Lupo et al., 1998[Lupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217.]). 1,3-Dipolar cyclo­addition reactions are widely used for construction of spiro compounds (Caramella & Grunanger, 1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]). Spiro­oxazine is the most important member of one of the best known organic photochromic systems with fast photocolouring rates and high light-fatigue resistance (Durr & Bousas-Laurent, 1990[Durr, Heinz., & Bousas-Laurent, Henri. (1990). Editors. Photochromism, Molecules and Systems. Amsterdam: Elsevier.]). Over the past several decades, numerous types of spiro­oxazine derivatives have been characterized. Photochromic compounds continue to attract significant attention in view of their general applicability as optical information storage materials or switching devices (Dürr, 1989[Dürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413-431.]; Ichimura, 2000[Ichimura, K. (2000). Chem. Rev. 100, 1847-1873.]). They are also used as organic photochromic materials within a plastic matrix, for example as photochromic ophthalmic lenses and vehicle roof lights (Rickwood & Hepworth, 1990[Rickwood, M. & Hepworth, J. D. (1990). European Patent 245020.]). It is certain that C—O bond cleavage in spiro­oxazines induced by UV irradiation or heating is the main reason for their photochromism, and the C=N bond in the oxazine ring improves its durability (Clegg et al., 1991[Clegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. & Lasch, J. G. (1991). Acta Cryst. C47, 817-824.]; Osano et al., 1991[Osano, Y. T., Mitsuhashi, K., Maeda, S. & Matsuzaki, T. (1991). Acta Cryst. C47, 2137-2141.]; Reboul et al., 1995[Reboul, J.-P., Samat, A., Laréginie, P., Lokshin, V., Guglielmetti, R. & Pèpe, G. (1995). Acta Cryst. C51, 1614-1617.]; Pèpe et al., 1995[Pèpe, G., Laréginie, P., Samat, A., Guglielmetti, R. & Zaballos, E. (1995). Acta Cryst. C51, 1617-1619.]; Malatesta et al., 1995[Malatesta, V., Millini, R. & Montanari, L. (1995). J. Am. Chem. Soc. 117, 6258-6264.]; Sun et al., 1997[Sun, X., Liang, Y., Fan, M., Knobbe, E. T. & Holt, E. M. (1997). Acta Cryst. C53, 820-823.]; Liang et al., 1998[Liang, Y.-C., Chen, X.-A., Zhao, L., Zhang, Q.-Y., Chen, J.-X., Ming, Y.-F. & Fan, M.-G. (1998). Acta Cryst. C54, 279-281.]; Chamontin et al., 1998[Chamontin, K., Lokshin, V., Guglielmetti, R., Samat, A. & Pèpe, G. (1998). Acta Cryst. C54, 670-672.]; Guo et al., 2005[Guo, H., Gao, Y.-B., Li, Y.-X., Han, J. & Meng, J.-B. (2005). Acta Cryst. E61, o988-o989.]), but there are still some details of the structure–property relationships needing further explanation. For example, it was assumed that the more planar the oxazine ring, the less photochromatic the mol­ecule (Reboul et al., 1995[Reboul, J.-P., Samat, A., Laréginie, P., Lokshin, V., Guglielmetti, R. & Pèpe, G. (1995). Acta Cryst. C51, 1614-1617.]). In this paper we report the structure of the novel photochromic title compound.

