inorganic compounds
Redetermination of the 4] from single-crystal X-ray diffraction data
of K[BrFaFachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de
Single crystals of K[BrF4], potassium tetrafluoridobromate(III), were grown from a solution of KHF2 in bromine trifluoride. The current report is the first of the of K[BrF4] using single-crystal X-ray diffraction data. In comparison with previous refinements from powder data, the fractional coordinates of the F atom were determined with higher precision, and anisotropic displacement parameters were refined for all atoms. The structure contains square-planar [BrF4]− anions. The of the potassium cation is a square antiprism.
Keywords: crystal structure; potassium; tetrafluoridobromate; redetermination.
CCDC reference: 1839858
Structure description
The first attempt to elucidate the 4] was carried out by Siegel using powder X-ray diffraction data (Siegel, 1956). He could index the powder pattern in a tetragonal cell, I4/mcm, with a = 6.162 (2), c = 11.081 (2) Å, and the [BrF4]− anion having a tetrahedral configuration. Subsequently, the diffraction data of Siegel were reinterpreted by Sly & Marsh (1957). They kept the but assigned different positions to the atoms within the same group type, yielding a more reasonable square-planar [BrF4]− anion. This shape of the anion was later confirmed by Edwards and Jones using powder neutron diffraction data [a = 6.17 (1), c = 11.10 (1) Å; Edwards & Jones, 1969]. Similar cell parameters were reported later by Chrétien and Bouy using powder X-ray diffraction data (a = 6.162, c = 11.081 Å, no s.u. given; Chrétien & Bouy, 1958) and by Popov et al. [powder X-ray diffraction data, a = 6.192 (5), c = 11.108 (7) Å; Popov et al., 1987]. Although this was not reported anywhere, we assume that all measurements were performed at room temperature. Here we report our results of the determination of K[BrF4] using single-crystal X-ray diffraction data at 100 K.
of K[BrFThe lattice parameters obtained from our diffraction data (Table 1) are in good correspondence with previously published values. The K+ cation resides on 4a (site symmetry 422). The centre of the [BrF4]− anion is located on 4d (m.mm), with the F atoms occupying 16l (..m). The Br—F bond length amounts to 1.8924 (9) Å. This value is typical for the [BrF4]− anion and is observed in other known tetrafluoridobromates that were investigated earlier by us (Table 2). The F—Br—F angles are 90.02 (3) and 89.98 (5)°, respectively, and are right angles within the 3σ criterion. The nearest K—F distance is 2.7112 (6) Å. The resulting coordination sphere of the potassium cation by fluorine atoms is a square antiprism. The of K[BrF4] and its is shown in Fig. 1.
|
Synthesis and crystallization
Potassium tetrafluoridobromate(III) was synthesized using potassium hydrogen fluoride KHF2 (0.20 g, 2.6 mmol, 1 eq.) and an excess of liquid bromine trifluoride (1 ml, 2.8 g, 20.4 mmol, 8.0 eq.). The reaction was carried out in an FEP vessel (perfluorinated ethylene propylene copolymer) at 393 K. After complete dissolution of KHF2, the resulting solution was allowed to cool down to room temperature. Within two hours, large colourless crystals were observed, which were picked directly out of liquid BrF3.
