metal-organic compounds
catena-Poly[bis(4-methylbenzylammonium) [[dibromidocadmate(II)]-di-μ-bromido]]
aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal, Kunthavai Naacchiyaar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
The 8H12N)2[CdBr4]}n, comprises of one 4-methylbenzylammonium cation and one half of a disordered [CdBr4]2− anion that is completed by application of mirror symmetry. The resulting CdBr6 octahedra share edges to form 2∞[CdBr4/2Br2/2]2− layers parallel to the ac plane. Cations and anions are connected by N—H⋯Br and C—H⋯Br hydrogen bonds. No π–π stacking interactions are observed between the benzene rings, but C—H⋯π interactions towards them are found.
of the centrosymmetric organic–inorganic hybrid salt, {(CKeywords: crystal structure; centrosymmetric organic–inorganic hybrid material; C—H⋯Br and N—H⋯Br hydrogen bondings; C—H⋯π interactions; disorder.
CCDC reference: 1845375
Structure description
Non-linear optical materials are suitable candidates for photonics and optoelectronic industries. Applications such as frequency conversion, optical switching etc., can be well provided using these materials (Marcy et al., 1992). Organic non-linear optical crystals with conjugated π electrons usually show a higher non-linear optical response in comparison with inorganic crystals. However, due to weak intermolecular interactions, organic crystals frequently have a lower mechanical and thermal stability, which does not allow them to be used in high-power laser applications. On the other hand, inorganic crystals have better mechanical and thermal stability, but they are not efficient in producing large non-linear optical effects due to the presence of ionic or covalent bonds (Jiang & Fang, 1999). To overcome the disadvantage of organic and inorganic crystals in this respect, organic–inorganic hybrid crystals may be used by combining their beneficial properties. Moreover, these organic–inorganic hybrid crystals often possess greater third order non-linear optical properties. Herein we report the synthesis and of a new organic–inorganic hybrid compound, bis(4-methylbenzylammonium) tetrabromidocadmate.
The 4]2−, and one 4-methylbenzylammonium cation, (C8H12N)+, as shown in Fig. 1. The cadmium cation is located on a mirror plane (Wyckoff position 4c) and its resulting coordination environment is distorted octahedral. The three unique bromine ligands are disordered around the mirror plane. Individual CdBr6 octahedra share four corners to form polymeric 2∞[CdBr4/2Br2/2]2– layers extending parallel to the ac plane (Fig. 2).
of the the title compound consists of one half of a tetrabromidocadmate anion, [CdBrThe 4-methylbenzylammonium cations are sandwiched between the tetrabromidocadmate layers (Fig. 2). They are linked among themselves by weak (methyl)C—H⋯π interactions (Fig. 3, Table 1). The crystal packing is assured by a complex hydrogen-bonding system, involving the positively charged ammonium groups and to a minor extent the methylene group as donor groups, and the bromide ligands of the anionic layers as acceptor groups (Table 1). Bond lengths and angles within the cation have their usual values as reported for the isotypic compound bis(4-methylbenzylammonium) tetrachloridocadmate (Kefi et al., 2011). However, the anion in the latter shows no disorder.
Synthesis and crystallization
Bis(4-methylbenzylammonium) tetrabromidocadmate(II) single crystals were grown by the solution growth solvent evaporation method. A mixture of 4-methylbenzylamine (2 mmol, 1.27 ml) and cadmium bromide (CdBr2) (1 mmol, 1.36 g) was dissolved in diluted hydrobromic acid (HBr) (10 ml, 1 M). The resultant solution was stirred using a magnetic stirrer for 3 h and kept in a constant temperature bath at 311 K. After 15 d colourless single crystals of the title compound were harvested.
Refinement
Crystal data, data collection and structure . The anionic structure shows disorder of all bromine atoms relative to the mirror plane, with occupancies of 0.720 (11) for the major part and 0.280 (11) for the minor part (denoted by primed characters). Similarity restraints (SIMU) were used to model the disorder.