The mol­ecular structure (Fig. 1[link]) reveals the presence of a spiro­junction at atom C8. The spiro­centre C8 is tetra­hedral with the dihedral angle between the planes O4/C8/N3 and C1/C8/C7 being 78.63 (9)°. The spiro atom C8 display regular sp3 hybridization. The O4—C8—N3 bond angles at the C8 spiro carbon have a mean value of 109.1 (14)°. The oxazine ring (O4/N3/C8/C9/C10/C15) adopts a half-chair confirmation [Q = 0.452 (2) Å, θ = 128.8 (2)°, φ =214.4 (3)°], while the five-membered pyrrolidin ring (N2/C1/C2/C7/C8) adopts an envelope conformation [q2 = 0.088 (2) Å, φ2 = 71.8 (12)°]. Atom C8 lies 0.147 (1) Å out of the plane of other four pyrrolidone ring atoms, with an C7—C2—N2—C1 torsion angle of 0.2 (2)°. The C2—N2 bond length is 1.397 (2) Å which is in between the value of 1.48 Å for a C—N single bond and 1.28 Å for a C=N double bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1-S19.]), indicating a partial delocalization of the π electron density over the indole ring. The Cspiro—O bond length is the key point in this type of structures and cleaves upon photoexitation to give an open form of the spiro oxazine ring. The Cspiro—O and Cspiro—N bond lengths are 1.431 (2) and 1.429 (2) Å, respectively. The dihedral angle between the nitro­benzene ring of the 5-nitro­indolin-2-one ring system and the benzene ring (C10–C15) of the 2,4-di­hydro-1H-benzo [d][1,3] oxazine ring system is 68.48 (10)°. The observed C4—C3—C2—N2, C5—C6—C7—C8 and C12—C11—C10—C9 torsion angles of 178.1 (2), 175.1 (2) and 178.8 (2)°, respectively, indicate a nearly planar configuration.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, mol­ecules are connected into sheets in the bc plane (011) (Table 1[link] and Fig. 2[link]) by N—H⋯O and C—H⋯O hydrogen bonds. Pairs of inter­molecular N—H⋯O hydrogen bonds form inversion dimers, generating R22(8) ring motifs and stabilizing the sheet structure, Fig. 3[link]. The occurrence of two different sets of R32(11) and R22(10) graph-set ring motifs, Fig. 4[link], via N—H⋯O and C—H⋯O hydrogen bonds extends the two-dimensional structure. The N—H⋯O hydrogen bonds stabilize the crystal structure by forming a supra­molecular R66(28) loop for each set of six mol­ecules, Fig. 5[link], within the extended sheet structure. ππ stacking inter­actions between the nitro­benzene and benzene rings [inter­centroid distance = 3.7105 (12) Å] and N—O⋯π inter­actions [N⋯p = 3.6438 (19) Å, N—O⋯π = 83.34 (12)°] further consolidate the crystal structure (Fig. 6[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 2.51 3.0614 (18) 123
N2—H2⋯O3ii 0.86 2.11 2.9057 (19) 153
C3—H3⋯O1iii 0.93 2.53 3.439 (3) 165
C6—H6⋯O3iv 0.93 2.33 3.256 (2) 176
C9—H9B⋯O3 0.97 2.54 3.014 (2) 110
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing, viewed parallel to the bc plane, showing the N—H⋯O and C—H⋯O hydrogen bonds generating sheets. For the sake of clarity, H atoms not involved in the hydrogen bonds have been excluded.
[Figure 3]
Figure 3
Part of the crystal structure showing the formation of sheets parallel to bc plane built from N—H⋯O and C—H⋯O hydrogen bonds and containing R22(8) inversion dimers.
[Figure 4]
Figure 4
A view of the hydrogen-bonded ring motif. Details of the hydrogen bonds are given in Table 1[link].
[Figure 5]
Figure 5
A part of crystal structure showing the formation of a sheet along [010], generating an R66(28) loop for each set of six mol­ecules.
[Figure 6]
Figure 6
A partial view of the crystal packing of the title compound, showing the N—O⋯π inter­actions.

Synthesis and crystallization