Structural data
CCDC reference: 1839858
https://doi.org/10.1107/S2414314618006466/wm4077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314618006466/wm4077Isup2.hkl
Data collection: WinXpose in X-AREA (Stoe & Cie, 2016); cell
Recipe in X-AREA (Stoe & Cie, 2015); data reduction: Integrate in X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: publCIF (Westrip, 2010).K+·BrF4− | Melting point: 533 K |
Mr = 195.01 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mcm | Cell parameters from 3833 reflections |
a = 6.0999 (6) Å | θ = 3.7–32.1° |
c = 11.0509 (14) Å | µ = 10.95 mm−1 |
V = 411.19 (10) Å3 | T = 100 K |
Z = 4 | Block, colorless |
F(000) = 360 | 0.23 × 0.15 × 0.13 mm |
Dx = 3.150 Mg m−3 |
STOE IPDS 2T diffractometer | 214 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 198 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.050 |
Detector resolution: 6.67 pixels mm-1 | θmax = 31.8°, θmin = 3.7° |
rotation method, ω scans | h = −9→9 |
Absorption correction: numerical (X-RED32 and X-SHAPE; Stoe & Cie, 2017) | k = −8→9 |
Tmin = 0.157, Tmax = 0.272 | l = −16→16 |
2822 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0152P)2 + 0.2331P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max < 0.001 |
wR(F2) = 0.032 | Δρmax = 0.60 e Å−3 |
S = 1.24 | Δρmin = −0.73 e Å−3 |
214 reflections | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
13 parameters | Extinction coefficient: 0.0087 (11) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.500000 | 0.000000 | 0.500000 | 0.00790 (12) | |
K1 | 0.500000 | 0.500000 | 0.250000 | 0.01054 (16) | |
F1 | 0.65508 (11) | 0.15508 (11) | 0.37889 (7) | 0.0138 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.00811 (14) | 0.00811 (14) | 0.00749 (15) | 0.00046 (10) | 0.000 | 0.000 |
K1 | 0.0108 (2) | 0.0108 (2) | 0.0101 (3) | 0.000 | 0.000 | 0.000 |
F1 | 0.0146 (3) | 0.0146 (3) | 0.0122 (4) | −0.0008 (4) | 0.0030 (2) | 0.0030 (2) |
Br1—F1 | 1.8923 (9) | K1—F1viii | 2.7112 (6) |
Br1—F1i | 1.8924 (9) | K1—F1ix | 2.7112 (6) |
Br1—F1ii | 1.8924 (9) | K1—F1x | 2.7112 (6) |
Br1—F1iii | 1.8924 (9) | K1—F1 | 2.7112 (6) |
K1—F1iv | 2.7112 (6) | K1—K1xi | 4.3133 (6) |
K1—F1v | 2.7112 (6) | K1—K1xii | 4.3133 (6) |
K1—F1vi | 2.7112 (6) | K1—K1xiii | 4.3133 (6) |
K1—F1vii | 2.7112 (6) | K1—K1x | 4.3133 (6) |
F1—Br1—F1i | 90.02 (5) | F1viii—K1—K1xi | 142.700 (14) |
F1—Br1—F1ii | 89.98 (5) | F1ix—K1—K1xi | 37.300 (14) |
F1i—Br1—F1ii | 180.0 | F1x—K1—K1xi | 72.421 (19) |
F1—Br1—F1iii | 180.0 | F1—K1—K1xi | 107.579 (19) |
F1i—Br1—F1iii | 89.98 (5) | F1iv—K1—K1xii | 37.300 (14) |
F1ii—Br1—F1iii | 90.02 (5) | F1v—K1—K1xii | 142.700 (14) |
F1iv—K1—F1v | 144.84 (4) | F1vi—K1—K1xii | 107.579 (19) |
F1iv—K1—F1vi | 139.16 (4) | F1vii—K1—K1xii | 72.421 (19) |
F1v—K1—F1vi | 73.977 (14) | F1viii—K1—K1xii | 37.300 (14) |
F1iv—K1—F1vii | 73.977 (14) | F1ix—K1—K1xii | 142.700 (14) |
F1v—K1—F1vii | 139.16 (3) | F1x—K1—K1xii | 107.579 (19) |
F1vi—K1—F1vii | 74.60 (3) | F1—K1—K1xii | 72.421 (19) |
F1iv—K1—F1viii | 74.60 (3) | K1xi—K1—K1xii | 180.0 |
F1v—K1—F1viii | 116.61 (3) | F1iv—K1—K1xiii | 107.579 (19) |
F1vi—K1—F1viii | 73.977 (15) | F1v—K1—K1xiii | 107.579 (19) |
F1vii—K1—F1viii | 78.20 (4) | F1vi—K1—K1xiii | 37.300 (14) |
F1iv—K1—F1ix | 116.61 (3) | F1vii—K1—K1xiii | 37.300 (14) |
F1v—K1—F1ix | 74.60 (3) | F1viii—K1—K1xiii | 72.421 (19) |
F1vi—K1—F1ix | 78.20 (4) | F1ix—K1—K1xiii | 72.421 (19) |