details are summarized in Table 2
|
Structural data
CCDC reference: 1845375
https://doi.org/10.1107/S2414314618007800/wm4080sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618007800/wm4080Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314618007800/wm4080Isup3.cdx
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).(C8H12N)2[CdBr4] | Dx = 2.169 Mg m−3 |
Mr = 676.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 6170 reflections |
a = 11.2127 (5) Å | θ = 2.5–27.5° |
b = 32.8269 (15) Å | µ = 8.77 mm−1 |
c = 5.6279 (3) Å | T = 296 K |
V = 2071.51 (17) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.10 × 0.10 mm |
F(000) = 1288 |
Bruker Kappa APEXII CCD diffractometer | 2984 independent reflections |
Radiation source: fine-focus sealed tube | 1970 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
ω and φ scan | θmax = 29.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −14→15 |
Tmin = 0.389, Tmax = 0.746 | k = −45→45 |
37568 measured reflections | l = −7→7 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0277P)2 + 5.1831P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.81 e Å−3 |
2984 reflections | Δρmin = −1.00 e Å−3 |
142 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
24 restraints | Extinction coefficient: 0.0082 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.4324 (4) | 0.44964 (12) | 0.3872 (7) | 0.0372 (9) | |
C2 | 0.5437 (4) | 0.43565 (14) | 0.3195 (8) | 0.0456 (10) | |
H2 | 0.579347 | 0.446011 | 0.183098 | 0.055* | |
C3 | 0.6027 (4) | 0.40631 (14) | 0.4526 (9) | 0.0472 (11) | |
H3 | 0.677009 | 0.396989 | 0.403256 | 0.057* | |
C4 | 0.5526 (4) | 0.39089 (12) | 0.6566 (8) | 0.0412 (10) | |
C5 | 0.4428 (5) | 0.40513 (14) | 0.7255 (8) | 0.0472 (11) | |
H5 | 0.407920 | 0.395140 | 0.863571 | 0.057* | |
C6 | 0.3835 (4) | 0.43407 (14) | 0.5926 (8) | 0.0459 (11) | |
H6 | 0.309133 | 0.443235 | 0.642622 | 0.055* | |
C7 | 0.3682 (5) | 0.48134 (15) | 0.2413 (8) | 0.0520 (11) | |
H7A | 0.290710 | 0.486181 | 0.307885 | 0.078* | |
H7B | 0.359938 | 0.471808 | 0.080859 | 0.078* | |
H7C | 0.413262 | 0.506217 | 0.242179 | 0.078* | |
C8 | 0.6147 (5) | 0.35857 (15) | 0.8012 (9) | 0.0597 (14) | |
H8A | 0.700247 | 0.361869 | 0.783922 | 0.072* | |
H8B | 0.595227 | 0.362480 | 0.967529 | 0.072* | |
Cd1 | 0.34125 (3) | 0.250000 | 0.23592 (6) | 0.02551 (12) | |
Br1 | 0.3312 (5) | 0.32949 (4) | 0.2275 (4) | 0.0651 (6) | 0.720 (11) |
Br2 | 0.5909 (3) | 0.250000 | 0.2364 (9) | 0.0747 (17) | 0.720 (11) |
Br3 | 0.3399 (6) | 0.250000 | −0.2602 (13) | 0.0559 (8) | 0.720 (11) |
Br1' | 0.3826 (6) | 0.32979 (8) | 0.2391 (5) | 0.0347 (11) | 0.280 (11) |
Br2' | 0.5958 (6) | 0.2653 (3) | 0.247 (2) | 0.0274 (13) | 0.140 (6) |
Br3' | 0.3238 (17) | 0.2539 (8) | −0.275 (4) | 0.0559 (8) | 0.140 (6) |
N1 | 0.5829 (5) | 0.31794 (13) | 0.7335 (10) | 0.0681 (13) | |
H1B | 0.5098 (18) | 0.3121 (17) | 0.719 (8) | 0.082* | |
H1C | 0.614 (4) | 0.3004 (15) | 0.828 (7) | 0.082* | |