A mixture of 5-nitro­isatin 1 (1.0 mmol) and 2-amino­benzyl alcohol 2 (1.0 mmol) was refluxed in ethanol in the presence of 10 mol % of InCl3. The reaction mixture was refluxed for 2.5 h. After the reaction was complete, as indicated by TLC, the mixture was cooled to room temperature. The solid formed in the reaction mixture was filtered, dried and recrystallized from ethanol to obtain the title compound in good yield (88%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H11N3O4
Mr 297.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.8698 (6), 8.1365 (3), 13.0309 (6)
β (°) 107.275 (5)
V3) 1302.98 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.980, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 6269, 2294, 1945
Rint 0.023
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.04
No. of reflections 2294
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.52
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

5'-Nitro-1,4-dihydrospiro[3,1-benzoxazine-2,3'-indolin]-2'-one top
Crystal data top
C15H11N3O4F(000) = 616
Mr = 297.27Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8698 (6) ÅCell parameters from 1945 reflections
b = 8.1365 (3) Åθ = 3.0–25.0°
c = 13.0309 (6) ŵ = 0.11 mm1
β = 107.275 (5)°T = 293 K
V = 1302.98 (10) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1945 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
ω and φ scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1513
Tmin = 0.980, Tmax = 0.989k = 99
6269 measured reflectionsl = 1513
2294 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.060P)2 + 0.5946P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.43 e Å3
2294 reflectionsΔρmin = 0.51 e Å3
200 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.025 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The N– and C-bound H atoms were positioned geometrically (N—H = 0.86 Å, C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50260 (15)0.1988 (2)0.59411 (14)0.0266 (4)
C20.31973 (15)0.2340 (2)0.56038 (14)0.0285 (4)
C30.20908 (16)0.2224 (2)0.51299 (16)0.0381 (5)
H30.18020.15870.45190.046*
C40.14245 (16)0.3091 (3)0.55982 (17)0.0393 (5)
H40.06730.30550.52950.047*
C50.18727 (15)0.4006 (2)0.65135 (15)0.0325 (5)
C60.29914 (15)0.4182 (2)0.69722 (14)0.0280 (4)
H60.32800.48260.75800.034*
C70.36486 (14)0.3360 (2)0.64857 (14)0.0256 (4)
C80.48666 (14)0.3376 (2)0.67193 (14)0.0250 (4)
C90.63047 (15)0.5016 (2)0.64088 (15)0.0313 (4)
H9A0.64880.61560.63320.038*
H9B0.64270.44050.58160.038*
C100.70370 (15)0.4361 (2)0.74414 (14)0.0284 (4)
C110.81548 (16)0.4608 (2)0.77324 (17)0.0395 (5)
H110.84550.51760.72700.047*
C120.88258 (17)0.4028 (3)0.86935 (19)0.0474 (6)
H120.95740.41910.88750.057*
C130.83782 (16)0.3201 (3)0.93859 (18)0.0426 (5)
H130.88250.28361.00460.051*
C140.72727 (16)0.2913 (2)0.91047 (15)0.0333 (5)
H140.69780.23510.95740.040*
C150.65979 (14)0.3459 (2)0.81216 (14)0.0251 (4)
O10.15323 (14)0.5344 (2)0.79367 (14)0.0608 (5)
O20.01794 (13)0.4940 (3)0.65155 (16)0.0720 (6)
O30.58905 (11)0.14139 (15)0.59145 (10)0.0350 (4)
O40.51663 (10)0.49075 (14)0.63476 (10)0.0279 (3)
N10.11430 (14)0.4820 (2)0.70211 (16)0.0436 (5)
N20.40246 (13)0.15524 (18)0.52997 (12)0.0310 (4)
H20.39140.08750.47720.037*
N30.54687 (11)0.31629 (18)0.78242 (11)0.0268 (4)
H3A0.51540.28650.82910.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (10)0.0237 (8)0.0250 (9)0.0028 (8)0.0087 (7)0.0030 (7)
C20.0319 (10)0.0242 (8)0.0278 (9)0.0013 (7)0.0064 (8)0.0012 (7)
C30.0339 (11)0.0392 (11)0.0350 (11)0.0069 (9)0.0009 (9)0.0060 (8)
C40.0247 (10)0.0445 (11)0.0436 (12)0.0060 (9)0.0022 (9)0.0022 (9)