F1vii—K1—F1ix | 73.977 (15) | F1x—K1—K1xiii | 142.700 (14) |
F1viii—K1—F1ix | 144.84 (4) | F1—K1—K1xiii | 142.699 (15) |
F1iv—K1—F1x | 73.977 (14) | K1xi—K1—K1xiii | 90.0 |
F1v—K1—F1x | 78.20 (4) | K1xii—K1—K1xiii | 90.0 |
F1vi—K1—F1x | 144.84 (4) | F1iv—K1—K1x | 72.421 (19) |
F1vii—K1—F1x | 116.61 (3) | F1v—K1—K1x | 72.421 (19) |
F1viii—K1—F1x | 139.16 (3) | F1vi—K1—K1x | 142.700 (14) |
F1ix—K1—F1x | 73.977 (15) | F1vii—K1—K1x | 142.700 (14) |
F1iv—K1—F1 | 78.20 (4) | F1viii—K1—K1x | 107.579 (19) |
F1v—K1—F1 | 73.978 (14) | F1ix—K1—K1x | 107.579 (19) |
F1vi—K1—F1 | 116.61 (3) | F1x—K1—K1x | 37.300 (14) |
F1vii—K1—F1 | 144.84 (4) | F1—K1—K1x | 37.301 (14) |
F1viii—K1—F1 | 73.977 (14) | K1xi—K1—K1x | 90.0 |
F1ix—K1—F1 | 139.16 (4) | K1xii—K1—K1x | 90.0 |
F1x—K1—F1 | 74.60 (3) | K1xiii—K1—K1x | 180.0 |
F1iv—K1—K1xi | 142.700 (14) | Br1—F1—K1x | 125.809 (18) |
F1v—K1—K1xi | 37.300 (14) | Br1—F1—K1 | 125.809 (18) |
F1vi—K1—K1xi | 72.421 (19) | K1x—F1—K1 | 105.40 (3) |
F1vii—K1—K1xi | 107.579 (19) |
Symmetry codes: (i) x, y, −z+1; (ii) −x+1, −y, z; (iii) −x+1, −y, −z+1; (iv) −y+1/2, x−1/2, −z+1/2; (v) −y+1, x, z; (vi) −x+1, −y+1, z; (vii) x−1/2, y+1/2, −z+1/2; (viii) y, −x+1, z; (ix) y+1/2, −x+3/2, −z+1/2; (x) −x+3/2, −y+1/2, −z+1/2; (xi) −x+3/2, −y+3/2, −z+1/2; (xii) −x+1/2, −y+1/2, −z+1/2; (xiii) −x+1/2, −y+3/2, −z+1/2. |
Compound | Br—F | M—F |
K[BrF4] (at 100 K; this work) | 1.8924 (9) | 2.7112 (6) |
Na[BrF4] (at 100 K; Ivlev et al., 2016) | 1.899 (1) | 2.4674 (4) |
Rb[BrF4] (at RT; Ivlev et al., 2015) | 1.932 (8) | 2.851 (7) |
Cs[BrF4] (at RT; Ivlev et al., 2013) | 1.94 (7) - 1.97 (4) | 2.89 (3) - 3.490 (8) |
Ba[BrF4]2 (at RT; Ivlev et al., 2014) | 1.801 (4) - 1.935 (2) | 2.696 (3) - 3.376 (3) |
Acknowledgements
We are grateful to Dr Harms (Marburg) for X-ray measurement time.
Funding information
We thank the DFG for very generous funding.
References
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chrétien, A. & Bouy, P. (1958). C. R. Hebd. Seances Acad. Sci. 246, 2493–2495. Google Scholar
Edwards, A. J. & Jones, G. R. (1969). J. Chem. Soc. A, pp. 1936–1938. CrossRef Google Scholar
Ivlev, S., Karttunen, A. J., Ostvald, R. & Kraus, F. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598. CrossRef CAS Google Scholar
Ivlev, S. I., Ostvald, R. V. & Kraus, F. (2016). Monatsh. Chem. 147, 1661–1668. CrossRef CAS Google Scholar
Ivlev, S., Sobolev, V., Hoelzel, M., Karttunen, A. J., Müller, T., Gerin, I., Ostvald, R. & Kraus, F. (2014). Eur. J. Inorg. Chem. pp. 6261–6267. CrossRef Google Scholar
Ivlev, S., Woidy, P., Sobolev, V., Gerin, I., Ostvald, R. & Kraus, F. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850. CrossRef CAS Google Scholar
Popov, A. I., Kiselev, Y. M., Sukhoverkhov, V. F., Chumaevskii, N. A., Krasnyanskaya, O. A. & Sadikova, A. T. (1987). Russ. J. Inorg. Chem. 32, 619–622. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegel, S. (1956). Acta Cryst. 9, 493–495. CrossRef IUCr Journals Google Scholar
Sly, W. G. & Marsh, R. E. (1957). Acta Cryst. 10, 378–379. CrossRef IUCr Journals Google Scholar
Stoe & Cie (2015). X-AREA Recipe. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2016). X-AREA WinXpose. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2017). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2018). X-AREA Integrate. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.