H1A | 0.617 (4) | 0.3150 (18) | 0.599 (5) | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.044 (2) | 0.030 (2) | 0.038 (2) | 0.0022 (17) | −0.0081 (18) | 0.0000 (17) |
C2 | 0.048 (3) | 0.041 (2) | 0.048 (2) | −0.002 (2) | 0.002 (2) | 0.0096 (19) |
C3 | 0.039 (2) | 0.043 (3) | 0.059 (3) | 0.001 (2) | −0.001 (2) | 0.004 (2) |
C4 | 0.051 (2) | 0.027 (2) | 0.045 (2) | −0.0041 (19) | −0.017 (2) | 0.0010 (17) |
C5 | 0.064 (3) | 0.042 (2) | 0.035 (2) | 0.002 (2) | 0.002 (2) | 0.0024 (19) |
C6 | 0.051 (3) | 0.040 (3) | 0.047 (3) | 0.008 (2) | 0.003 (2) | −0.002 (2) |
C7 | 0.057 (3) | 0.045 (2) | 0.053 (3) | 0.010 (2) | −0.009 (2) | 0.006 (2) |
C8 | 0.083 (4) | 0.037 (2) | 0.059 (3) | 0.007 (2) | −0.030 (3) | 0.005 (2) |
Cd1 | 0.02616 (19) | 0.02671 (18) | 0.02367 (19) | 0.000 | 0.00016 (16) | 0.000 |
Br1 | 0.074 (2) | 0.0250 (4) | 0.0961 (8) | 0.0072 (5) | 0.0031 (9) | 0.0004 (4) |
Br2 | 0.0194 (7) | 0.158 (5) | 0.0468 (9) | 0.000 | −0.0007 (7) | 0.000 |
Br3 | 0.0405 (19) | 0.110 (2) | 0.0168 (10) | 0.000 | −0.0038 (11) | 0.000 |
Br1' | 0.0312 (19) | 0.0227 (8) | 0.0502 (14) | −0.0024 (8) | −0.0081 (11) | −0.0006 (8) |
Br2' | 0.0191 (19) | 0.019 (2) | 0.044 (3) | 0.0048 (17) | −0.001 (2) | 0.008 (3) |
Br3' | 0.0405 (19) | 0.110 (2) | 0.0168 (10) | 0.000 | −0.0038 (11) | 0.000 |
N1 | 0.078 (3) | 0.031 (2) | 0.095 (4) | 0.003 (2) | −0.018 (3) | 0.011 (3) |
C1—C6 | 1.378 (6) | Cd1—Br1 | 2.6124 (11) |
C1—C2 | 1.383 (6) | Cd1—Br1i | 2.6125 (11) |
C1—C7 | 1.508 (6) | Cd1—Br1' | 2.660 (2) |
C2—C3 | 1.388 (6) | Cd1—Br1'i | 2.660 (2) |
C2—H2 | 0.9300 | Cd1—Br3'ii | 2.77 (2) |
C3—C4 | 1.374 (6) | Cd1—Br3'iii | 2.77 (2) |
C3—H3 | 0.9300 | Cd1—Br3 | 2.792 (8) |
C4—C5 | 1.373 (7) | Cd1—Br2 | 2.799 (3) |
C4—C8 | 1.507 (6) | Cd1—Br2'iv | 2.800 (7) |
C5—C6 | 1.380 (6) | Cd1—Br2'v | 2.800 (7) |
C5—H5 | 0.9300 | Cd1—Br2v | 2.812 (3) |
C6—H6 | 0.9300 | Cd1—Br3ii | 2.836 (8) |
C7—H7A | 0.9600 | Br2'—Br2'i | 1.008 (19) |
C7—H7B | 0.9600 | Br3'—Br3'i | 0.26 (6) |
C7—H7C | 0.9600 | N1—H1B | 0.846 (18) |
C8—N1 | 1.432 (6) | N1—H1C | 0.857 (18) |
C8—H8A | 0.9700 | N1—H1A | 0.853 (18) |
C8—H8B | 0.9700 | ||
C6—C1—C2 | 117.8 (4) | Br1i—Cd1—Br3'iii | 88.2 (6) |
C6—C1—C7 | 121.6 (4) | Br1—Cd1—Br3 | 88.95 (5) |
C2—C1—C7 | 120.6 (4) | Br1i—Cd1—Br3 | 88.95 (5) |
C1—C2—C3 | 120.8 (4) | Br1—Cd1—Br2 | 92.47 (13) |
C1—C2—H2 | 119.6 | Br1i—Cd1—Br2 | 92.47 (13) |
C3—C2—H2 | 119.6 | Br3—Cd1—Br2 | 90.36 (17) |
C4—C3—C2 | 120.8 (4) | Br1—Cd1—Br2'iv | 97.9 (3) |
C4—C3—H3 | 119.6 | Br1i—Cd1—Br2'iv | 77.20 (18) |
C2—C3—H3 | 119.6 | Br3—Cd1—Br2'iv | 91.6 (3) |
C5—C4—C3 | 118.5 (4) | Br2—Cd1—Br2'iv | 169.44 (19) |
C5—C4—C8 | 120.1 (5) | Br1—Cd1—Br2'v | 77.20 (18) |
C3—C4—C8 | 121.4 (5) | Br1i—Cd1—Br2'v | 97.9 (3) |
C4—C5—C6 | 120.9 (4) | Br3—Cd1—Br2'v | 91.6 (3) |
C4—C5—H5 | 119.5 | Br2—Cd1—Br2'v | 169.44 (19) |
C6—C5—H5 | 119.5 | Br1—Cd1—Br2v | 87.59 (12) |
C1—C6—C5 | 121.2 (4) | Br1i—Cd1—Br2v | 87.59 (12) |
C1—C6—H6 | 119.4 | Br3—Cd1—Br2v | 92.87 (17) |
C5—C6—H6 | 119.4 | Br2—Cd1—Br2v | 176.769 (15) |
C1—C7—H7A | 109.5 | Br1—Cd1—Br3ii | 91.03 (5) |
C1—C7—H7B | 109.5 | Br1i—Cd1—Br3ii | 91.03 (5) |
H7A—C7—H7B | 109.5 | Br3—Cd1—Br3ii | 179.4 (3) |
C1—C7—H7C | 109.5 | Br2—Cd1—Br3ii | 90.26 (17) |
H7A—C7—H7C | 109.5 | Br2v—Cd1—Br3ii | 86.51 (17) |
H7B—C7—H7C | 109.5 | Cd1—Br2—Cd1vi | 176.9 (2) |
N1—C8—C4 | 113.4 (4) | Cd1—Br3—Cd1vii | 179.4 (3) |
N1—C8—H8A | 108.9 | Br2'i—Br2'—Cd1 | 79.99 (18) |
C4—C8—H8A | 108.9 | Cd1vi—Br2'—Cd1 | 159.6 (4) |
N1—C8—H8B | 108.9 | Br3'i—Br3'—Cd1 | 87.5 (5) |
C4—C8—H8B | 108.9 | Cd1vii—Br3'—Cd1 | 170.5 (8) |
H8A—C8—H8B | 107.7 | C8—N1—H1B | 119 (4) |
Br1—Cd1—Br1i | 174.6 (3) | C8—N1—H1C | 111 (4) |
Br1—Cd1—Br1'i | 172.4 (3) | H1B—N1—H1C | 108 (3) |
Br1i—Cd1—Br1'i | 12.59 (4) | C8—N1—H1A | 103 (4) |
Br1—Cd1—Br3'ii | 88.2 (6) | H1B—N1—H1A | 109 (3) |
Br1i—Cd1—Br3'ii | 93.5 (6) | H1C—N1—H1A | 107 (3) |
Br1—Cd1—Br3'iii | 93.5 (6) | ||
C6—C1—C2—C3 | 1.2 (7) | C8—C4—C5—C6 | −178.6 (4) |
C7—C1—C2—C3 | −179.7 (4) | C2—C1—C6—C5 | −0.7 (7) |
C1—C2—C3—C4 | −0.9 (7) | C7—C1—C6—C5 | −179.9 (4) |
C2—C3—C4—C5 | 0.1 (7) | C4—C5—C6—C1 | −0.1 (7) |
C2—C3—C4—C8 | 179.1 (4) | C5—C4—C8—N1 | 87.8 (6) |
C3—C4—C5—C6 | 0.4 (7) | C3—C4—C8—N1 | −91.2 (6) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, y, z+1; (iii) x, −y+1/2, z+1; (iv) x−1/2, −y+1/2, −z+1/2; (v) x−1/2, y, −z+1/2; (vi) x+1/2, y, −z+1/2; (vii) x, y, z−1. |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Br1′ii | 0.97 | 3.03 | 3.707 (8) | 128 |
N1—H1B···Br3ii | 0.85 (2) | 2.79 (4) | 3.521 (7) | 145 (5) |
N1—H1B···Br1′ | 0.85 (2) | 3.11 (4) | 3.597 (7) | 119 (3) |
N1—H1B···Br3′ii | 0.85 (2) | 2.83 (4) | 3.59 (2) | 150 (5) |
N1—H1B···Br3′iii | 0.85 (2) | 3.01 (4) | 3.74 (2) | 147 (5) |
N1—H1C···Br2ii | 0.86 (2) | 2.84 (3) | 3.604 (6) | 149 (4) |
N1—H1C···Br3vi | 0.86 (2) | 3.05 (4) | 3.647 (7) | 129 (4) |
N1—H1C···Br2′ii | 0.86 (2) | 2.63 (3) | 3.371 (12) | 145 (4) |
N1—H1C···Br3′vi | 0.86 (2) | 2.82 (4) | 3.43 (2) | 130 (4) |
N1—H1C···Br3′viii | 0.86 (2) | 2.97 (5) | 3.59 (3) | 132 (4) |
N1—H1A···Br1vi | 0.85 (2) | 3.06 (3) | 3.825 (8) | 150 (4) |
N1—H1A···Br2 | 0.85 (2) | 2.96 (5) | 3.579 (7) | 131 (5) |
N1—H1A···Br2′ | 0.85 (2) | 2.57 (5) | 3.239 (13) | 136 (5) |
C7—H7C···Cg1ix | 0.96 | 2.95 | 3.824 (5) | 152 |
Symmetry codes: (ii) x, y, z+1; (iii) x, −y+1/2, z+1; (vi) x+1/2, y, −z+1/2; (viii) x+1/2, −y+1/2, −z+1/2; (ix) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India for the single-crystal X-ray diffraction data.
Funding information
Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India [grant No. 03(1301)13/EMR II to CR].
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jiang, M. & Fang, Q. (1999). Adv. Mater. 11, 1147–1151. CrossRef CAS Google Scholar
Kefi, R., Zeller, M., Lefebvre, F. & Ben Nasr, C. (2011). Int. J. Inorg. Chem. Article ID, 274073, 1–7. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marcy, H. O., Warren, L. F., Webb, M. S., Ebbers, C. A., Velsko, S. P., Kennedy, G. C. & Catella, G. C. (1992). Appl. Opt. 31, 5051–5060. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.