C50.0271 (10)0.0336 (10)0.0378 (11)0.0017 (8)0.0112 (8)0.0060 (8)
C60.0276 (10)0.0266 (9)0.0291 (9)0.0003 (7)0.0074 (8)0.0008 (7)
C70.0256 (9)0.0229 (8)0.0264 (9)0.0007 (7)0.0049 (7)0.0017 (7)
C80.0265 (9)0.0231 (8)0.0254 (9)0.0003 (7)0.0075 (7)0.0004 (7)
C90.0324 (11)0.0308 (9)0.0348 (10)0.0033 (8)0.0166 (8)0.0005 (8)
C100.0279 (10)0.0263 (8)0.0330 (10)0.0009 (7)0.0124 (8)0.0044 (8)
C110.0317 (11)0.0408 (11)0.0504 (13)0.0035 (9)0.0187 (10)0.0037 (9)
C120.0241 (10)0.0533 (13)0.0612 (15)0.0002 (10)0.0070 (10)0.0066 (11)
C130.0294 (11)0.0470 (12)0.0434 (12)0.0077 (9)0.0013 (9)0.0008 (10)
C140.0336 (11)0.0341 (9)0.0303 (10)0.0027 (8)0.0067 (8)0.0007 (8)
C150.0245 (9)0.0234 (8)0.0278 (9)0.0011 (7)0.0084 (7)0.0046 (7)
O10.0531 (11)0.0818 (12)0.0535 (11)0.0109 (9)0.0250 (9)0.0081 (9)
O20.0277 (9)0.1054 (16)0.0836 (14)0.0114 (9)0.0178 (9)0.0038 (11)
O30.0352 (8)0.0338 (7)0.0373 (8)0.0061 (6)0.0131 (6)0.0047 (6)
O40.0278 (7)0.0237 (6)0.0323 (7)0.0009 (5)0.0092 (6)0.0025 (5)
N10.0324 (10)0.0511 (11)0.0511 (12)0.0027 (8)0.0184 (9)0.0069 (9)
N20.0346 (9)0.0290 (8)0.0275 (8)0.0003 (7)0.0062 (7)0.0079 (6)
N30.0247 (8)0.0342 (8)0.0221 (8)0.0029 (6)0.0082 (6)0.0010 (6)
Geometric parameters (Å, º) top
C1—O31.217 (2)C9—C101.493 (3)
C1—N21.359 (2)C9—H9A0.9700
C1—C81.571 (2)C9—H9B0.9700
C2—C31.377 (3)C10—C111.389 (3)
C2—C71.396 (2)C10—C151.393 (3)
C2—N21.397 (2)C11—C121.376 (3)
C3—C41.384 (3)C11—H110.9300
C3—H30.9300C12—C131.381 (3)
C4—C51.379 (3)C12—H120.9300
C4—H40.9300C13—C141.380 (3)
C5—C61.393 (3)C13—H130.9300
C5—N11.459 (3)C14—C151.390 (3)
C6—C71.372 (3)C14—H140.9300
C6—H60.9300C15—N31.409 (2)
C7—C81.506 (2)O1—N11.225 (2)
C8—N31.429 (2)O2—N11.223 (2)
C8—O41.431 (2)N2—H20.8600
C9—O41.446 (2)N3—H3A0.8600
O3—C1—N2126.20 (17)C10—C9—H9B109.1
O3—C1—C8126.17 (16)H9A—C9—H9B107.8
N2—C1—C8107.63 (15)C11—C10—C15119.05 (18)
C3—C2—C7122.13 (17)C11—C10—C9121.30 (17)
C3—C2—N2127.96 (17)C15—C10—C9119.64 (16)
C7—C2—N2109.89 (16)C12—C11—C10121.2 (2)
C2—C3—C4117.45 (18)C12—C11—H11119.4
C2—C3—H3121.3C10—C11—H11119.4
C4—C3—H3121.3C11—C12—C13119.4 (2)
C5—C4—C3120.11 (18)C11—C12—H12120.3
C5—C4—H4119.9C13—C12—H12120.3
C3—C4—H4119.9C14—C13—C12120.44 (19)
C4—C5—C6122.71 (18)C14—C13—H13119.8
C4—C5—N1118.51 (18)C12—C13—H13119.8
C6—C5—N1118.78 (17)C13—C14—C15120.20 (19)
C7—C6—C5116.87 (17)C13—C14—H14119.9
C7—C6—H6121.6C15—C14—H14119.9
C5—C6—H6121.6C14—C15—C10119.63 (17)
C6—C7—C2120.47 (17)C14—C15—N3120.64 (16)
C6—C7—C8130.52 (16)C10—C15—N3119.69 (16)
C2—C7—C8108.98 (15)C8—O4—C9113.88 (12)
N3—C8—O4109.07 (13)O2—N1—O1123.57 (19)
N3—C8—C7115.04 (15)O2—N1—C5118.56 (19)
O4—C8—C7107.96 (13)O1—N1—C5117.87 (18)
N3—C8—C1115.32 (14)C1—N2—C2111.67 (15)
O4—C8—C1107.89 (13)C1—N2—H2124.2
C7—C8—C1101.00 (13)C2—N2—H2124.2
O4—C9—C10112.71 (14)C15—N3—C8117.57 (14)
O4—C9—H9A109.1C15—N3—H3A121.2
C10—C9—H9A109.1C8—N3—H3A121.2
O4—C9—H9B109.1
C7—C2—C3—C43.6 (3)C9—C10—C11—C12178.84 (18)
N2—C2—C3—C4178.12 (18)C10—C11—C12—C130.7 (3)
C2—C3—C4—C51.0 (3)C11—C12—C13—C142.0 (3)
C3—C4—C5—C63.6 (3)C12—C13—C14—C150.3 (3)
C3—C4—C5—N1176.28 (18)C13—C14—C15—C102.7 (3)
C4—C5—C6—C71.6 (3)C13—C14—C15—N3179.63 (17)
N1—C5—C6—C7178.29 (16)C11—C10—C15—C143.9 (3)
C5—C6—C7—C22.9 (2)C9—C10—C15—C14177.13 (16)
C5—C6—C7—C8175.13 (16)C11—C10—C15—N3178.40 (16)
C3—C2—C7—C65.7 (3)C9—C10—C15—N30.6 (2)
N2—C2—C7—C6175.75 (15)N3—C8—O4—C961.07 (17)
C3—C2—C7—C8172.75 (16)C7—C8—O4—C9173.27 (13)
N2—C2—C7—C85.80 (19)C1—C8—O4—C964.88 (17)
C6—C7—C8—N348.4 (2)C10—C9—O4—C843.61 (19)
C2—C7—C8—N3133.37 (15)C4—C5—N1—O214.3 (3)
C6—C7—C8—O473.7 (2)C6—C5—N1—O2165.82 (18)
C2—C7—C8—O4104.59 (15)C4—C5—N1—O1165.52 (19)
C6—C7—C8—C1173.26 (17)C6—C5—N1—O114.4 (3)
C2—C7—C8—C18.50 (17)O3—C1—N2—C2174.52 (17)
O3—C1—C8—N347.0 (2)C8—C1—N2—C25.79 (19)
N2—C1—C8—N3133.26 (16)C3—C2—N2—C1178.63 (18)
O3—C1—C8—O475.1 (2)C7—C2—N2—C10.2 (2)
N2—C1—C8—O4104.56 (15)C14—C15—N3—C8164.55 (16)
O3—C1—C8—C7171.73 (17)C10—C15—N3—C817.8 (2)
N2—C1—C8—C78.57 (17)O4—C8—N3—C1547.42 (19)
O4—C9—C10—C11168.87 (16)C7—C8—N3—C15168.86 (14)
O4—C9—C10—C1512.2 (2)C1—C8—N3—C1574.13 (19)
C15—C10—C11—C122.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4i0.862.513.0614 (18)123
N2—H2···O3ii0.862.112.9057 (19)153
C3—H3···O1iii0.932.533.439 (3)165
C6—H6···O3iv0.932.333.256 (2)176
C9—H9B···O30.972.543.014 (2)110
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc., Perkin Trans. 2, pp. S1–S19.  Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationChamontin, K., Lokshin, V., Guglielmetti, R., Samat, A. & Pèpe, G. (1998). Acta Cryst. C54, 670–672.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. & Lasch, J. G. (1991). Acta Cryst. C47, 817–824.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDürr, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 413–431.  CrossRef Web of Science Google Scholar
First citationDurr, Heinz., & Bousas-Laurent, Henri. (1990). Editors. Photochromism, Molecules and Systems. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrank, R., Reich, M., Jostock, R., Bahrenberg, G., Schick, H., Henkel, B. & Sonnenschein, H. (2008). US Patent No. 2008269271.  Google Scholar
First citationGuo, H., Gao, Y.-B., Li, Y.-X., Han, J. & Meng, J.-B. (2005). Acta Cryst. E61, o988–o989.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIchimura, K. (2000). Chem. Rev. 100, 1847–1873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKreuder, W., Yu, N. & Salbeck, J. (1999). Int. Patent WO 9940655.  Google Scholar
First citationLiang, Y.-C., Chen, X.-A., Zhao, L., Zhang, Q.-Y., Chen, J.-X., Ming, Y.-F. & Fan, M.-G. (1998). Acta Cryst. C54, 279–281.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLupo, D., Salbeck, J., Schenk, H., Stehlin, T., Stern, R. & Wolf, A. (1998). US Patent No. 5840217.  Google Scholar
First citationMalatesta, V., Millini, R. & Montanari, L. (1995). J. Am. Chem. Soc. 117, 6258–6264.  CSD CrossRef CAS Web of Science Google Scholar
First citationMolvi, K. I., Haque, N., Awen, B. Z. S. & Zameerudin, M. (2014). World J. Pharm. Pharm. Sci. 3, 536–563.  Google Scholar
First citationObniska, O. & Kamiński, K. (2006). Acta Pol. Pharm. 63, 101–108.  PubMed CAS Google Scholar
First citationOsano, Y. T., Mitsuhashi, K., Maeda, S. & Matsuzaki, T. (1991). Acta Cryst. C47, 2137–2141.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.  CrossRef Google Scholar
First citationPèpe, G., Laréginie, P., Samat, A., Guglielmetti, R. & Zaballos, E. (1995). Acta Cryst. C51, 1617–1619.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationReboul, J.-P., Samat, A., Laréginie, P., Lokshin, V., Guglielmetti, R. & Pèpe, G. (1995). Acta Cryst. C51, 1614–1617.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRickwood, M. & Hepworth, J. D. (1990). European Patent 245020.  Google Scholar
First citationSar, S. A. van der, Blunt, J. W. & Munro, M. H. G. (2006). Org. Lett. 8, 2059–2061.  Web of Science PubMed Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Liang, Y., Fan, M., Knobbe, E. T. & Holt, E. M. (1997). Acta Cryst. C53, 820–823.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, R., Liu, Y. & Liang, Y. (2009). Chin. J. Org. Chem. 29, 476–487.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds